于文劍 楊麗 張俊環(huán) 姜鳳超 張美玲 王玉柱 孫浩元
摘? ? 要:杏果實(shí)風(fēng)味獨(dú)特,是北方主要落葉果樹中特色最為突出的樹種之一。杏果實(shí)的風(fēng)味是決定果實(shí)品質(zhì)好壞的重要因素,其主要由果實(shí)中的糖、酸和揮發(fā)性芳香物質(zhì)共同作用。目前,針對杏果實(shí)風(fēng)味的研究主要集中在品種間果實(shí)糖酸物質(zhì)和香氣物質(zhì)的組成類型和含量的差異性等方面。對影響杏果實(shí)品質(zhì)形成的外界因素和調(diào)控其形成的關(guān)鍵基因的研究較為薄弱。就近年來與杏果實(shí)可溶性糖、有機(jī)酸和香氣物質(zhì)合成與代謝相關(guān)文獻(xiàn)進(jìn)行了綜述,并對未來的研究進(jìn)行了展望,以期為杏果實(shí)風(fēng)味品質(zhì)形成研究和杏新種質(zhì)的創(chuàng)制提供參考。
關(guān)鍵詞:杏;風(fēng)味;可溶性糖;有機(jī)酸;香氣
中圖分類號:S662.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)12-2624-14
收稿日期:2023-07-10 接受日期:2023-10-04
基金項(xiàng)目:國家自然科學(xué)基金面上項(xiàng)目(32272653);北京市農(nóng)林科學(xué)院創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20230416);北京市農(nóng)林科學(xué)院創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20230118);北京市農(nóng)林科學(xué)院科研創(chuàng)新平臺建設(shè)項(xiàng)目(PT2023-09)
作者簡介:于文劍,男,助理研究員,博士,研究方向?yàn)樾庸麑?shí)品質(zhì)改良。Tel:010-82595857,E-mail:tedyuwj@163.com
*通信作者 Author for correspondence. Tel:010-62599649,E-mail:haoyuansun@139.com
Research progress on the mechanism of flavor formation and regulation in apricot
YU Wenjian, YANG Li, ZHANG Junhuan, JIANG Fengchao, ZHANG Meiling, WANG Yuzhu, SUN Haoyuan*
(Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China)
Abstract: Apricot is a notable deciduous fruit tree in northern China. The flavor of apricot consists of soluble sugars, organic acids and aroma, which is pivotal to determine the quality of apricot fruit. Sugars, mainly including sucrose, glucose, fructose and sorbitol, are considered as essential primary metabolite in apricot fruit. The dominant sugar in most apricot cultivars is sucrose. The flavor of apricot is also affected by the contents and types of organic acids. The primary organic acids are malic acid and citric acid in apricot. The more malic acid or citric acid in apricot, the more the fruit tasted acidic or better. Aroma plays a vital role in the sensory quality of apricot. More than 200 volatile substances have been identified in apricot fruits, including esters, alcohols, aldehydes, ketones and terpenes. The main esters include ethyl acetate, butyl acetate and γ-decalactone. The major components of alcohols are trans-3-hexenol, cis-3-hexenol and isobutanol. Nonal, hexal and hexenal are dominant aldehydes in apricot. Geographical factors and varietal differences are critical to the flavor of apricot. The apricots cultivated in India and Xinjiang of China have higher total sugar contents than those cultivated in Turkey and Shanxi of China, respectively. In line with sugars, the contents of organic acids in China are higher than those of Oceanian and European varieties. The sugar degree in south-central China were significantly higher than those in the rest regions. Compared with the soluble sugars and organic acids, the aroma level of apricots which cultivated in North China ecologic group were stronger than those of European ecologic group. Furthermore, the diversity of volatile substances in northwest China was higher than those of in North China, Northeast China and Southwest China. In addition, the composition of sugars, organic acids and volatiles was diversified among genotypes. The synthesis and metabolism of flavor substances in apricot exhibit the spatiotemporal specificity. For temporal specificity, fructose and glucose are mainly synthesized during early development stage. At the later stage of fruit development, the sucrose and sorbitol become the main components accumulated. Different from sugars, most organic acids increase in the early stage and decrease rapidly during fruit maturation. The main aroma differs in different ripening stages. For spatial specificity, there are no significant differences in the contents of total sugars and sucrose between pulp and peel except the fructose. Fructose in the pulp is higher than in the peel. Similar to the condition of sugars, the total amount and composition of organic acids in the pulp and the peel are the same in most apricot cultivars, but the content of various organic acids in the fruit is different. The contents and types of aroma substances in the pericarp are significantly different from those in the pulp. The nutrient elements, endogenous hormones and environmental conditions affect the accumulation of soluble sugars, organic acids and aroma. The contents of total sugars in fruit are affected by the ratio of nitrogen in different forms in the soil. Meanwhile, rational application of fertilizer improves the flavor quality and yield of apricot and reduces environmental pollution. Plant hormones are involved in the formation of fruit flavor quality by influencing plant growth, regulating enzyme activity and controlling gene expression. Abscisic acid promotes the sugar contents by regulating transport of the photosynthetic products to fruits and the expression of sucrose synthase genes. 1-methylcyclopropene, an ethylene inhibitor, is involved in reduction of sugars and organic acids in fruits via reducing the activity of enzymes involved in sugar synthesis and metabolism. In addition, methyl salicylate and cytokinin have been proved to maintain and improve fruit acidity. Environmental factors, bioactive molecules and plant resistance inducers are involved in the formation of fruit quality. Appropriate temperatures may prolong the shelf life, maintain the contents of soluble solids, delay the decline in organic acids, and affect the formation of aroma substances. It is a complex process that the synthesis, transport and metabolism of flavor substances in apricot fruit. A large number of enzyme genes, transporters and transcription factors are involved. In the aspect of enzyme genes, ParSuSys and PaSPSs are involved in the synthesis of sucrose. PaPEPC, PaMDH, PaME and PaCS have been identified to participate in the biosynthesis of malic acid and citric acid. PaFADs, PaLOXs, PaAAT1 and PaCCDs take part in the synthesis of esters and apocarotenoid. In the aspect of transporters, the transcript levels of PaSTP3, 5.1, 5.2, PaSUC4 and PaSWEET10 are up regulated with fruit ripening. It is suggested that these genes involved in sucrose transport over the tissues and cells in apricot. The transport of organic acids in apricot is mediated by vacuole transporters, carrier proteins (proton pumps) and ion channels, such as PaALMTCs, PaSFCs and PaVPP. In the aspect of transcription factors, ERF transcription factors regulate the formation of volatile substances in fruit by regulating the genes which respond to the biosynthesis of ethylene and aroma. At present, most studies focus on the differences in composition types, contents and spatio-temporal variation of the sugar, acid and aroma substances among the apricot varieties. However, the researches on apricot fruit quality which effected by external factors and key genes are weak. Here, the synthesis and metabolism of soluble sugars, organic acids and aroma substances in apricot fruits are reviewed, and the future studies are prospected in order to provide references for the flavor quality formation and new germplasm creation of apricot fruit.
Key words: Apricot; Flavor; Soluble sugar; Organic acid; Aroma
杏(Prunus armeniaca L.)屬薔薇科杏屬,是世界第三大廣泛栽培的核果類果樹[1]。目前,全球杏產(chǎn)量已達(dá)380萬噸,主要產(chǎn)地為地中海地區(qū)(占全球總產(chǎn)量的40%)[2]。杏最早起源于中國,栽培歷史可追溯到距今2600年前[2]。杏果實(shí)味道鮮美,氣味誘人,顏色鮮艷,含有豐富的維生素C、β-胡蘿卜素和酚類等營養(yǎng)物質(zhì),被認(rèn)為是兼具經(jīng)濟(jì)價(jià)值和營養(yǎng)價(jià)值的果樹,深受消費(fèi)者青睞[3-5]。
果實(shí)品質(zhì)是由物理特征(果實(shí)質(zhì)量、硬度和顏色等)、化學(xué)特征(可溶性固形物含量和pH值等)、感官特征(外觀、味道和香氣等)和營養(yǎng)參數(shù)(酚含量和抗氧化能力)等共同決定的[6-7]。消費(fèi)者根據(jù)顏色和硬度等物理特征初次選購水果,而重復(fù)購買則主要取決于果實(shí)味道和香氣等感官特征。因此,果實(shí)味道和香氣對于果實(shí)至關(guān)重要。果實(shí)味道主要為甜酸味,主要影響因子是糖分和酸度;果實(shí)香氣主要為果香型和清香型等,主要影響因子為揮發(fā)性芳香物質(zhì)。筆者從影響味道和香氣兩方面,論述杏果實(shí)風(fēng)味研究進(jìn)展,并對進(jìn)一步研究方向進(jìn)行了展望。
1 杏可溶性糖的合成代謝規(guī)律與調(diào)控
糖分是杏果實(shí)中必不可少的初級代謝產(chǎn)物,對維持果實(shí)正常的生長發(fā)育、營養(yǎng)物質(zhì)的合成和風(fēng)味物質(zhì)的積累具有重要作用。果實(shí)中可溶性糖主要包括蔗糖、果糖和葡萄糖,其組分和含量的差異能夠直接影響消費(fèi)者對水果的滿意度[8]。
1.1 杏果實(shí)可溶性糖成分及其遺傳變異
果實(shí)中各類糖的含量以及優(yōu)勢糖的類型在果實(shí)風(fēng)味形成中扮演重要角色。杏果實(shí)中可溶性糖主要包括蔗糖、葡萄糖、果糖和山梨醇等,其中蔗糖被認(rèn)為是杏果實(shí)中的優(yōu)勢糖組分[9]。
杏樹的種植地、品種和基因型的差異影響果實(shí)風(fēng)味和加工品質(zhì)。杏樹廣泛栽培于世界各地,栽培地區(qū)條件的變化,影響杏果實(shí)的糖分含量。種植在土耳其和印度的杏,雖然果實(shí)中的主要糖分物質(zhì)均為蔗糖、葡萄糖和果糖,但是印度野生杏中的糖含量顯著高于土耳其東部杏品種[2]。種植在新疆和山西的杏,雖蔗糖和果糖是決定其果實(shí)甜味的主要因素,但新疆杏的總糖及各糖分含量顯著高于山西杏[10]。近年來育種技術(shù)的進(jìn)步加速了杏新品種的多樣性發(fā)展,但品種間生長習(xí)性和用途的差異導(dǎo)致果實(shí)含糖量不同。張君萍等[11]研究表明,產(chǎn)地均為新疆的洪代克杏的總糖含量(12.73%)約為黑葉杏總糖含量(4.81%)的3倍。鮮食杏品種(駱駝黃、凱里大杏和早仙居)的含糖量顯著高于仁用杏品種(一窩蜂和大山杏)[12]。杏雜合度高,遺傳背景復(fù)雜,栽培杏雜交后代各基因型間以及不同基因型野生杏間的含糖量差距較大[2,13]。以上研究表明,栽培地區(qū)生態(tài)條件的變化、品種間生長習(xí)性的變化以及基因型間遺傳性狀的變異直接影響果實(shí)含糖量。目前,杏果實(shí)中糖含量的研究多集中在利用生理生化手段比較國內(nèi)外不同栽培地區(qū)、種/品種和雜交后代不同類型糖分含量。但造成杏果實(shí)糖分含量差異化明顯的原因、糖分含量與栽植地區(qū)生態(tài)條件之間的關(guān)系以及調(diào)控雜交后代糖分合成的機(jī)制尚不明確。因此,應(yīng)結(jié)合表型生物學(xué)、全基因組關(guān)聯(lián)分析(genome-wide association study,GWAS)和重測序技術(shù)對世界范圍內(nèi)不同的杏群體和雜交后代進(jìn)行研究,明確杏果實(shí)糖分合成機(jī)制以及差異變化規(guī)律。
1.2 杏果實(shí)可溶性糖合成代謝的時(shí)空變化
杏果實(shí)生長發(fā)育呈典型“快-慢-快”的雙S型。在植物體光合作用和糖分代謝的共同作用下,發(fā)育期杏果實(shí)的蔗糖、果糖、葡萄糖和山梨醇等成分的含量呈動(dòng)態(tài)變化。華北杏品種(新世紀(jì))、新疆杏(蘇聯(lián)2號、庫爾勒托擁和阿克牙勒克)和歐洲生態(tài)群杏品種(金太陽)等的果實(shí)均在發(fā)育前期以積累果糖和葡萄糖為主;果實(shí)發(fā)育后期,糖代謝由分解代謝轉(zhuǎn)為合成代謝,激活了蔗糖合成酶和琥珀酸脫氫酶,促進(jìn)了果實(shí)中蔗糖和山梨醇等成分的積累,提高了成熟期杏果實(shí)總糖和蔗糖含量[14-16]。
在果實(shí)發(fā)育的過程中,杏果肉中的果糖含量以及占總糖的比例較果皮高,使得杏果肉中的甜味較果皮強(qiáng)[15]。與果糖含量呈現(xiàn)的空間差異性相比,杏果肉和果皮的總糖和蔗糖含量差異不明顯[15]。
1.3 氮素和生長調(diào)節(jié)劑對杏果實(shí)可溶性糖合成的作用
土壤中氮素(nitrogen,N)水平和生長調(diào)節(jié)劑等外界因素通過調(diào)節(jié)糖代謝關(guān)鍵酶的活性和基因表達(dá)水平參與杏果實(shí)中糖分合成和積累。N作為果樹生長發(fā)育的必需元素,其存在形態(tài)和含量影響樹體生長、果實(shí)產(chǎn)量和品質(zhì)形成。N主要以硝態(tài)氮和銨態(tài)氮兩種形式存在。Khasawneh等[7]研究發(fā)現(xiàn),與單獨(dú)施用NH4+相比,對杏樹施加NH4+/NO3-(4/6)能夠調(diào)節(jié)種植地土壤中硝態(tài)氮和銨態(tài)氮含量,提高果實(shí)總糖含量約34%。在杏生產(chǎn)過程中,過量施加氮肥,導(dǎo)致土壤N過剩,N利用率下降,果實(shí)含糖量降低,進(jìn)而影響杏果實(shí)品質(zhì)[17-19]。土壤N不足,抑制杏果實(shí)中氨基酸和葉綠素合成,造成植株葉面積減少和果實(shí)減產(chǎn)[20]。因此,應(yīng)合理施N,控制土壤N含量。已有研究表明,合理施用氮肥,能夠調(diào)節(jié)土壤中N含量,提高杏果實(shí)糖分等風(fēng)味品質(zhì)和產(chǎn)量,減少環(huán)境污染[20]。目前,除氮肥之外的其他肥料影響杏果實(shí)糖分合成和積累的研究較少。在氮肥的基礎(chǔ)上,應(yīng)加強(qiáng)對磷、鉀肥以及復(fù)合肥施用量對杏果實(shí)含糖量影響的研究,篩選適宜的氮磷鉀肥搭配比例。除大量元素外,微量元素同樣參與調(diào)節(jié)果實(shí)糖積累。鎂和鐵元素通過介導(dǎo)葉綠素的形成,參與果樹光合作用,影響“源-庫”關(guān)系調(diào)節(jié)果實(shí)糖類積累[21]。因此,應(yīng)加強(qiáng)對鎂、鐵、鋅和硒等微量元素肥料對果實(shí)品質(zhì)影響的研究。
脫落酸(abscisic acid,ABA)和乙烯(ethylene,ETH)等植物生長調(diào)節(jié)劑在果實(shí)糖分積累與代謝的各環(huán)節(jié)中具有重要作用。ABA主要通過促進(jìn)植株光合產(chǎn)物向果實(shí)卸載,進(jìn)而提高杏果實(shí)中可溶性糖含量[22]。同時(shí),外源ABA能夠誘導(dǎo)杏果實(shí)蔗糖合成酶基因表達(dá)水平上調(diào),激活蔗糖合成酶,提高果實(shí)中總糖和蔗糖的含量[23]。杏果實(shí)屬于呼吸躍變型果實(shí),對乙烯極為敏感[24]。1-甲基環(huán)丙烯(1-Methylcyclopropene,1-MCP)為乙烯抑制劑,通過降低糖分合成和代謝相關(guān)酶的活性,減少果實(shí)中蔗糖、葡萄糖、果糖和總糖含量,抑制采后杏果實(shí)可溶性糖的積累與轉(zhuǎn)化[25]。其他生長調(diào)節(jié)劑(水楊酸甲酯、赤霉素和2,4-表油菜素內(nèi)酯)也參與杏果實(shí)中可溶性糖的合成[23,26-27]。
1.4 杏可溶性糖合成、轉(zhuǎn)運(yùn)和代謝的基因調(diào)控機(jī)制
杏果實(shí)可溶性糖組分主要以蔗糖為主,參與蔗糖合成和代謝的主要酶是蔗糖合酶(sucrose synthase,SUS)和蔗糖磷酸合酶(sucrose phosphate synthase,SPS)。SUS被認(rèn)為是杏果實(shí)中蔗糖積累的關(guān)鍵酶,能夠催化果糖、葡萄糖和蔗糖之間的合成和分解反應(yīng)[28-29]。SPS是一種蔗糖合成的限速酶,其活性與蔗糖積累呈正相關(guān)[30-31]。目前,借助高通量測序和生物技術(shù)手段,已在杏果實(shí)中鑒定出多個(gè)與蔗糖合成和代謝相關(guān)的酶基因[32-33]。在總糖和蔗糖積累階段,高濃度的蔗糖誘導(dǎo)杏蔗糖合酶基因PaSUS1、PaSUS3、ParSuSy5、ParSuSy6和ParSuSy7的表達(dá)量顯著上調(diào),推測其參與蔗糖合成酶合成方向蛋白的合成[23]。Zhang等[33]研究發(fā)現(xiàn),杏蔗糖磷酸合酶基因PaSPS2的表達(dá)量隨果實(shí)成熟呈現(xiàn)顯著上調(diào)趨勢,認(rèn)為PaSPS2介導(dǎo)杏果實(shí)蔗糖生物合成和積累。
蔗糖主要在葉片(源)中合成,經(jīng)韌皮部裝載、長距離運(yùn)輸、卸載到果實(shí)(庫)中,這些過程中蔗糖在細(xì)胞間的運(yùn)輸主要通過細(xì)胞器上糖轉(zhuǎn)運(yùn)蛋白完成。因此,糖分轉(zhuǎn)運(yùn)蛋白是調(diào)控植物體內(nèi)糖分卸載、分配和積累的關(guān)鍵因子,也是“源-庫”代謝之間信號轉(zhuǎn)導(dǎo)的重要組成部分[34]。植物中存在三大糖分轉(zhuǎn)運(yùn)蛋白家族:單糖轉(zhuǎn)運(yùn)蛋白(monosaccharide transporter,MST)、蔗糖轉(zhuǎn)運(yùn)蛋白(sucrose transporter,SUT/SUC)和糖轉(zhuǎn)運(yùn)蛋白(sugars will eventually be exported transporter,SWEET)[35-36]。己糖轉(zhuǎn)運(yùn)蛋白(sugar transporter proteins,STPs)是MST超家族下的亞族[37]。在果實(shí)成熟過程中,果實(shí)糖分逐漸積累,誘導(dǎo)杏STP3、STP5.1和STP5.2表達(dá)水平上調(diào)[33]。蔗糖轉(zhuǎn)運(yùn)蛋白屬于主要協(xié)同轉(zhuǎn)運(yùn)蛋白超家族(major facilitator super family,MFS)??邓萚38]研究發(fā)現(xiàn),杏PaSUC4主要在成熟葉中表達(dá),具有組織表達(dá)特異性,并推測其參與“源-庫”之間的蔗糖運(yùn)輸。SWEET糖轉(zhuǎn)運(yùn)蛋白是高等植物中一類全新的介導(dǎo)糖轉(zhuǎn)運(yùn)的蛋白家族[34]。Zhang等[33]以佳娜麗杏不同發(fā)育階段的果皮為材料,利用轉(zhuǎn)錄組測序發(fā)現(xiàn)了8個(gè)杏PaSWEET基因響應(yīng)果實(shí)成熟。值得注意的是,以上基因中僅有PaSWEET10表達(dá)上調(diào),提出杏PaSWEET10促進(jìn)胞質(zhì)中糖分進(jìn)入液泡或鄰近受體細(xì)胞[33]。QTL(quantitative trait locus)定位是一種明確控制性狀功能位點(diǎn)和基因的有效手段,對研究杏果實(shí)可溶性糖性狀具有重要意義[39]。Zhang等[40]利用較耐貯運(yùn)杏品種串枝紅與高糖低酸杏品種賽買提為雙親建立雜交群體。通過對雙親及其F1子代進(jìn)行測序,構(gòu)建了高密度遺傳連鎖圖譜,并以此對杏果實(shí)品質(zhì)性狀進(jìn)行QTL定位。該研究在杏基因組上共鑒定出3個(gè)調(diào)控果實(shí)可溶性固形物含量的候選區(qū)域,包含372個(gè)相關(guān)基因。這些基因涉及了光合電子傳遞、糖合成與轉(zhuǎn)運(yùn)、調(diào)控基因、轉(zhuǎn)錄因子和植物激素等,如:編碼蘋果酸脫氫酶的PARG17513、編碼光系統(tǒng)Ⅰ反應(yīng)中心的PARG15534和PARG17684以及調(diào)節(jié)跨膜轉(zhuǎn)運(yùn)蛋白活性的PARG17899等[40]。Garcia-Gomez等[41]以糖酸中等的杏Bergeron(B)和高酸杏Goldrich(G)分別為母本,與具有高糖低酸性狀的杏Currot(C)進(jìn)行雜交,利用簡單重復(fù)序列標(biāo)記(simple sequence repeats,SSR)和單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)標(biāo)記獲得的“B×C”和“G×C”F1代的表型數(shù)據(jù)和遺傳連鎖圖譜進(jìn)行QTL分析,發(fā)現(xiàn)調(diào)控可溶性固形物含量的QTL定位在LG4中,并在該區(qū)域內(nèi)鑒定出ppa001122m,ppa000854m和ppb001660m等參與D-葡萄糖和D-甘露糖相關(guān)的基因。上述研究通過多組學(xué)聯(lián)合分析、實(shí)時(shí)熒光定量以及正向遺傳學(xué)等方法,推測出可能參與杏果實(shí)優(yōu)勢糖合成、轉(zhuǎn)運(yùn)和代謝的基因,為下一步進(jìn)行基因功能驗(yàn)證,精準(zhǔn)創(chuàng)制杏新種質(zhì)奠定基礎(chǔ)。目前,已有的研究多利用高通量測序技術(shù)探究在果實(shí)糖分積累過程中基因的表達(dá)水平的變化,缺乏證明表達(dá)量顯著變化的基因參與糖分合成、轉(zhuǎn)運(yùn)和積累的直接證據(jù)。同時(shí),轉(zhuǎn)錄因子和表觀遺傳修飾調(diào)控基因表達(dá)水平,但具體的轉(zhuǎn)錄調(diào)控和表觀遺傳機(jī)制尚不明確。因此,多組學(xué)分析應(yīng)結(jié)合現(xiàn)代生物學(xué)技術(shù),深入探究參與糖分合成、轉(zhuǎn)運(yùn)和積累等過程的關(guān)鍵基因的功能以及調(diào)控機(jī)制,進(jìn)而構(gòu)建清晰的調(diào)控網(wǎng)絡(luò)。
2 杏有機(jī)酸的合成代謝規(guī)律與調(diào)控
酸度是果實(shí)品質(zhì)的重要組成部分。杏果實(shí)酸度取決于有機(jī)酸的種類和含量。果實(shí)中有機(jī)酸主要通過糖酵解作用產(chǎn)生,糖異生作用降解,并通過三羧酸循環(huán)進(jìn)行代謝[42]。杏果實(shí)有機(jī)酸的合成和代謝過程受遺傳因素和環(huán)境因子調(diào)控[10,43]。
2.1 杏果實(shí)有機(jī)酸成分及其遺傳變異
杏果實(shí)中含量最豐富的有機(jī)酸是蘋果酸、檸檬酸、奎尼酸和琥珀酸。果實(shí)優(yōu)勢有機(jī)酸含量直接影響果實(shí)風(fēng)味和口感。小白杏和樹上干杏的優(yōu)勢酸是蘋果酸;檸檬酸是印度CITH-A-1、CITH-A-2、CITH-A-3杏(占果實(shí)總有機(jī)酸的50%以上)和歐洲的Roxana、Gold Cot、Shakarpara杏的優(yōu)勢有機(jī)酸[1,43-44]。蘋果酸作為優(yōu)勢酸的杏品種,果實(shí)酸味較強(qiáng);而檸檬酸作為優(yōu)勢酸,能夠加強(qiáng)酸味的融合,使果實(shí)口感更佳。
杏果實(shí)有機(jī)酸因種植區(qū)地理特征和環(huán)境條件的差異,呈現(xiàn)不同水平。具體表現(xiàn)為原產(chǎn)于我國中南地區(qū)果實(shí)中總酸和蘋果酸的平均含量顯著高于西北、東北和華北等其他地區(qū),南疆杏雖與華北杏的總酸含量相近,但南疆杏屬于蘋果酸/檸檬酸優(yōu)勢型,華北杏屬于檸檬酸/蘋果酸優(yōu)勢型[45]。在西北地區(qū),新疆產(chǎn)區(qū)種植的杏果實(shí)中的總有機(jī)酸含量普遍高于山西產(chǎn)區(qū)[10,46]。同時(shí),野生杏果實(shí)比栽培杏品種的酸度高[2]。品種間物候期、生長結(jié)果習(xí)性以及栽培適應(yīng)性的差異影響果實(shí)酸度。Fan等[10]對新疆地區(qū)種植的小白杏、樹上干杏和李光杏果實(shí)中有機(jī)酸含量進(jìn)行測定,發(fā)現(xiàn)小白杏果實(shí)中的蘋果酸和奎寧酸含量顯著高于其他兩個(gè)品種,而檸檬酸含量則遠(yuǎn)低于其他兩個(gè)品種。北美杏栽培品種Goldrich(G)和西班牙栽培杏品種Currot(C)的雜交后代不同基因型中,GC 3-7的有機(jī)酸含量顯著高于GC 2-11[13]。以上研究表明種植環(huán)境和自身遺傳因素對杏有機(jī)酸的成分組成與含量均有影響。
2.2 杏果實(shí)有機(jī)酸合成代謝的時(shí)空變化
在杏果實(shí)發(fā)育過程中,幾乎所有有機(jī)酸含量在發(fā)育早期(幼果期至膨大期)增加,在果實(shí)成熟期(轉(zhuǎn)熟期至全熟期)迅速下降[15]。Cui等[44]和翁金洋等[16]研究發(fā)現(xiàn),蘋果酸含量在金太陽杏和樹上干杏果實(shí)發(fā)育初期不斷升高,其中樹上干杏蘋果酸含量上升至轉(zhuǎn)色期后下降,而金太陽杏僅上升至硬核期便下降。與蘋果酸含量變化趨勢相比,檸檬酸含量在金太陽杏整個(gè)發(fā)育過程中呈上升趨勢,表現(xiàn)為發(fā)育初期低,硬核期后快速增加[16]。與之相反,樹上干杏中檸檬酸、異檸檬酸含量從果實(shí)發(fā)育初期到轉(zhuǎn)色期迅速增加,自轉(zhuǎn)色期開始到成熟期便呈迅速下降趨勢[44]。杏果肉和果皮的有機(jī)酸總量和組成基本一致[47]。有意思的是,Xi等[28]研究發(fā)現(xiàn),黑葉杏和小白杏果皮中蘋果酸和酒石酸含量顯著高于果肉,而奎尼酸和草酸在果肉中含量高于果皮。由此說明,不同種類的有機(jī)酸在果實(shí)中的主要分布存在明顯差異。以上研究以多種杏品種為材料,針對有機(jī)酸在各個(gè)時(shí)期積累的情況以及在果肉/皮分布做了大量研究,為揭示杏果實(shí)有機(jī)酸的時(shí)空積累和分布的機(jī)制奠定了理論基礎(chǔ)。在此基礎(chǔ)上,筆者認(rèn)為應(yīng)深度探討杏果實(shí)成熟過程中蘋果酸和檸檬酸的合成與果實(shí)發(fā)育時(shí)期的關(guān)系。利用時(shí)空轉(zhuǎn)錄組和分子生物學(xué)等技術(shù),明確不同發(fā)育時(shí)期果皮和果肉中有機(jī)酸含量的變化規(guī)律,闡明杏果肉/皮在有機(jī)酸代謝過程中的底物選擇性以及不同有機(jī)酸之間的平衡機(jī)制。
2.3 外界因子和生長調(diào)節(jié)劑對杏果實(shí)有機(jī)酸合成的作用
杏果實(shí)的酸積累受到外界因子和生長調(diào)節(jié)劑等因素調(diào)控。外界因子包括環(huán)境因子和生物活性因子等;生長調(diào)節(jié)劑包括水楊酸(salicylic acid,SA)和乙烯等。在外界因子方面,溫度參與果實(shí)貯藏期間有機(jī)酸的合成。短時(shí)低溫冷激延長小白杏的貨架期,延緩有機(jī)酸含量下降[48]。貯藏前短時(shí)非致死高溫可降低庫買提杏果實(shí)呼吸強(qiáng)度和乙烯釋放量,保持了果實(shí)的可溶性固形物含量和有機(jī)酸含量,改善了杏果實(shí)的貯藏品質(zhì)[49]。生物活性分子和植物抗病性化學(xué)誘導(dǎo)制劑已經(jīng)被證明可以減緩果實(shí)采后品質(zhì)劣變。一氧化氮(nitric oxide,NO)作為一種生物活性分子,外源施加能夠誘導(dǎo)杏蘋果酸脫氫酶(malate dehydrogenase,MDH)基因PaMDH的表達(dá)量升高,杏蘋果酸酶(malic enzyme,ME)基因PaME的表達(dá)水平下降,提高綠熟期小白杏果實(shí)的檸檬酸合酶(citrate synthase,CS)、磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase,PEPC)和MDH的活性,降低異檸檬酸脫氫酶和細(xì)胞質(zhì)烏頭酸酶活性,進(jìn)而延緩小白杏果實(shí)中蘋果酸和檸檬酸的流失,降低有機(jī)酸代謝速度[50]。苯丙噻重氮[Benzo(1,2,3) thiadiazole-7-carbothioic acid S-methylester,BTH]是一種人工合成的植物抗病性化學(xué)誘導(dǎo)制劑。在低溫條件下,BTH誘導(dǎo)杏果實(shí)中NAD-蘋果酸脫氫酶、PEPC和CS等有機(jī)酸代謝關(guān)鍵酶活性升高,提高杏果實(shí)中蘋果酸和檸檬酸含量,減緩因低溫造成的果實(shí)酸流失[51]。在生長調(diào)節(jié)劑方面,ETH和水楊酸甲酯(methyl salicylate,MeSA)對果實(shí)色、香、味和質(zhì)地等一系列變化起非常重要的作用。1-MCP作為乙烯受體抑制劑對采后杏果實(shí)進(jìn)行處理,能夠有效地促進(jìn)貯藏末期有機(jī)酸的降解,降低杏果實(shí)內(nèi)有機(jī)酸含量,阻止或延遲果實(shí)軟化,提高果實(shí)貯藏品質(zhì)[24-25,52]。MeSA可用來保持果實(shí)質(zhì)量和延長貯存時(shí)間[53]。采前施用MeSA,能夠降低杏果實(shí)的腐爛率和冷害指數(shù),并保持較高的有機(jī)酸含量[26]。細(xì)胞分裂素(cytokinin,CTK),具有促進(jìn)細(xì)胞分裂、調(diào)節(jié)營養(yǎng)物質(zhì)運(yùn)輸、改善果實(shí)品質(zhì)、促進(jìn)坐果等功能。Nafsika杏果實(shí)受CTK誘導(dǎo),果實(shí)中檸檬酸、抗壞血酸和總酸含量升高,并發(fā)現(xiàn)CTK和生長素結(jié)合使用能夠極大程度提高杏果實(shí)酸味指數(shù)[54]。以上研究揭示了不同外界因子和植物生長調(diào)節(jié)劑對果實(shí)酸度的作用,為闡明采后貯藏期間外界因子參與杏果實(shí)有機(jī)酸積累的機(jī)制奠定前期理論基礎(chǔ),為明確生產(chǎn)實(shí)踐過程中生長調(diào)節(jié)劑的選用原則提供指導(dǎo)。
2.4 杏有機(jī)酸合成、轉(zhuǎn)運(yùn)和代謝的基因調(diào)控機(jī)制
果實(shí)中酸的合成、轉(zhuǎn)運(yùn)和代謝是一個(gè)復(fù)雜的過程,其中有機(jī)酸的合成和代謝取決于糖酵解和三羧酸循環(huán)等多種途徑中酶基因的參與,而轉(zhuǎn)運(yùn)則由液泡轉(zhuǎn)運(yùn)蛋白、載體蛋白(質(zhì)子泵)和離子通道蛋白介導(dǎo)。編碼杏果實(shí)有機(jī)酸的合成和代謝的酶基因表達(dá)豐度隨果實(shí)成熟呈現(xiàn)動(dòng)態(tài)變化。從硬核后期到成熟期,金太陽杏果實(shí)中PaPEPC和PaMDH的表達(dá)水平持續(xù)降低,蘋果酸酶基因PaME表達(dá)水平逐漸增高,加速了蘋果酸的降解速度,造成果實(shí)中蘋果酸合成與積累能力下降[16]。與蘋果酸合成的趨勢相比,金太陽杏中介導(dǎo)檸檬酸合成的PaCS基因在果實(shí)發(fā)育前期呈“上升-下降”趨勢,在果實(shí)發(fā)育后期不斷下降[16]。相比于金太陽杏,張秋云等[55]對來自新疆的8個(gè)杏品種進(jìn)行研究發(fā)現(xiàn),果實(shí)中編碼檸檬酸合成酶基因PaCS的表達(dá)水平在整個(gè)果實(shí)成熟期內(nèi)呈“下降-上升”的趨勢。由此表明,杏果實(shí)中有機(jī)酸合成和代謝的能力具有時(shí)間動(dòng)態(tài)差異性以及品種差異性。果實(shí)中大部分的蘋果酸和檸檬酸積累在液泡中,其轉(zhuǎn)運(yùn)過程可通過液泡膜上的轉(zhuǎn)運(yùn)蛋白實(shí)現(xiàn)。截至目前,在杏中已鑒定出多個(gè)參與有機(jī)酸轉(zhuǎn)運(yùn)的蛋白,包括鋁激活蘋果酸轉(zhuǎn)運(yùn)蛋白(aluminum-activated malate transporter,ALMT):PaALMTC、PaALMT4、PaALMT8和PaALMT9;線粒體琥珀酸-富馬酸轉(zhuǎn)運(yùn)蛋白(mitochondrial succinate fumarate transporter,SFC):PaSFC1[13,33,55]。隨后,通過對上述基因在杏成熟期表達(dá)豐度和有機(jī)酸含量聯(lián)合分析,提出轉(zhuǎn)錄后和翻譯后調(diào)控可能通過介導(dǎo)基因表達(dá)并參與體內(nèi)有機(jī)酸轉(zhuǎn)運(yùn)[33,55]。除轉(zhuǎn)運(yùn)體以外,質(zhì)子泵(V-ATPase和V-PPase)對有機(jī)酸進(jìn)入液泡起重要作用,杏PaVPP作為首個(gè)在杏中鑒定出來的質(zhì)子泵蛋白,其表達(dá)模式受發(fā)育時(shí)期的控制[55]。利用正向遺傳學(xué)手段能夠加速杏果實(shí)有機(jī)酸含量遺傳調(diào)控的研究。Garcia-Gomez等[41]研究發(fā)現(xiàn),調(diào)控Goldrich×Currot和Bergeron×Currot雜交杏群體蘋果酸含量相關(guān)的QTL定位在LG2和LG8。Dondini等[56]選用Lito杏×BO81604311杏(L×B)雜交F1子代為材料進(jìn)行群體定位,將蘋果酸和檸檬酸定位在LG8號連鎖群,并結(jié)合杏基因組序列,挖掘出PruarS.8G052800.t1、PruarS.8G247000.t1和PruarS.7G231300.t1等可能參與調(diào)控杏果實(shí)有機(jī)酸含量的基因[56]。上述研究鑒定了多種參與杏果實(shí)蘋果酸和檸檬酸等有機(jī)酸合成、轉(zhuǎn)運(yùn)和代謝的基因,為日后進(jìn)一步進(jìn)行功能研究提供理論基礎(chǔ)。
3 香氣物質(zhì)合成代謝規(guī)律與調(diào)控
杏果實(shí)以味道和風(fēng)味而聞名,其完美平衡了果實(shí)糖酸含量,并結(jié)合了強(qiáng)烈而豐富的香氣,受到消費(fèi)者的高度贊賞[57]。味道和香氣的結(jié)合對果實(shí)整體風(fēng)味具有重大貢獻(xiàn),但通常認(rèn)為香氣起著主導(dǎo)作用[43]。目前,已在桃、番茄和草莓等果實(shí)中對香氣物質(zhì)進(jìn)行了研究[58-62]。在杏中,已針對不同品種和香氣類型的果實(shí),鑒定出果實(shí)特征香氣成分為γ-癸內(nèi)酯和γ-辛內(nèi)酯;主要“綠色”香氣成分為己醛、(Z)-3-己烯-1-醇、(Z)-2-己烯-1-醇和(Z)-2-己醛;主要“果味”香氣成分為己酸乙酯、3-己烯酸乙酯和(Z)-3-己烯基乙酸酯[63]。
3.1 杏果實(shí)香氣物質(zhì)成分及其遺傳變異
果實(shí)香味是多種揮發(fā)性物質(zhì)通過融合、疊加和掩蓋等方式相互作用形成的。1967年,科學(xué)家首次對Blenheim variety杏中的揮發(fā)性物質(zhì)進(jìn)行分離和鑒別[64]。截至目前,杏果實(shí)已鑒定出的揮發(fā)性物質(zhì)約200種,主要由酯類、醇類、醛類、酮類和萜烯類等物質(zhì)組成[65-66]。酯類物質(zhì)中主要有乙酸乙酯、乙酸丁酯和γ-癸內(nèi)酯等,醇類物質(zhì)中主要包括反式-3-己烯醇、順式-3-己烯醇和異丁醇等,醛類物質(zhì)中主要有壬醛、己醛和己烯醛等。
杏果實(shí)香氣物質(zhì)的種類和含量具有地域差異性。商熟期的華北生態(tài)群杏果實(shí)較歐洲生態(tài)群香氣濃郁,其原因是華北生態(tài)群的杏果實(shí)香氣物質(zhì)種類多,含量高,主要的揮發(fā)性成分是乙酸丁酯、順式-3-乙酸己酯和反式-2-乙酸己酯等酯類與萜烯類物質(zhì);歐洲生態(tài)群香氣物質(zhì)種類少、含量低、香氣淡,主要揮發(fā)性成分是C6醇類、C6醛類、內(nèi)酯類、萜烯醇類和酮類[67]。我國西北地區(qū)杏品種果實(shí)的揮發(fā)性物質(zhì)種類多樣性豐富,含量最高,而華北、東北和西南地區(qū)品種物質(zhì)種類多樣性逐漸減少。盧娟芳等[68]和王端等[69]研究發(fā)現(xiàn),新疆主栽杏品種果實(shí)中的香氣物質(zhì)約154種,而華北地區(qū)杏品種果實(shí)中僅有約114種。表明杏品種的揮發(fā)性物質(zhì)成分與生態(tài)地理群密切相關(guān)[67]。
杏品種間果實(shí)香氣物質(zhì)組成不同。新世紀(jì)杏和紅豐杏分別檢測出74和72種香氣物質(zhì),雖然主要香氣成分相似(多為酮類、醇類、醛類和內(nèi)酯類化合物),但是新世紀(jì)杏的紫羅酮、芳樟醇和內(nèi)酯類等成分的含量較紅豐杏高[70]。與上述兩個(gè)品種不同,在金凱特杏中僅檢測到46種香氣物質(zhì),主要香氣成分為酯類、醇類和醛類[71]。遠(yuǎn)緣雜交技術(shù)可以將親緣種屬的優(yōu)良基因資源導(dǎo)入,是進(jìn)行品種遺傳改良的重要方法[72]。果樹種/品種間雜交F1代香味成分的遺傳研究是品質(zhì)育種的重要基礎(chǔ)。武曉紅等[73]研究發(fā)現(xiàn),子代Z10-1-78、Z10-1-60新品系與父本豐園紅杏不同的成熟期香氣物質(zhì)成分和特征香氣一致,與母本串枝紅杏差異較大,子代果實(shí)中典型玫瑰香味均來源于父本,且香氣物質(zhì)含量和香味濃度均高于父本。上述研究闡述了生態(tài)地理因素和品種的差異對杏果實(shí)香氣合成的影響,并對雜交后代杏果實(shí)香氣物質(zhì)遺傳規(guī)律進(jìn)行初探,為進(jìn)一步選擇優(yōu)良品種進(jìn)行精準(zhǔn)育種奠定了基礎(chǔ)。但外界環(huán)境因素和自身遺傳如何調(diào)控香氣合成的機(jī)制尚不明確;不同的品種之間雜交,子代的香氣遺傳規(guī)律是否一致尚未報(bào)道。因此,在此基礎(chǔ)上應(yīng)廣泛收集國內(nèi)外杏種質(zhì)資源,并從香氣物質(zhì)的進(jìn)化、演化、合成和代謝等方面深入挖掘果實(shí)香氣差異的原因。
3.2 杏果實(shí)香氣物質(zhì)合成代謝的時(shí)空變化
在綠熟期、商熟期和完熟期等不同的成熟階段,杏果實(shí)的主要香氣物質(zhì)的變化具有時(shí)間性。尹燕雷等[74]研究發(fā)現(xiàn),綠熟期的凱特杏果實(shí)大量合成醇類物質(zhì),而在商熟期和完熟期以酯類為主。有趣的是,作為凱特杏實(shí)生后代的金凱特杏在整個(gè)成熟期內(nèi)均以合成酯類物質(zhì)為主[71,74]。與凱特杏和金凱特杏相比,綠熟期的新世紀(jì)杏主要合成C6醛類和醇類,在商熟期則大量合成萜烯醇類物質(zhì)[75]。同時(shí),通過對新疆主栽杏品種的果皮/肉中香氣物質(zhì)含量進(jìn)行研究,發(fā)現(xiàn)果皮中萜烯類、醇類、醛類和內(nèi)酯類含量均顯著高于果肉,而酮類物質(zhì)含量遠(yuǎn)低于果肉[68]。由此說明,杏果實(shí)香氣物質(zhì)合成代謝具有空間特異性。
3.3 溫度和外源處理對杏果實(shí)香氣物質(zhì)合成的作用
采后貯藏期溫度通過調(diào)控果實(shí)體內(nèi)脂氧合酶(lipoxygenase,LOX)和醇?;D(zhuǎn)移酶(alcohol acyl transferase,AAT)活性的變化、甲基化水平的動(dòng)態(tài)變化以及脂氧合酶基因LOX、過氧化氫裂解酶(hydroperoxide lyase,HPL)基因和醇?;D(zhuǎn)移酶基因AAT等的表達(dá)水平變化直接影響水果的風(fēng)味品質(zhì)[60,76-77]。Cai等[78]研究發(fā)現(xiàn),杏果實(shí)采后長時(shí)間低溫冷藏,能夠降低體內(nèi)HPL、乙醇脫氫酶(alcohol dehydrogenase,ADH)和AAT的活性,抑制香氣合成途徑中的支鏈醇、短鏈醛和短鏈醇等中間代謝產(chǎn)物合成,減少最終芳香物質(zhì)的種類和含量,進(jìn)而導(dǎo)致果實(shí)風(fēng)味惡化。外源處理影響采后杏果實(shí)香氣的存留。Ortiz等[79]和Lv等[80]發(fā)現(xiàn),外源ETH或1-MCP處理,分別通過影響果實(shí)體內(nèi)的LOX酶活性或乙烯釋放量,促進(jìn)/抑制大部分杏果實(shí)香氣物質(zhì)的合成。近年來,生物或非生物誘抗劑被認(rèn)為不僅能夠提高果實(shí)的抗病性,而且對果實(shí)品質(zhì)具有一定影響。對杏分別進(jìn)行草酸、蘋果酸和硅酸鈉處理,發(fā)現(xiàn)果實(shí)揮發(fā)性物質(zhì)的總量顯著降低,杏果香型物質(zhì)(酯類物質(zhì))的釋放受到顯著抑制[81-82]。目前對于采后貯藏期溫度和外源物質(zhì)處理對杏果實(shí)香氣物質(zhì)的基礎(chǔ)研究較為薄弱,應(yīng)著重對采后杏果實(shí)最適貯藏溫度進(jìn)行篩選,加強(qiáng)低溫介導(dǎo)杏果實(shí)香味變淡的遺傳修飾和轉(zhuǎn)錄調(diào)控等方面機(jī)制的研究。加快杏保鮮劑和誘抗劑的研發(fā)和選擇,保證杏的果實(shí)品質(zhì)和市場經(jīng)濟(jì)價(jià)值。
3.4 杏香氣物質(zhì)合成和代謝的基因調(diào)控機(jī)制
果實(shí)香氣物質(zhì)的合成受到脂肪酸途徑、氨基酸途徑和萜類合成等途徑調(diào)控。杏果實(shí)香氣物質(zhì)的合成以脂肪酸途徑為主,其以亞油酸、亞麻酸為底物,通過LOX酶催化形成氫過氧化物,并經(jīng)HPL酶和ADH酶的催化作用合成C6醛類及醇類物質(zhì),最后在AAT酶的催化下合成酯類、醇類、醛類和內(nèi)酯類等。在此過程中參與前體物質(zhì)合成的基因在杏果實(shí)香氣過程中扮演重要角色。在脂肪酸途徑中,脂肪酸去飽和酶(fatty acid desaturase,F(xiàn)AD)催化脂肪酸途徑中前體物質(zhì)不飽和脂肪酸(亞麻酸和亞油酸)的合成,影響著果實(shí)香氣。目前,基于轉(zhuǎn)錄組測序共在杏中鑒定出36個(gè)FAD基因,并明確了5個(gè)轉(zhuǎn)錄水平上調(diào)的PaFADs基因可能響應(yīng)內(nèi)酯類物質(zhì)合成[33]。LOX酶能夠催化亞油酸和亞麻酸在C9和C13進(jìn)行加氧,生成9/13-脂氫過氧化合物,并以此為底物生成醛類、醇類和酯類等物質(zhì)[83]。杏中共鑒定出13個(gè)LOX基因,其中4個(gè)PaLOXs的表達(dá)豐度下調(diào),推測其可能是形成酯類物質(zhì)的關(guān)鍵基因[55]。同時(shí),吳忠紅等[84]對小白杏PaLOX基因(KM067451)進(jìn)行了克隆和序列分析,為進(jìn)一步的功能驗(yàn)證奠定了前期基礎(chǔ)。AAT酶是酯類物質(zhì)合成最后一步的關(guān)鍵酶,過量表達(dá)杏PaAAT1基因促進(jìn)果實(shí)中酯類合成,同時(shí)降低體內(nèi)己烯醇、(E)-2-己烯醇和(Z)-3-己烯醇水平[85]。除脂肪酸途徑之外,在萜類合成途徑中鑒定出杏中類胡蘿卜素裂解酶(carotenoid cleavage dioxygenases,CCD)基因PaCCD1和PaCCD4可能參與脫輔基類胡蘿卜素香氣揮發(fā)物的生物合成,并驗(yàn)證PaCCD1是控制杏果實(shí)脫輔基類胡蘿卜素類香氣物質(zhì)形成的關(guān)鍵基因[86]。隨著研究的不斷深入,芳香物質(zhì)合成的轉(zhuǎn)錄調(diào)控研究已成新熱點(diǎn),并在多個(gè)物種中鑒定出轉(zhuǎn)錄因子參與調(diào)控形成,其中包括乙烯響應(yīng)轉(zhuǎn)錄因子(ethylene response factor,ERF)、NAC和MYB等[87-89]。ERF轉(zhuǎn)錄因子通過調(diào)控乙烯響應(yīng)基因和果實(shí)香氣生物合成基因調(diào)節(jié)果實(shí)成熟和果實(shí)中揮發(fā)物質(zhì)的形成[90]。張麗娜等[91]研究發(fā)現(xiàn),ERF轉(zhuǎn)錄因子(PaERF4、PaERF12和PaERF26)參與調(diào)控杏果實(shí)萜類途徑中芳香味脫輔基類胡蘿卜素的形成,但因品種不同而具有不同的調(diào)控效應(yīng),其中PaERF4起負(fù)向調(diào)控作用。轉(zhuǎn)錄因子通過結(jié)合下游基因啟動(dòng)子區(qū)順式作用元件調(diào)控基因的表達(dá),參與果實(shí)香氣物質(zhì)合成[92-93]。杏AP2/ERFs與CCDs之間可能存在相互作用,但具體的轉(zhuǎn)錄調(diào)控機(jī)制尚不清楚,仍需后期進(jìn)一步驗(yàn)證。通過以上不同香氣物質(zhì)合成途徑中基因的共同作用,促進(jìn)杏果實(shí)中酯、內(nèi)酯和脫輔基類胡蘿卜素類香氣成分的含量迅速提升,萜類和C6化合物含量降低。上述研究基于多組學(xué)聯(lián)合分析對參與杏果實(shí)香氣物質(zhì)合成的多種途徑中的關(guān)鍵基因進(jìn)行初步鑒定,為進(jìn)一步利用基因工程技術(shù)改良果實(shí)香氣品質(zhì)提供基礎(chǔ)。截至目前,針對杏果實(shí)香氣的研究尚處于初級階段,品種間的特征香氣物質(zhì)鮮有報(bào)道,調(diào)控各類香氣物質(zhì)合成的基因尚不明確。因此,應(yīng)該針對不同生態(tài)群分布的杏,選擇經(jīng)濟(jì)價(jià)值高、風(fēng)味各異的代表性品種,加強(qiáng)對其組學(xué)數(shù)據(jù)的挖掘和利用,鑒定介導(dǎo)特征香氣物質(zhì)合成和代謝的基因。果實(shí)香氣是由多種揮發(fā)性物質(zhì)復(fù)合合成,應(yīng)加強(qiáng)對來自多條合成途徑中的揮發(fā)性物質(zhì)是如何通過協(xié)同/拮抗作用造成果實(shí)芳香類型多樣化進(jìn)行探究,明確杏果實(shí)呈現(xiàn)不同香氣類型的原因。在杏果實(shí)成熟過程中,香氣物質(zhì)含量變化與關(guān)鍵基因表達(dá)豐度具有顯著相關(guān)性?;虮磉_(dá)水平的變化受上游轉(zhuǎn)錄因子、小RNA以及DNA甲基化修飾等因素影響。因此,應(yīng)借助分子生物學(xué)技術(shù)和生物信息學(xué)手段,深入探究轉(zhuǎn)錄調(diào)控和表觀遺傳修飾對杏果實(shí)香氣形成的作用。
4 展 望
基于市場上消費(fèi)者以及杏種植戶對杏果實(shí)風(fēng)味品質(zhì)的需求,圍繞杏果實(shí)風(fēng)味形成及調(diào)控機(jī)制,筆者提出以下展望。
杏資源收集、篩選、評價(jià)和引種方面。應(yīng)結(jié)合育種目標(biāo),加強(qiáng)對果實(shí)糖酸適宜、香氣誘人的杏資源進(jìn)行收集。分子標(biāo)記輔助育種技術(shù)的應(yīng)用對提升杏育種效率具有促進(jìn)作用。但在杏育種的過程中多使用通量低、分辨率較差的SSR分子標(biāo)記技術(shù)。鑒于杏已獲得高質(zhì)量基因組,故應(yīng)著眼于利用“基因組+GWAS+果實(shí)性狀”的模式進(jìn)行分析,科學(xué)、高效地開發(fā)并篩選出果實(shí)品質(zhì)性狀緊密連鎖的分子標(biāo)記。目前在桃、甘蔗和黃瓜等植物中已經(jīng)開發(fā)出糖、酸和香氣相關(guān)的標(biāo)記,但分子標(biāo)記在杏中的研究多集中在經(jīng)濟(jì)性狀和遺傳多樣性方面[94-95]。因此,加強(qiáng)杏風(fēng)味品質(zhì)相關(guān)分子標(biāo)記的開發(fā)勢在必行。在此基礎(chǔ)上,應(yīng)結(jié)合杏表型性狀、經(jīng)濟(jì)性狀和風(fēng)味品質(zhì)指標(biāo)建立科學(xué)的果實(shí)風(fēng)味品質(zhì)優(yōu)劣評價(jià)體系,將篩選優(yōu)良品種進(jìn)行引進(jìn)或作為親本進(jìn)行選配,推動(dòng)了杏育種的科學(xué)性。
杏果實(shí)風(fēng)味形成及調(diào)控機(jī)制等基礎(chǔ)研究方面。目前,針對杏果實(shí)風(fēng)味物質(zhì)合成和代謝研究較少,關(guān)鍵基因的功能鑒定研究較為薄弱。但在其他水果中已進(jìn)行了大量且深入的研究,并鑒定出參與其形成的功能基因。因此,應(yīng)根據(jù)表型和育種目標(biāo),在杏中利用正向遺傳學(xué)和組學(xué)等手段,深度挖掘調(diào)控果實(shí)中糖類、有機(jī)酸和特征香氣物質(zhì)等單一性狀以及多性狀組合的關(guān)鍵轉(zhuǎn)錄因子和功能基因,并利用轉(zhuǎn)基因技術(shù)和體內(nèi)/外互作實(shí)驗(yàn),明確關(guān)鍵基因?qū)麑?shí)風(fēng)味品質(zhì)的作用功能,揭示杏果實(shí)風(fēng)味物質(zhì)合成、代謝的通路,為創(chuàng)制出品質(zhì)優(yōu)良的杏果實(shí)提供基礎(chǔ)理論支撐。
果實(shí)糖酸平衡是決定水果風(fēng)味的關(guān)鍵。首先,應(yīng)深入研究調(diào)控杏糖酸平衡的基因:一方面通過構(gòu)建杏果實(shí)風(fēng)味代謝轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò),篩選和鑒定杏果實(shí)參與糖酸平衡的基因;另一方面,應(yīng)用反向遺傳學(xué)手段,以已報(bào)道的其他植物果實(shí)中調(diào)節(jié)糖、有機(jī)酸和香氣之間平衡的基因?yàn)榛A(chǔ),對其在杏中的同源基因進(jìn)行驗(yàn)證,探究已有基因?qū)π庸麑?shí)糖酸調(diào)節(jié)的保守性。其次,加強(qiáng)施肥管理,通過施用不同肥料改善果實(shí)糖酸比,提升果實(shí)品質(zhì)。最后,積極探索外源生長激素對果實(shí)糖酸含量的影響。
成熟、穩(wěn)定的遺傳轉(zhuǎn)化體系對果樹的基礎(chǔ)科學(xué)研究至關(guān)重要。在蘋果、草莓和柑橘中已經(jīng)建立起穩(wěn)定轉(zhuǎn)化體系[96-98]。杏樹缺乏高效穩(wěn)定的遺傳轉(zhuǎn)化體系,這導(dǎo)致基礎(chǔ)研究的發(fā)展被嚴(yán)重制約[99]。轉(zhuǎn)化材料是開發(fā)穩(wěn)定遺傳轉(zhuǎn)化體系的關(guān)鍵基礎(chǔ)。優(yōu)質(zhì)的砧木或長勢好、抗性強(qiáng)的杏種質(zhì)被認(rèn)為是優(yōu)良的轉(zhuǎn)化材料。針對以上材料,建立無性繁殖技術(shù),進(jìn)一步研發(fā)轉(zhuǎn)基因技術(shù)和基因編輯技術(shù),對講好杏果實(shí)風(fēng)味品質(zhì)形成的故事起推動(dòng)性作用。
杏樹高效田間栽培配套技術(shù)方面??茖W(xué)的栽培繁育技術(shù),助力杏果實(shí)品質(zhì)提升。應(yīng)加強(qiáng)對露地栽培杏樹的樹體密度以及樹形修剪的研究,大力推進(jìn)設(shè)施栽培,通過改善樹體所需光照和溫度條件,促進(jìn)杏樹生長過程中營養(yǎng)物質(zhì)積累,調(diào)節(jié)果實(shí)形成的必需營養(yǎng)物質(zhì)的轉(zhuǎn)運(yùn)和分配,進(jìn)而起到改善果實(shí)風(fēng)味品質(zhì)的作用。杏中生長調(diào)節(jié)劑的研究多集中在利用傳統(tǒng)單一生長調(diào)節(jié)劑解決黑斑病、冷害等生物和非生物脅迫的問題[100-101]。應(yīng)通過加強(qiáng)新型生長調(diào)節(jié)劑的使用以及不同種類之間的搭配應(yīng)用,調(diào)節(jié)杏樹體內(nèi)激素的動(dòng)態(tài)水平,進(jìn)一步影響杏果實(shí)內(nèi)部的糖、酸以及香氣物質(zhì)含量,提升杏果實(shí)風(fēng)味品質(zhì)。
參考文獻(xiàn) References:
[1] ALAJIL O,SAGAR V R,KAUR C,RUDRA S G,SHARMA R R,KAUSHIK R,VERMA M K,TOMAR M,KUMAR M,MEKHEMAR M. Nutritional and phytochemical traits of apricots (Prunus armeniaca L.) for application in nutraceutical and health industry[J]. Foods,2021,10(6):1344.
[2] KARATAS N. Evaluation of nutritional content in wild apricot fruits for sustainable apricot production[J]. Sustainability,2022,14(3):1063.
[3] ZHOU W Q,NIU Y Y,DING X,ZHAO S R,LI Y L,F(xiàn)AN G Q,ZHANG S K,LIAO K. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China[J]. Food Chemistry,2020,330:127223.
[4] JIANG F C,ZHANG J H,WANG S,YANG L,LUO Y F,GAO S H,ZHANG M L,WU S Y,HU S N,SUN H Y,WANG Y Z. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis[J]. Horticulture Research,2019,6(1):128.
[5] CROUZET J,ETIEVANT P,BAYONOVE C. Stoned fruit:Apricot,plum,peach,cherry[J]. Developments in food science,1990,3:43-91.
[6] ALSMAIRAT N G,AL-AJLOUNI M G,AYAD J Y,OTHMAN Y A,ST HILAIRE R. Composition of soilless substrates affect the physiology and fruit quality of two strawberry (Fragaria × ananassa Duch.) cultivars[J]. Journal of Plant Nutrition,2018,41(18):2356-2364.
[7] KHASAWNEH A E R,ALSMAIRAT N,OTHMAN Y A,AYAD J Y,AL-QUDAH T,LESKOVAR D I. Influence of nitrogen source on physiology,yield and fruit quality of young apricot trees[J]. Journal of Plant Nutrition,2021,44(17):2597-2608.
[8] 田曉成,祝令成,鄒暉,李白云,馬鋒旺,李明軍. 果實(shí)可溶性糖的積累模式及其調(diào)控研究進(jìn)展[J]. 園藝學(xué)報(bào),2023,50(4):885-895.
TIAN Xiaocheng,ZHU Lingcheng,ZOU Hui,LI Baiyun,MA Fengwang,LI Mingjun. Research progress on accumulation pattern and regulation of soluble sugar in fruit[J]. Acta Horticulturae Sinica,2023,50(4):885-895.
[9] AYOUR J,BENICHOU M,ALAHYANE A,HARRAK H. Relationships between biochemical criteria,volatile compounds,and sensory profiles of ten apricot clones at commercial and consumption ripening stages[J]. Journal of Food Quality,2020,2020:8873835.
[10] FAN X G,ZHAO H D,WANG X M,CAO J K,JIANG W B. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction[J]. Scientia Horticulturae,2017,225:553-560.
[11] 張君萍. 新疆若干杏品種果實(shí)主要營養(yǎng)成分的測定與分析評價(jià)[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2006.
ZHANG Junping. Determinations、Analysis and evaluation of main nutritious composition of fruit in apricot varieties native to Xinjiang[D]. Urumqi:Xinjiang Agricultural University,2006.
[12] 張麗麗,劉威生,劉有春,劉寧,張玉萍. 高效液相色譜法測定5個(gè)杏品種的糖和酸[J]. 果樹學(xué)報(bào),2010,27(1):119-123.
ZHANG Lili,LIU Weisheng,LIU Youchun,LIU Ning,ZHANG Yuping. Measurement of sugars,organic acids in 5 apricot cultivars by high performance liquid chromatography[J]. Journal of Fruit Science,2010,27(1):119-123.
[13] GARC?A-G?MEZ B E,RUIZ D,SALAZAR J A,RUBIO M,MART?NEZ-GARC?A P J,MART?NEZ-G?MEZ P. Analysis of metabolites and gene expression changes relative to apricot (Prunus armeniaca L.) fruit quality during development and ripening[J]. Frontiers in Plant Science,2020,11:1269.
[14] 陳美霞,趙從凱,陳學(xué)森,房師梅,張憲省. 杏果實(shí)發(fā)育過程中糖積累與蔗糖代謝相關(guān)酶的關(guān)系[J]. 果樹學(xué)報(bào),2009,26(3):320-324.
CHEN Meixia,ZHAO Congkai,CHEN Xuesen,F(xiàn)ANG Shimei,ZHANG Xiansheng. Relationship between accumulation of sugar and sucrose-metabolizing enzymes during apricot fruit development[J]. Journal of Fruit Science,2009,26(3):320-324.
[15] 鄭惠文,張秋云,李文慧,章世奎,席萬鵬. 新疆杏果實(shí)發(fā)育過程中可溶性糖和有機(jī)酸的變化[J]. 中國農(nóng)業(yè)科學(xué),2016,49(20):3981-3992.
ZHENG Huiwen,ZHANG Qiuyun,LI Wenhui,ZHANG Shikui,XI Wanpeng. Changes in soluble sugars and organic acids of Xinjiang apricot during fruit development and ripening[J]. Scientia Agricultura Sinica,2016,49(20):3981-3992.
[16] 翁金洋. 梅和杏果實(shí)糖酸變化規(guī)律及有機(jī)酸代謝差異研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2017.
WENG Jinyang. Studies on the change regulation of sugar and acid and the metabolism of organic acids in Prunus mume and apricot fruits[D]. Nanjing:Nanjing Agricultural University,2017.
[17] FALLAHI E,F(xiàn)ALLAHI B,MCFERSON J R,BYERS R E,EBEL R C,BOOZER R T,PITTS J,WILKINS B S. Tergitol-TMN-6 surfactant is an effective blossom thinner for stone fruits[J]. HortScience,2006,41(5):1243-1248.
[18] RAESE J T,DRAKE S R,CURRY E A. Nitrogen fertilizer influences fruit quality,soil nutrients and cover crops,leaf color and nitrogen content,biennial bearing and cold hardiness of ‘Golden Delicious[J]. Journal of Plant Nutrition,2007,30(10):1585-1604.
[19] BUSSI C,BESSET J,GIRARD T. Effects of fertilizer rates and dates of application on apricot (cv. Bergeron) cropping and pitburn[J]. Scientia Horticulturae,2003,98(2):139-147.
[20] KHASAWNEH A E R,ALSMAIRAT N,OTHMAN Y A,AYAD J Y,AL-HAJAJ H,QRUNFLEH I M. Controlled-release nitrogen fertilizers for improving yield and fruit quality of young apricot trees[J]. Scientia Horticulturae,2022,303:111233.
[21] 李明. 不同施肥處理對紐荷爾和紅肉臍橙果實(shí)糖積累的影響[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013.
LI Ming. Effect of different fertilizer treatments on the sugar accumulation in Newhall and Cara cara navel orange[D]. Wuhan:Huazhong Agricultural University,2013.
[22] CHEN K,LI G J,BRESSAN R A,SONG C P,ZHU J K,ZHAO Y. Abscisic acid dynamics,signaling,and functions in plants[J]. Journal of Integrative Plant Biology,2020,62(1):25-54.
[23] 趙世榮. 杏果實(shí)糖分轉(zhuǎn)運(yùn)積累規(guī)律研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2018.
ZHAO Shirong. Regulation of sugar component transport and accumulation in apricot fruit (Prunus armeniaca L.)[D]. Urumqi:Xinjiang Agricultural University,2018.
[24] 徐敏. 乙烯調(diào)控杏果實(shí)成熟的生理機(jī)制和轉(zhuǎn)錄組分析研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2021.
XU Min. The study on physiological mechanism and transcriptome analysis of the ethylene regulation in apricot fruit ripening[D]. Urumqi:Xinjiang Agricultural University,2021.
[25] 郭香鳳,向進(jìn)樂,史國安,張國海,孫鮮明,朱文學(xué). 1-MCP對凱特杏果實(shí)采后糖酸組分與含量的影響[J]. 保鮮與加工,2008,8(5):30-33.
GUO Xiangfeng,XIANG Jinle,SHI Guoan,ZHANG Guohai,SUN Xianming,ZHU Wenxue. Effects of 1-methylcyclopropene on sugar and organic acid constituents in Katy Apricot[J]. Storage & Process,2008,8(5):30-33.
[26] FAN X G,DU Z L,CUI X Z,JI W J,MA J T,LI X L,WANG X M,ZHAO H D,LIU B D,GUO F J,GONG H S. Preharvest methyl salicylate treatment enhance the chilling tolerance and improve the postharvest quality of apricot during low temperature storage[J]. Postharvest Biology and Technology,2021,177:111535.
[27] 張杼潤,張瑞杰,趙津,朱璇. 24-表油菜素內(nèi)酯對杏果實(shí)采后抗冷性與可溶性糖含量的影響[J]. 食品科學(xué),2019,40(7):198-203.
ZHANG Zhurun,ZHANG Ruijie,ZHAO Jin,ZHU Xuan. Effect of 24-epibrassinolide on cold resistance and soluble sugar content in apricots during postharvest storage[J]. Food Science,2019,40(7):198-203.
[28] XI W P,ZHENG H W,ZHANG Q Y,LI W H. Profiling taste and aroma compound metabolism during apricot fruit development and ripening[J]. International Journal of Molecular Sciences,2016,17(7):998.
[29] 房經(jīng)貴,朱旭東,賈海鋒,王晨. 植物蔗糖合酶生理功能研究進(jìn)展[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,40(5):759-768.
FANG Jinggui,ZHU Xudong,JIA Haifeng,WANG Chen. Research advances on physiological function of plant sucrose synthase[J]. Journal of Nanjing Agricultural University,2017,40(5):759-768.
[30] 魏清江,馬張正,勒思,雷常玉,馬巧利,辜青青. 柑橘磷酸蔗糖合酶基因CsSPS的鑒定和表達(dá)[J]. 園藝學(xué)報(bào),2020,47(2):334-344.
WEI Qingjiang,MA Zhangzheng,LE Si,LEI Changyu,MA Qiaoli,GU Qingqing. Identification and expression analysis of sucrose-phosphate synthase (SPS) genes in Citrus[J]. Acta Horticulturae Sinica,2020,47(2):334-344.
[31] 蘇紀(jì)勇,姚圓,劉玉含,韓秋宇,張雯露. 蔗糖磷酸合酶功能、結(jié)構(gòu)與催化機(jī)制的研究進(jìn)展[J]. 生物工程學(xué)報(bào),2021,37(6):1858-1868.
SU Jiyong,YAO Yuan,LIU Yuhan,HAN Qiuyu,ZHANG Wenlu. Function,structure and catalytic mechanism of sucrose phosphate synthase:A review[J]. Chinese Journal of Biotechnology,2021,37(6):1858-1868.
[32] IQBAL S,NI X P,BILAL M S,SHI T,KHALIL-UR-REHMAN M,PAN Z P,JIE G,USMAN M,GAO Z H. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot[J]. Gene,2020,742:144584.
[33] ZHANG Q Y,F(xiàn)ENG C,LI W H,QU Z H,ZENG M,XI W P. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening[J]. BMC Genomics,2019,20(1):45.
[34] SINGH J,DAS S,JAGADIS GUPTA K,RANJAN A,F(xiàn)OYER C H,THAKUR J K. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield[J]. Plant Biotechnology Journal,2023,21(8):1528-1541.
[35] CHEN T,ZHANG Z Q,LI B Q,QIN G Z,TIAN S P. Molecular basis for optimizing sugar metabolism and transport during fruit development[J]. aBIOTECH,2021,2(3):330-340.
[36] JEENA G S,KUMAR S,SHUKLA R K. Structure,evolution and diverse physiological roles of SWEET sugar transporters in plants[J]. Plant Molecular Biology,2019,100(4/5):351-365.
[37] ROTTMANN T,KLEBL F,SCHNEIDER S,KISCHKA D,R?SCHER D,SAUER N,STADLER R. Sugar transporter STP7 specificity for l-Arabinose and d-Xylose contrasts with the typical hexose transporters STP8 and STP12[J]. Plant Physiology,2018,176(3):2330-2350.
[38] 康爽,賀紅霞,王銘,郭嘉,薛晶. 杏蔗糖轉(zhuǎn)運(yùn)蛋白基因PaSUC4的獲得及其生物信息學(xué)分析[J]. 生物技術(shù)進(jìn)展,2016,6(2):105-112.
KANG Shuang,HE Hongxia,WANG Ming,GUO Jia,XUE Jing. The acquisition and bioinformatic analysis of sucrose transporter protein gene PaSUC4 from apricot[J]. Current Biotechnology,2016,6(2):105-112.
[39] 孫磊. 葡萄果實(shí)顏色QTL精細(xì)定位及候選基因挖掘[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.
SUN Lei. QTL fine mapping and mining of candidate genes for berry color of grape[D]. Wuhan:Huazhong Agricultural University,2020.
[40] ZHANG Q P,LIU J C,LIU W S,LIU N,ZHANG Y P,XU M,LIU S,MA X X,ZHANG Y J. Construction of a high-density genetic map and identification of quantitative trait loci linked to fruit quality traits in apricots using specific-locus amplified fragment sequencing[J]. Frontiers in Plant Science,2022,13:798700.
[41] GARC?A-G?MEZ B E,SALAZAR J A,DONDINI L,MART?NEZ-G?MEZ P,RUIZ D. Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR[J]. Molecular Breeding,2019,39(2):28.
[42] 王琪. 桃果實(shí)酸含量調(diào)控基因的挖掘與功能驗(yàn)證[D]. 武漢:華中農(nóng)業(yè)大學(xué),2022.
WANG Qi. Identification and functional characterization of regulatory genes of organic acid accumulation in peach[D]. Wuhan:Huazhong Agricultural University,2022.
[43] SU C Y,ZHENG X C,ZHANG D D,CHEN Y,XIAO J,HE Y,HE J R,WANG B,SHI X W. Investigation of sugars,organic acids,phenolic compounds,antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang[J]. Journal of Food Science,2020,85(12):4300-4311.
[44] CUI B,LIU S M,ZHENG T. Chemotaxonomic identification of key taste and nutritional components in ‘Shushanggan Apricot fruits by widely targeted metabolomics[J]. Molecules,2022,27(12):3870.
[45] 張麗麗,劉威生,劉有春,劉寧,張玉萍. 不同原產(chǎn)地杏種質(zhì)果實(shí)糖酸組分含量特點(diǎn)的研究[J]. 北方果樹,2009(5):4-8.
ZHANG Lili,LIU Weisheng,LIU Youchun,LIU Ning,ZHANG Yuping. Sugar and acid contents in apricot derived from different countries and places of production[J]. Northern Fruits,2009(5):4-8.
[46] 孫家正. 南疆栽培杏部分表型性狀遺傳多樣性研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2010.
SUN Jiazheng. Study on genetic diversity of phenotypic traits in apricot (Prunus armeniaca L.) cultivars in Southern Xinjiang,China[D]. Taian:Shandong Agricultural University,2010.
[47] BACCICHET I,CHIOZZOTTO R,SPINARDI A,GARDANA C,BASSI D,CIRILLI M. Evaluation of a large apricot germplasm collection for fruit skin and flesh acidity and organic acids composition[J]. Scientia Horticulturae,2022,294:110780.
[48] 迪力夏提·卡迪爾,朱新衛(wèi),陳娟,陳曉瑩,張輝. 冷激處理對小白杏貨架期品質(zhì)的影響[J]. 保鮮與加工,2014,14(6):22-24.
Dilixiati·Kadier,ZHU Xinwei,CHEN Juan,CHEN Xiaoying,ZHANG Hui. Effects of cold shock treatment on the shelf-life quality of Xiaobai apricots[J]. Storage and Process,2014,14(6):22-24.
[49] 劉峰娟,沈艾彬,秦宗權(quán),馮作山,劉躍,陳計(jì)巒. 熱水處理對新疆庫買提杏貯藏品質(zhì)影響[J]. 食品工業(yè),2011,32(4):70-72.
LIU Fengjuan,SHEN Aibin,QIN Zongquan,F(xiàn)ENG Zuoshan,LIU Yue,CHEN Jiluan. Effect of hot water treatment on the quality of Kumaiti apricot in Xinjiang during storage[J]. The Food Industry,2011,32(4):70-72.
[50] 溫昕曄. 一氧化氮對小白杏冷藏特性及有機(jī)酸代謝相關(guān)基因表達(dá)的研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2015.
WEN Xinye. Research on NO treatment on characteristics of cold storage and expression of organic acid metabolism related genes in “Xiaobai” apricot[D]. Urumqi:Xinjiang Agricultural University,2015.
[51] 王迪,張培嶺,馬敏杰,徐小玲,黃文書. BTH處理對杏果有機(jī)酸代謝關(guān)鍵酶活性的影響[J]. 保鮮與加工,2019,19(4):30-35.
WANG Di,ZHANG Peiling,MA Minjie,XU Xiaoling,HUANG Wenshu. Effects of BTH treatment on key enzyme activities of organic acid metabolism of apricot fruit[J]. Storage and Process,2019,19(4):30-35.
[52] FAN X G,SHU C,ZHAO K,WANG X M,CAO J K,JIANG W B. Regulation of apricot ripening and softening process during shelf life by post-storage treatments of exogenous ethylene and 1-methylcyclopropene[J]. Scientia Horticulturae,2018,232:63-70.
[53] CHOTIKAKHAM S,F(xiàn)AIYUE B,UTHAIBUTRA J,SAENGNIL K. Exogenous methyl salicylate alleviates senescent spotting by enhancing the activity of antioxidative ascorbate-glutathione cycle in harvested ‘Sucrier bananas[J]. Scientia Horticulturae,2020,267:109324.
[54] ROUSSOS P A,NTANOS E,DENAXA N K,TSAFOUROS A,BOUALI I,NIKOLAKAKOS V,ASSIMAKOPOULOU A. Auxin (triclopyr) and cytokinin (forchlorfenuron) differentially affect fruit physiological,organoleptic and phytochemical properties of two apricot cultivars[J]. Acta Physiologiae Plantarum,2021,43(2):25.
[55] 張秋云. 基于轉(zhuǎn)錄組學(xué)杏果實(shí)風(fēng)味、色澤品質(zhì)形成相關(guān)基因挖掘及轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)解析[D]. 重慶:西南大學(xué),2017.
ZHANG Qiuyun. Gene mining and analyzation of transcriptionally regulated network related to apricot flavor and color quality based on transcriptomics[D]. Chongqing:Southwest University,2017.
[56] DONDINI L,DOMENICHINI C,DONG Y H,GENNARI F,BASSI D,F(xiàn)OSCHI S,LAMA M,ADAMI M,DE FRANCESCHI P,CERVELLATI C,BERGONZONI L,ALESSANDRI S,TARTARINI S. Quantitative trait loci mapping and identification of candidate genes linked to fruit acidity in apricot (Prunus armeniaca L.)[J]. Frontiers in Plant Science,2022,18,13:838370.
[57] NARYAL A,ACHARYA S,KUMAR BHARDWAJ A,KANT A,CHAURASIA O P,STOBDAN T. Altitudinal effect on sugar contents and sugar profiles in dried apricot (Prunus armeniaca L.) fruit[J]. Journal of Food Composition and Analysis,2019,76:27-32.
[58] 周慧娟,葉正文,馮子耀,蘇明申,杜紀(jì)紅,張夏南,李雄偉,張明昊,胡洋. 基于聚類和主成分分析的不同可溶性固形物含量桃的耐貯性和風(fēng)味差異性比較[J]. 果樹學(xué)報(bào),2022,39(11):2149-2162.
ZHOU Huijuan,YE Zhengwen,F(xiàn)ENG Ziyao,SU Mingshen,DU Jihong,ZHANG Xianan,LI Xiongwei,ZHANG Minghao,HU Yang. Comparison of storability and flavor among peach fruits with different soluble solids contents based on clustering and principal component analysis[J]. Journal of Fruit Science,2022,39(11):2149-2162.
[59] CAO K,YANG X W,LI Y,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,WU J L,WANG L R. New high-quality peach [Prunus persica (L.) Batsch] genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits[J]. The Plant Journal,2021,108(1):281-295.
[60] ZHANG B,TIEMAN D M,JIAO C,XU Y M,CHEN K S,F(xiàn)EI Z J,GIOVANNONI J J,KLEE H J. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(44):12580-12585.
[61] LANG Z B,WANG Y H,TANG K,TANG D G,DATSENKA T,CHENG J F,ZHANG Y J,HANDA A K,ZHU J K. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(22):E4511-E4519.
[62] FAN Z,HASING T,JOHNSON T S,GARNER D M,SCHWIETERMAN M L,BARBEY C R,COLQUHOUN T A,SIMS C A,RESENDE M F R,WHITAKER V M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds[J]. Horticulture Research,2021,8:66.
[63] LIU B D,JIAO W X,WANG B G,SHEN J Y,ZHAO H D,JIANG W B. Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile,sugar,organic acid) promotion during storage and related shelf life[J]. Scientia Horticulturae,2019,249:100-109.
[64] CHAIROTE G,RODRIGUEZ F,CROUZET J. Characterization of additional volatile flavor components of apricot[J]. Journal of Food Science,1981,46(6):1898-1901.
[65] 章秋平,劉威生. 杏果實(shí)香氣物質(zhì)的研究進(jìn)展[J]. 北方果樹,2020(3):1-4.
ZHANG Qiuping,LIU Weisheng. Advances in aroma of apricot fruit[J]. Northern Fruits,2020(3):1-4.
[66] GOKBULUT I,KARABULUT I. SPME-GC-MS detection of volatile compounds in apricot varieties[J]. Food Chemistry,2012,132(2):1098-1102.
[67] ZHANG H H,LIU W S,F(xiàn)ANG J B,CHEN S,LIU Y C,WU B H,LI S H. Volatile profiles of apricot cultivars (Prunus armeniaca Lam.) evaluated by head space solid phase microextraction gas chromatography mass spectrometry[J]. Analytical Letters,2014,47(3):433-452.
[68] 盧娟芳,鄭惠文,鄭巧,張秋云,李文慧,席萬鵬. 新疆杏果實(shí)發(fā)育過程中香氣物質(zhì)的變化及其特征成分的確定[J]. 園藝學(xué)報(bào),2016,43(10):1878-1890.
LU Juanfang,ZHENG Huiwen,ZHENG Qiao,ZHANG Qiuyun,LI Wenhui,XI Wanpeng. Changes in aroma volatiles of Xinjiang apricot fruit during development and ripening and characterization of key aroma components[J]. Acta Horticulturae Sinica,2016,43(10):1878-1890.
[69] 王端,景晨娟,陳雪峰,劉志琨,李亞囡,武曉紅. 華北杏不同品種(品系)果實(shí)發(fā)育階段香氣成分分析[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2021,37(4):974-981.
WANG Duan,JING Chenjuan,CHEN Xuefeng,LIU Zhikun,LI Yanan,WU Xiaohong. Analysis on aroma components in fruits of different cultivars (lines) of North China apricot during developmental stages[J]. Jiangsu Journal of Agricultural Sciences,2021,37(4):974-981.
[70] 陳美霞,陳學(xué)森,馮寶春. 兩個(gè)杏品種果實(shí)香氣成分的氣相色譜-質(zhì)譜分析[J]. 園藝學(xué)報(bào),2004,31(5):663-665.
CHEN Meixia,CHEN Xuesen,F(xiàn)ENG Baochun. GC-MS analysis of fruit aroma components of two apricot cultivars[J]. Acta Horticulturae Sinica,2004,31(5):663-665.
[71] XUE X M,ZHANG A N,HAN X P,WANG J Z. Analysis of aromatic constituents of apricot ‘Jinkaite at different developmental stages[J]. Acta Horticulturae,2018(1214):125-130.
[72] 張美玲,楊麗,王玉柱,張俊環(huán),姜鳳超,于文劍,孫浩元. 仁用杏新品種京仁3號的選育[J]. 中國果樹,2023(6):89-91.
ZHANG Meiling,YANG Li,WANG Yuzhu,ZHANG Junhuan,JIANG Fengchao,YU Wenjian,SUN Haoyuan. Breeding of a new kernel-apricot cultivar ‘Jingren 3[J]. China Fruits,2023(6):89-91.
[73] 武曉紅,景晨娟,陳雪峰,趙習(xí)平,季文章,李立穎,袁立勇,王端. 2個(gè)杏新品系及其親本果實(shí)香氣成分研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),2020,33(10):2345-2351.
WU Xiaohong,JING Chenjuan,CHEN Xuefeng,ZHAO Xiping,JI Wenzhang,LI Liying,YUAN Liyong,WANG Duan. Research on aromatic substances in two strains apricot and their parents[J]. Southwest China Journal of Agricultural Sciences,2020,33(10):2345-2351.
[74] 尹燕雷,苑兆和,馮立娟,招雪晴,王金政,王超. 不同栽培條件下凱特杏果實(shí)發(fā)育過程中香氣成分的GC/MS分析[J]. 林業(yè)科學(xué),2010,46(7):92-98.
YIN Yanlei,YUAN Zhaohe,F(xiàn)ENG Lijuan,ZHAO Xueqing,WANG Jinzheng,WANG Chao. GC/MS analysis of aromatic components in Katy apricot fruit in various developmental periods under different cultivation condition[J]. Scientia Silvae Sinicae,2010,46(7):92-98.
[75] 陳美霞. 杏果實(shí)風(fēng)味物質(zhì)的組成及其遺傳特性的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2005.
CHEN Meixia. Studies of the inheritance and costituents of flavor in apricot (Armeniaca vulgaris L.)[D]. Taian:Shandong Agricultural University,2005.
[76] HAN X Y,WANG X Y,SHEN C,MO Y W,TIAN R G,MAO L C,LUO Z S,YANG H Y. Exogenous ABA promotes aroma biosynthesis of postharvest kiwifruit after low-temperature storage[J]. Planta,2022,255(4):82.
[77] WANG Q H,GAO F,CHEN X X,WU W J,WANG L,SHI J L,HUANG Y,SHEN Y Y,WU G L,GUO J X. Characterization of key aroma compounds and regulation mechanism of aroma formation in local Binzi (Malus pumila × Malus asiatica) fruit[J]. BMC Plant Biology,2022,22(1):532.
[78] CAI H F,HAN S,YU M L,MA R J,YU Z F. Exogenous nitric oxide fumigation promoted the emission of volatile organic compounds in peach fruit during shelf life after long-term cold storage[J]. Food Research International,2020,133:109135.
[79] ORTIZ A,GRAELL J,L?PEZ M L,ECHEVERR?A G,LARA I. Volatile ester-synthesising capacity in ‘Tardibelle peach fruit in response to controlled atmosphere and 1-MCP treatment[J]. Food Chemistry,2010,123(3):698-704.
[80] LV Y H,CHEN G G,OUYANG H,SANG Y Y,JIANG Y,CHENG S B. Effects of 1-MCP treatment on volatile compounds and quality in Xiaobai apricot during storage at low temperature[J]. Journal of Food Processing and Preservation,2021,45(9):e15452.
[81] 張波. 采后草酸和蘋果酸處理對貯藏期蘭州“大接杏”揮發(fā)性物質(zhì)和品質(zhì)的影響[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2009.
ZHANG Bo. Effect of postharvest oxalic acid and malic acid treatment on volatile compounds and quality of apricot fruit (Armeniaca Vulgaris Lam.) during storage[D]. Lanzhou:Gansu Agricultural University,2009.
[82] 張波,韓舜愈,蔣玉梅,畢陽,祝霞. 硅酸鈉處理對杏品質(zhì)和風(fēng)味物質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(6):375-381.
ZHANG Bo,HAN Shunyu,JIANG Yumei,BI Yang,ZHU Xia. Effects of postharvest sodium silicate treatment on quality and volatile flavor components of apricot fruit during storage[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(6):375-381.
[83] FEUSSNER I,WASTERNACK C. The lipoxygenase pathway[J]. Annual Review of Plant Biology,2002,53:275-297.
[84] 吳忠紅,杜鵑,譚慧林,阿塔吾拉·鐵木爾,張平,吳斌. 小白杏脂氧合酶基因PaLOX的克隆與序列分析[J]. 生物技術(shù),2017,27(1):1-8.
WU Zhonghong,DU Juan,TAN Huilin,Atawull·Tiemue,ZHANG Ping,WU Bin.Cloning and sequence analysis of lipoxygenase gene (LOX) from Xiaobai apricots[J]. Biotechnology,2017,27(1):1-8.
[85] ZHOU W H,KONG W B,YANG C,F(xiàn)ENG R Z,XI W P. Alcohol acyltransferase is involved in the biosynthesis of C6 esters in apricot (Prunus armeniaca L.) fruit[J]. Frontiers in Plant Science,2021,12:763139.
[86] 劉盛雨,章世奎,盧娟芳,李文慧,席萬鵬. 杏香氣形成特異基因PaCCD1的克隆與功能分析[J]. 園藝學(xué)報(bào),2018,45(3):471-481.
LIU Shengyu,ZHANG Shikui,LU Juanfang,LI Wenhui,XI Wanpeng. Molecular cloning and function analysis of carotenoid cleavage dioxygenase 1 (CCD1)in apricot fruit[J]. Acta Horticulturae Sinica,2018,45(3):471-481.
[87] WEI C Y,LI M T,CAO X M,JIN Z N,ZHANG C,XU M,CHEN K S,ZHANG B. Linalool synthesis related PpTPS1 and PpTPS3 are activated by transcription factor PpERF61 whose expression is associated with DNA methylation during peach fruit ripening[J]. Plant Science,2022,317:111200.
[88] ZHANG Y Y,YIN X R,XIAO Y W,ZHANG Z Y,LI S J,LIU X F,ZHANG B,YANG X F,GRIERSON D,JIANG G H,KLEE H J,CHEN K S. An ethylene response factor-MYB transcription complex regulates furaneol biosynthesis by activating quinone oxidoreductase expression in strawberry[J]. Plant Physiology,2018,178(1):189-201.
[89] GAO Y,LIN Y J,XU M,BIAN H X,ZHANG C,WANG J Y,WANG H Q,XU Y P,NIU Q F,ZUO J H,F(xiàn)U D Q,PAN Y,CHEN K S,KLEE H,LANG Z B,ZHANG B. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles[J]. New Phytologist,2022,235(5):1913-1926.
[90] FENG B H,HAN Y C,XIAO Y Y,KUANG J F,F(xiàn)AN Z Q,CHEN J Y,LU W J. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes[J]. Journal of Experimental Botany,2016,67(8):2263-2275.
[91] 張麗娜. 杏果實(shí)芳香味脫輔基類胡蘿卜素形成相關(guān)AP2/ERF的克隆與表達(dá)分析[D]. 重慶:西南大學(xué),2020.
ZHANG Lina. Cloning and expression analysis of AP2/ERF related to the formation of aromatic apocarotenoids in apricot fruits[D]. Chongqing:Southwest University,2020.
[92] JIAN W,CAO H H,YUAN S,LIU Y D,LU J F,LU W,LI N,WANG J H,ZOU J,TANG N,XU C,CHENG Y L,GAO Y Q,XI W P,BOUZAYEN M,LI Z G. SlMYB75,an MYB-type transcription factor,promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits[J]. Horticulture Research,2019,6:22.
[93] WANG X B,ZHANG C L,MIAO Y L,DENG L,ZHANG B,MENG J R,WANG Y,PAN L,NIU L,LIU H,CUI G C,WANG Z Q,ZENG W F. Interaction between PpERF5 and PpERF7 enhances peach fruit aroma by upregulating PpLOX4 expression[J]. Plant Physiology and Biochemistry,2022,185:378-389.
[94] 吳俊,束懷瑞,張開春,張學(xué)寧,姜立杰. 桃果實(shí)非酸/酸性狀分子標(biāo)記的初步篩選[J]. 中國農(nóng)業(yè)科學(xué),2004,37(12):1892-1898.
WU Jun,SHU Huairui,ZHANG Kaichun,ZHANG Xuening,JIANG Lijie. Preliminary screening molecular markers linked to non-acid/acid fruit traits in peach[J]. Scientia Agricultura Sinica,2004,37(12):1892-1898.
[95] 羅含敏,熊發(fā)前,丘立杭,劉菁,段維興,高軼靜,覃夏燕,吳建明,李楊瑞,劉俊仙. 性狀相關(guān)的分子標(biāo)記在甘蔗分子育種中的應(yīng)用研究[J]. 作物雜志,2022(2):35-43.
LUO Hanmin,XIONG Faqian,QIU Lihang,LIU Jing,DUAN Weixing,GAO Yijing,QIN Xiayan,WU Jianming,LI Yangrui,LIU Junxian. Application study of molecular markers associated with traits in sugarcane molecular breeding[J]. Crops,2022(2):35-43.
[96] ALABD A,CHENG H Y,AHMAD M,WU X Y,PENG L,WANG L,YANG S L,BAI S L,NI J B,TENG Y W. Abre-binding factor3-wrky dna-binding protein44 module promotes salinity-induced malate accumulation in pear[J]. Plant Physiology,2023,192(3):1982-1996.
[97] CHEN J J,TOMES S,GLEAVE A P,HALL W,LUO Z W,XU J,YAO J L. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor[J]. Horticulture Research,2022,9:uhab014.
[98] RAMASAMY M,DOMINGUEZ M M,IRIGOYEN S,PADILLA C S,MANDADI K K. Rhizobium rhizogenes-mediated hairy root induction and plant regeneration for bioengineering citrus[J]. Plant Biotechnology Journal,2023,21(9):1728-1730.
[99] 孫浩元,張俊環(huán),楊麗,姜鳳超,張美玲,王玉柱. 新中國果樹科學(xué)研究70年:杏[J]. 果樹學(xué)報(bào),2019,36(10):1302-1319.
SUN Haoyuan,ZHANG Junhuan,YANG Li,JIANG Fengchao,ZHANG Meiling,WANG Yuzhu. Fruit scientific research in New China in the past 70 years:Apricot[J]. Journal of Fruit Science,2019,36(10):1302-1319.
[100] 張昱,石玲,張亞琳,馬海娟,任新雅,張哲誠,朱璇. 2,4-表油菜素內(nèi)酯結(jié)合氯化鈣處理對采后杏果實(shí)黑斑病及苯丙烷代謝的影響[J]. 核農(nóng)學(xué)報(bào),2022,36(12):2455-2461.
ZHANG Yu,SHI Ling,ZHANG Yalin,MA Haijuan,REN Xinya,ZHANG Zhecheng,ZHU Xuan. Effect of 2,4-epibrassinolide combined with calcium chloride treatment on postharvest apricot fruit black spot disease and phenylpropanoid pathway[J]. Journal of Nuclear Agricultural Sciences,2022,36(12):2455-2461.
[101] 何歡. 外源褪黑素處理減輕杏果實(shí)冷害作用的研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2021.
HE Huan. Effects of exogenous melatonin on reducing chilling injury of postharvest apricot fruits[D]. Urumqi:Xinjiang Agricultural University,2021.