国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

面向大語(yǔ)言模型的知識(shí)實(shí)踐

2023-12-29 00:00:00吳冠軍
人民論壇·學(xué)術(shù)前沿 2023年21期

【摘要】在同大語(yǔ)言模型知識(shí)實(shí)踐的并置中,我們可以定位到學(xué)科交叉融合的必要性。以ChatGPT為代表的大語(yǔ)言模型,盡管才剛剛進(jìn)入人類(lèi)的視野中,但已經(jīng)在知識(shí)實(shí)踐上展現(xiàn)出卓越能力,成為堪稱(chēng)“通”家的大“專(zhuān)”家。我們可以用“模擬模式”與“數(shù)字模式”來(lái)分別描述人類(lèi)與大語(yǔ)言模型的知識(shí)實(shí)踐。大語(yǔ)言模型問(wèn)世前的人工神經(jīng)網(wǎng)絡(luò)算法,數(shù)字模式的知識(shí)實(shí)踐僅僅令其在狹窄的垂直領(lǐng)域展露出卓越智能。然而以海量人類(lèi)文本為訓(xùn)練數(shù)據(jù)的大語(yǔ)言模型,其知識(shí)實(shí)踐則呈現(xiàn)出無(wú)視領(lǐng)域疆界的通用性。面對(duì)大語(yǔ)言模型在知識(shí)實(shí)踐中的應(yīng)用,人類(lèi)何為?潛在論與量子物理學(xué),給出了我們積極展開(kāi)跨學(xué)科知識(shí)實(shí)踐的理?yè)?jù)。

【關(guān)鍵詞】大語(yǔ)言模型 后人類(lèi) 模擬模式 數(shù)字模式 純粹潛能 量子思維

【中圖分類(lèi)號(hào)】TP18/C19 【文獻(xiàn)標(biāo)識(shí)碼】A

【DOI】10.16619/j.cnki.rmltxsqy.2023.21.005

引言

“學(xué)科交叉融合”是必要的嗎?晚近經(jīng)常有學(xué)術(shù)同行提出這個(gè)問(wèn)題。

盡管近年來(lái)“學(xué)科交叉融合”得到大力倡導(dǎo),國(guó)務(wù)院學(xué)位委員會(huì)與教育部于2020年底正式設(shè)置了“交叉學(xué)科”門(mén)類(lèi),然而不得不承認(rèn),今天的學(xué)術(shù)評(píng)價(jià)體系仍主要以學(xué)科為單位展開(kāi)。如果你是一位任職于中文系的青年學(xué)者,真的有必要探究區(qū)塊鏈、增強(qiáng)現(xiàn)實(shí)、人工智能等前沿技術(shù)乃至量子物理學(xué)抑或神經(jīng)科學(xué)嗎?且不說(shuō)離開(kāi)治學(xué)“舒適區(qū)”(comfortable zone)本身之艱難,對(duì)于跨越學(xué)科疆界形成的研究成果,由誰(shuí)來(lái)評(píng)審?誰(shuí)來(lái)評(píng)判這種知識(shí)實(shí)踐是否生產(chǎn)出了優(yōu)異的或至少質(zhì)量合格的知識(shí)產(chǎn)品?如果最后仍是“現(xiàn)代文學(xué)”或“文藝學(xué)”領(lǐng)域的學(xué)者來(lái)評(píng)審,那么這些跨學(xué)科的內(nèi)容很可能反而導(dǎo)致你的研究不被認(rèn)可(因?yàn)閷?zhuān)家讀不懂你的研究)。

看起來(lái),躲在既有學(xué)科疆界之內(nèi)進(jìn)行知識(shí)生產(chǎn)似乎是安全的,更是舒適的。于是,我們有必要對(duì)篇首的這個(gè)問(wèn)題,予以認(rèn)真思考。

xuGquF4Gh1dMOH1kHwUyAg==

后人類(lèi)知識(shí)實(shí)踐者:作為“通”家的“專(zhuān)”家

以ChatGPT為代表的大語(yǔ)言模型是2023年最受關(guān)注的技術(shù),然而人工智能界專(zhuān)家們發(fā)起的相關(guān)爭(zhēng)論,集中在它所帶來(lái)的安全風(fēng)險(xiǎn)上,而非其知識(shí)實(shí)踐的模式。[1]OpenAI于2022年11月30日正式上線ChatGPT后,短短數(shù)月大量人類(lèi)作者同ChatGPT合寫(xiě)的論文、乃至ChatGPT獨(dú)著的書(shū)籍,便如雨后春筍般接連問(wèn)世[2];即便在大量沒(méi)有署名的地方,ChatGPT亦事實(shí)性地參與了知識(shí)生產(chǎn),成為了我們這個(gè)時(shí)代的重要知識(shí)實(shí)踐者,一位“后人類(lèi)”的實(shí)踐者。[3]

筆者曾就“澳大利亞核政策變遷及其影響”這個(gè)相當(dāng)縱深、專(zhuān)業(yè)的議題問(wèn)詢(xún)這位后人類(lèi)的知識(shí)實(shí)踐者,其幾秒內(nèi)輸出的內(nèi)容,不僅概述了澳大利亞核政策變遷的國(guó)際與國(guó)內(nèi)背景及其過(guò)程,更是條分縷析地探究了導(dǎo)致變遷的多重原因,并剖析了變遷所帶來(lái)的諸種影響。至為關(guān)鍵的是,這些內(nèi)容得到了眾多在該領(lǐng)域長(zhǎng)年深耕的專(zhuān)家的認(rèn)可。這個(gè)案例讓我們看到,大語(yǔ)言模型儼然是一個(gè)稱(chēng)職的、相當(dāng)出色的知識(shí)生產(chǎn)者。

大語(yǔ)言模型不僅是精通像“澳大利亞核政策變遷及其影響”這種縱深論域的專(zhuān)家型知識(shí)實(shí)踐者,還是一個(gè)激進(jìn)的超越學(xué)科疆界的知識(shí)實(shí)踐者。ChatGPT被認(rèn)為已接近“通用人工智能”[4]——就其知識(shí)實(shí)踐而言,它顯然是“通用的”(general),而非“狹窄的”(narrow);它徹底無(wú)視知識(shí)實(shí)踐的學(xué)科疆界,既是強(qiáng)大的大“專(zhuān)”家,同時(shí)更是大“通”家。不少ChatGPT的用戶經(jīng)常拿它會(huì)出錯(cuò)(甚至是“一本正經(jīng)地胡說(shuō)八道”)說(shuō)事,從而否定它作為知識(shí)生產(chǎn)者的資質(zhì)。然而,對(duì)ChatGPT的這個(gè)批評(píng)必須納入并置性的分析視野中:作為知識(shí)生產(chǎn)者的人類(lèi)作者,難道就不會(huì)出錯(cuò)?

實(shí)際上,大語(yǔ)言模型出錯(cuò)的原因不難定位到:它們使用海量的書(shū)籍和互聯(lián)網(wǎng)文本作為訓(xùn)練材料,而這些材料本身就包含錯(cuò)誤,從各種常見(jiàn)的低級(jí)錯(cuò)誤(從事實(shí)錯(cuò)誤到錯(cuò)別字)到各類(lèi)大量出現(xiàn)的“復(fù)雜錯(cuò)誤”(從不恰當(dāng)?shù)男袠I(yè)建議到“陰謀論”)。[5]正是因?yàn)槿舜罅砍鲥e(cuò),大語(yǔ)言模型無(wú)論怎樣迭代,結(jié)構(gòu)性地?zé)o法做到零出錯(cuò)。

這也就是“機(jī)器學(xué)習(xí)”研究里所說(shuō)的“垃圾進(jìn),垃圾出”(garbage in, garbage out)?;ヂ?lián)網(wǎng)文本無(wú)可避免存在大量低質(zhì)量的文本,無(wú)法做到以人工的方式在訓(xùn)練前加以徹底排除——譬如,盡管可以把一些富含此類(lèi)文本的網(wǎng)站整個(gè)剔除,但很多“問(wèn)題文本”是隨機(jī)產(chǎn)生的。大語(yǔ)言模型只能在訓(xùn)練中通過(guò)不斷迭代權(quán)重來(lái)減少出錯(cuò)狀況。

并且,從統(tǒng)計(jì)學(xué)上來(lái)看,互聯(lián)網(wǎng)每年會(huì)增加巨量的文本,但新增的知識(shí)(亦即,純粹“新知”)卻并不多,且在巨量文本中的比例低得可怕。故此,GPT-5(如果有的話)未必一定比GPT-4提升很多,因?yàn)槿祟?lèi)文明中幾乎所有重要文獻(xiàn)都已被納入GPT-4的訓(xùn)練中,而此后產(chǎn)生的新文本中極小比例是高質(zhì)量的。這意味著,能夠進(jìn)一步提升大語(yǔ)言模型的優(yōu)質(zhì)數(shù)據(jù),正在逐漸枯竭。若大量使用新近增加的文本來(lái)訓(xùn)練大模型并迭代其權(quán)重,反而會(huì)使生成文本的質(zhì)量下降。

我們看到,在各自的知識(shí)實(shí)踐中,人類(lèi)作者與后人類(lèi)的大語(yǔ)言模型都會(huì)出錯(cuò),都可能輸出問(wèn)題文本與低質(zhì)量文本。兩者對(duì)比起來(lái),大語(yǔ)言模型輸出文本的錯(cuò)誤情況,實(shí)際上要比人類(lèi)低得多——大語(yǔ)言模型幾乎閱讀了所有知識(shí)論域里的所有既有文本,且是一頁(yè)不落地閱讀,沒(méi)有一個(gè)人類(lèi)作者能做到如此全面與海量的閱讀。對(duì)比如此“勤奮好學(xué)”的大語(yǔ)言模型,不少人類(lèi)作者,實(shí)屬片面地讀了一點(diǎn)就敢寫(xiě)敢說(shuō)了,其生產(chǎn)的多數(shù)文本(包含重要的純粹“新知”的文本除外),質(zhì)量和價(jià)值卻不及大語(yǔ)言模型知識(shí)實(shí)踐的產(chǎn)品。

知識(shí)實(shí)踐的兩種模式

將人類(lèi)與大語(yǔ)言模型的知識(shí)實(shí)踐做并置性的對(duì)比,我們能進(jìn)一步定位到知識(shí)實(shí)踐的兩種模式。

大語(yǔ)言模型通過(guò)迭代權(quán)重,能夠精確地控制所生產(chǎn)文本的質(zhì)量——比如在訓(xùn)練時(shí)給予《自然》(Nature)期刊“論文”遠(yuǎn)高于互聯(lián)網(wǎng)論壇同主題“帖子”的權(quán)重。而人類(lèi)的知識(shí)實(shí)踐者,則無(wú)法使用如此精確的權(quán)重系統(tǒng)(譬如,一位高顏值的主播往往會(huì)讓人不知不覺(jué)對(duì)其言論給出過(guò)高權(quán)重)。對(duì)比大語(yǔ)言模型,人類(lèi)之知識(shí)實(shí)踐的一切進(jìn)程,皆是以遠(yuǎn)為模糊的——“模擬的”(analog)——方式展開(kāi)。[6]

作為后人類(lèi)的知識(shí)實(shí)踐者,大語(yǔ)言模型既是強(qiáng)大的學(xué)習(xí)者(深度學(xué)習(xí)者),亦是出色的生產(chǎn)者(生成式AI)。它實(shí)質(zhì)性的“后人類(lèi)”面向,并非在于其實(shí)踐不受學(xué)科疆界限制(人類(lèi)亦能做到),而是在于其學(xué)習(xí)(輸入)與生產(chǎn)(輸出),皆以“數(shù)字”(digital)形態(tài)進(jìn)行。這就意味著,大語(yǔ)言模型實(shí)際上標(biāo)識(shí)出一種同人類(lèi)——“智人”(Homo sapiens)——全然不同的知識(shí)實(shí)踐。

圖靈獎(jiǎng)得主、“深度學(xué)習(xí)之父”杰弗里·辛頓在2023年6月10日所作的《通向智能的兩條道路》演講中,提出了“能動(dòng)者共同體”(a community of agents)分享知識(shí)的兩種模式。[7]我們可以把這兩種共同體模式分別命名為“數(shù)字模式”與“模擬模式”。大語(yǔ)言模型(人工智能)與人類(lèi)(智人),分別是這兩種模式的能動(dòng)性實(shí)踐者。

每個(gè)大語(yǔ)言模型,都包含了無(wú)數(shù)“數(shù)字計(jì)算”的能動(dòng)者,它們使用權(quán)重完全相同的副本。如果個(gè)體能動(dòng)者(亦即每個(gè)副本)具有同樣權(quán)重、并以完全相同的方式使用這些權(quán)重,那么,能動(dòng)者之間就可以把自身個(gè)體性訓(xùn)練數(shù)據(jù)中學(xué)習(xí)到的內(nèi)容,通過(guò)共享權(quán)重的方式無(wú)損地實(shí)現(xiàn)彼此轉(zhuǎn)交。也就是說(shuō),共同體內(nèi)每一個(gè)能動(dòng)者,都可以即時(shí)獲得其他能動(dòng)者的學(xué)習(xí)成果——前提是所有個(gè)體能動(dòng)者皆以完全相同的方式工作,故此他們必須是數(shù)字的。

就大語(yǔ)言模型而言,模型的每個(gè)副本都從它所觀察到的數(shù)據(jù)中學(xué)習(xí),不同副本觀察不同的數(shù)據(jù)片段,它們通過(guò)共享權(quán)重或梯度來(lái)高效地分享所學(xué)的知識(shí)。這就使得每個(gè)副本都能從其他副本的學(xué)習(xí)中收獲知識(shí)。在這個(gè)意義上,大語(yǔ)言模型本身就是一個(gè)“能動(dòng)者共同體”,該共同體內(nèi)每個(gè)能動(dòng)者都只是以非常低的帶寬來(lái)學(xué)習(xí)(僅僅就拿到的數(shù)據(jù)片段來(lái)預(yù)測(cè)下一個(gè)單詞),但彼此間能精確地共享權(quán)重——如果模型擁有萬(wàn)億個(gè)權(quán)重,則意味著每次分享能開(kāi)啟萬(wàn)億比特帶寬的溝通。

于是,運(yùn)行大語(yǔ)言模型的成本(主要體現(xiàn)為能源消耗)會(huì)十分巨大——這是知識(shí)實(shí)踐之?dāng)?shù)字模式的代價(jià)?;剂舷乃鶎?dǎo)致的行星層面的生態(tài)變異,恰恰是“人類(lèi)世”(the Anthropocene)的核心困境:龐大的能耗會(huì)增加巨量碳排放,推動(dòng)其熵值的加速增加。[8]能源消耗以及前文討論的數(shù)據(jù)枯竭,構(gòu)成了大語(yǔ)言模型發(fā)展的兩個(gè)關(guān)鍵限制。

與大語(yǔ)言模型相較,人類(lèi)個(gè)體進(jìn)行學(xué)習(xí)的能源消耗非常低,而學(xué)習(xí)帶寬則遠(yuǎn)高于單個(gè)模型副本。但人類(lèi)個(gè)體在分享知識(shí)過(guò)程中的效率,則遠(yuǎn)低于大語(yǔ)言模型。利用特定生物硬件之模擬特性來(lái)進(jìn)行計(jì)算(“生物性計(jì)算”)的人類(lèi)個(gè)體,只能使用“蒸餾”(distillation)來(lái)分享知識(shí),而無(wú)法使用權(quán)重共享來(lái)精確地分享知識(shí)。[9]這就意味著,個(gè)體B沒(méi)有可能完全弄清楚個(gè)體A生成內(nèi)容時(shí)所使用的權(quán)重(甚至這種權(quán)重對(duì)于A本人也是不明晰的)。這便是知識(shí)實(shí)踐之模擬模式的局限。

人類(lèi)社會(huì)之所以會(huì)有“學(xué)?!边@種教育機(jī)構(gòu),很大程度是因?yàn)槿祟?lèi)個(gè)體無(wú)法將自己所知道的東西直接裝進(jìn)另一個(gè)個(gè)體的生物硬件中。兩個(gè)神經(jīng)網(wǎng)絡(luò)內(nèi)部架構(gòu)如果不同(亦即,不存在神經(jīng)元間的一一對(duì)應(yīng)),那權(quán)重共享就不起作用(即A的權(quán)重對(duì)B沒(méi)用)?;?mark name="ucmxa5qOzg+YvEzWc/Ktqg==">許可以這樣理解,如果一個(gè)人能夠直接使用詩(shī)人李白神經(jīng)網(wǎng)絡(luò)的權(quán)重,那他就能寫(xiě)出李白的詩(shī)句。不同的人類(lèi)個(gè)體之間(以及不同的大語(yǔ)言模型之間)進(jìn)行知識(shí)分享,只能使用“蒸餾”。比起權(quán)重共享,蒸餾的帶寬要低得多,這意味著知識(shí)分享效率低,能耗也小。[10]金庸在其名作《天龍八部》與《笑傲江湖》中,多次描述了一類(lèi)獨(dú)特功夫,后輩可以把前輩幾十年的功力直接“吸”到自己身上——這種功夫?qū)θ魏我蕾?lài)生物性硬件來(lái)進(jìn)行學(xué)習(xí)的能動(dòng)者而言,都是絕不可能的。而用“數(shù)字模式”進(jìn)行學(xué)習(xí)的能動(dòng)者,則不需要這種功夫,因?yàn)樗麄儾恍枰拔弊咚说挠?xùn)練成果,而是可以實(shí)現(xiàn)彼此擁有。

從狹窄人工智能、大語(yǔ)言模型到超智人工智能

讓我們把分析進(jìn)一步推進(jìn)。我們有必要看到:跨越學(xué)科領(lǐng)域進(jìn)行知識(shí)實(shí)踐,原本是人類(lèi)獨(dú)家的能力。而人類(lèi)知識(shí)實(shí)踐者能夠做到這一點(diǎn)(亦即,“學(xué)科交叉融合”得以可能),恰恰得益于其所采取的“模擬模式”。

在大語(yǔ)言模型問(wèn)世之前,采取“數(shù)字模式”進(jìn)行深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò)算法,都只是專(zhuān)門(mén)的“狹窄人工智能”(narrow artificial intelligence)。“阿爾法狗”(AlphaGo)能夠在圍棋賽事中毫無(wú)懸念地戰(zhàn)勝所有人類(lèi)頂級(jí)高手,然而如果讓它去玩《俄羅斯方塊》,亦無(wú)法通關(guān),至于寫(xiě)詩(shī)、編程抑或探討“澳大利亞核政策變遷及其影響”,則完全無(wú)能為力。在大語(yǔ)言模型問(wèn)世之前,各種狹窄的人工神經(jīng)網(wǎng)絡(luò)算法不僅在模型架構(gòu)上完全不同,并且必需使用專(zhuān)門(mén)類(lèi)別的數(shù)據(jù)來(lái)進(jìn)行訓(xùn)練,故此無(wú)法通過(guò)分享權(quán)重的方式共享訓(xùn)練成果。

然而,以ChatGPT為代表的大語(yǔ)言模型,激進(jìn)地打破了狹窄人工智能的疆域界限。ChatGPT既是編程高手,也是澳大利亞核政策專(zhuān)家,既懂物理學(xué),也懂哲學(xué)、史學(xué)、文藝學(xué)……大語(yǔ)言模型能夠跨越各種專(zhuān)門(mén)領(lǐng)域疆界進(jìn)行知識(shí)實(shí)踐,使“模擬模式”的既有優(yōu)勢(shì)蕩然無(wú)存。它并不是使用專(zhuān)門(mén)數(shù)據(jù)(如圍棋棋譜)來(lái)訓(xùn)練深度神經(jīng)網(wǎng)絡(luò),而用各種類(lèi)型文本(如書(shū)籍、網(wǎng)頁(yè)、ArXiv論文、維基百科、平臺(tái)用戶評(píng)論等)來(lái)進(jìn)行如下這個(gè)訓(xùn)練:從上下文來(lái)預(yù)測(cè)下一個(gè)詞。借用語(yǔ)言學(xué)家費(fèi)迪南·索緒爾的著名術(shù)語(yǔ),大語(yǔ)言模型同“所指”(signified)無(wú)涉,但精于在“指號(hào)化鏈條”(signifying chain)中對(duì)“能指”(signifier)進(jìn)行預(yù)測(cè)。

然而其關(guān)鍵就在于,人是“說(shuō)話的存在”(speaking beings)。人的“世界”,正是經(jīng)由語(yǔ)言而形成。換言之,語(yǔ)言絕不只是人與人之間溝通的媒介,更是“世界”得以生成的構(gòu)成性媒介——沒(méi)有語(yǔ)言,各種“實(shí)體”(entities)會(huì)繼續(xù)存在,但我們卻不再擁有一個(gè)“世界”。“世界”——用精神分析學(xué)家雅克·拉康的術(shù)語(yǔ)來(lái)說(shuō)——是一個(gè)“符號(hào)性秩序”(symbolic order)。人無(wú)法同前語(yǔ)言的秩序(拉康筆下的“真實(shí)秩序”)產(chǎn)生有意義的直接互動(dòng)。[11]

正是語(yǔ)言(由無(wú)數(shù)彼此差異的“能指”串起的“指號(hào)化鏈條”),使各種前語(yǔ)言的“存在”變成為了一個(gè)秩序(“符號(hào)性秩序”),一個(gè)人類(lèi)可以理解、并居身其中的“世界”。當(dāng)大語(yǔ)言模型深度學(xué)習(xí)了人類(lèi)生產(chǎn)出的幾乎所有文本后,那么,它就對(duì)人的“世界”(而非“真實(shí)秩序”)具有了幾近整體性的認(rèn)知——這便使得人類(lèi)眼中的“通用”智能成為可能。

有意思的是,在《通向智能的兩條道路》演講末尾,辛頓做出如下追問(wèn):“如果這些數(shù)字智能不是通過(guò)蒸餾非常緩慢地向我們學(xué)習(xí),而是開(kāi)始直接從現(xiàn)實(shí)世界學(xué)習(xí),將會(huì)發(fā)生什么?”[12]在辛頓本人看來(lái):

如果他們可以通過(guò)對(duì)視頻建模進(jìn)行無(wú)監(jiān)督學(xué)習(xí),例如,我們一旦找到一種有效的方法來(lái)訓(xùn)練這些模型來(lái)對(duì)視頻建模,他們就可以從“油管”(YouTube)的所有內(nèi)容中學(xué)習(xí),這是大量的數(shù)據(jù)。如果他們能夠操縱物理世界,譬如他們有機(jī)器人手臂,等等,那也會(huì)有所幫助。但我相信,一旦這些數(shù)字能動(dòng)者開(kāi)始這樣做,他們將能夠比人類(lèi)學(xué)到的多得多,而且他們將能夠?qū)W得非???。[13]

辛頓所說(shuō)的“直接從現(xiàn)實(shí)世界學(xué)習(xí)”和“對(duì)視頻建模進(jìn)行無(wú)監(jiān)督學(xué)習(xí)”,實(shí)際上意味著數(shù)字智能在目前大語(yǔ)言模型所展現(xiàn)的近乎“通用”的智能之上,具有了直接從前語(yǔ)言秩序進(jìn)行學(xué)習(xí)的能力——而這種學(xué)習(xí)能力是作為“說(shuō)話的存在”的人類(lèi)所極度匱乏的(如果不是幾乎沒(méi)有的話)。人類(lèi)從牙牙學(xué)語(yǔ)的孩童開(kāi)始,幾乎所有實(shí)質(zhì)性的教學(xué)實(shí)踐都是通過(guò)作為“指號(hào)化系統(tǒng)”的語(yǔ)言來(lái)完成的。[14]當(dāng)然,嬰孩出生并非“白紙”,而是帶有各種不用“教”的“先天性知識(shí)”,如看到蛇會(huì)恐懼,那是經(jīng)由生物性演化形成的神經(jīng)網(wǎng)絡(luò)運(yùn)算系統(tǒng)作出的反應(yīng)。相對(duì)于后人類(lèi)的無(wú)監(jiān)督機(jī)器學(xué)習(xí)與經(jīng)由“指號(hào)化系統(tǒng)”而展開(kāi)的人類(lèi)學(xué)習(xí),演化訓(xùn)練出的知識(shí)運(yùn)算可稱(chēng)得上是前人類(lèi)學(xué)習(xí)。辛頓認(rèn)為,當(dāng)數(shù)字智能具有這種后人類(lèi)的無(wú)監(jiān)督學(xué)習(xí)能力后,“超智人工智能”(super-intelligent AI)就會(huì)誕生,并且在他看來(lái),這種情況一定會(huì)發(fā)生。[15]

回到篇首的問(wèn)題:“學(xué)科交叉融合”是必要的嗎?面對(duì)從大語(yǔ)言模型(接近“通用人工智能”)邁向“超智人工智能”的數(shù)字智能,我們可以定位到它的必要性:大語(yǔ)言模型在學(xué)習(xí)上已經(jīng)不存在“舒適區(qū)”,無(wú)視學(xué)科疆域的邊界;而超智人工智能的無(wú)監(jiān)督學(xué)習(xí),則更加無(wú)視人類(lèi)“世界”的各種疆界,完全不受其影響。面對(duì)這樣的“數(shù)字模式”實(shí)踐者,如若作為“模擬模式”實(shí)踐者的我們?nèi)匀桓市亩阍凇笆孢m區(qū)”內(nèi),那么未來(lái)“世界”的知識(shí)生產(chǎn),乃至“世界化成”(worlding)本身,即將同我們不再相關(guān)。

“離身認(rèn)知”與語(yǔ)言學(xué)轉(zhuǎn)向

在知識(shí)實(shí)踐上,人類(lèi)不應(yīng)自我邊緣化。然而,問(wèn)題恰恰就在于:面對(duì)大語(yǔ)言模型,躺平,誠(chéng)然是一個(gè)極具說(shuō)服力的“人生”態(tài)度。

今天的年輕人群體里,“躺平”已然十分流行,并被《咬文嚼字》編輯部評(píng)為“2021年度十大流行語(yǔ)”。[16]在對(duì)“躺平”施以道德譴責(zé)之前,我們有必要認(rèn)真思考這個(gè)問(wèn)題:面對(duì)大語(yǔ)言模型,為什么我們不躺平?

一個(gè)人即便再勤奮,再好學(xué),在其有生之年能讀完的書(shū),大語(yǔ)言模型全都讀過(guò)——甚至這顆行星上現(xiàn)下在世的80億人口加起來(lái)讀過(guò)的書(shū)(尤其是富含知識(shí)含量的書(shū)),大語(yǔ)言模型幾乎全部讀過(guò)。一個(gè)人哪怕天天泡在圖書(shū)館里,也比不上大語(yǔ)言模型把整個(gè)圖書(shū)館直接裝進(jìn)自身,并且隨時(shí)可以用自己的話“吐”出來(lái)。面對(duì)這樣的知識(shí)實(shí)踐者,我們?nèi)绾渭暗蒙??“躺平”難道不是最合理的態(tài)度?

在筆者的課堂討論中,有學(xué)生曾提出這樣的問(wèn)題:ChatGPT的能力是指數(shù)級(jí)增長(zhǎng)的,而我就算是不吃不喝學(xué)習(xí),也只能一頁(yè)一頁(yè)地看,做線性增長(zhǎng),還不保證讀進(jìn)去的全都變成自己的知識(shí)。面對(duì)ChatGPT,反正都是輸,再學(xué)習(xí)也趕不上,“終身”壓上去也白搭,還不如早點(diǎn)躺平,做個(gè)“吃貨”。人工智能沒(méi)有身體,論吃它比不過(guò)我。

確實(shí),大語(yǔ)言模型至少目前沒(méi)有“身體”,沒(méi)有感知器官,產(chǎn)生不出“具身認(rèn)知”(embodied cognition)。赫伯特·德雷弗斯等當(dāng)代后認(rèn)知主義學(xué)者,強(qiáng)調(diào)大腦之外的身體對(duì)認(rèn)知進(jìn)程所起到的構(gòu)成性作用:除了身體的感覺(jué)體驗(yàn)外,身體的解剖學(xué)結(jié)構(gòu)、身體的活動(dòng)方式、身體與環(huán)境的相互作用皆參與了我們對(duì)世界的認(rèn)知。這意味著,如果我們擁有蝙蝠的身體,則會(huì)有全然不同的具身認(rèn)知。從后認(rèn)知主義視角出發(fā)來(lái)考察,當(dāng)下的大語(yǔ)言模型,具有的誠(chéng)然只是“離身認(rèn)知”(disembodied cognition)。但辛頓所描述的“超智人工智能”,則將具有具身認(rèn)知,并且是遠(yuǎn)遠(yuǎn)越出人類(lèi)身體諸種生物性限制的后人類(lèi)具身認(rèn)知。

然而,值得進(jìn)一步追問(wèn)的是:大語(yǔ)言模型的這種離身認(rèn)知,真的就比不上人類(lèi)的具身認(rèn)知嗎?即便不具備具身認(rèn)知,大語(yǔ)言模型仍然在“美食”這個(gè)垂直領(lǐng)域內(nèi)勝過(guò)一切具有具身認(rèn)知的人類(lèi)“吃貨”。大語(yǔ)言模型不需要“吃”過(guò)口水雞和咕咾肉,才知道前者比后者辣得多,“沒(méi)吃過(guò)”完全不影響它對(duì)食物乃至“世界”作出智能的分析與判斷。而一個(gè)很會(huì)吃、吃了很多口水雞的人,也不見(jiàn)得在吃上呈現(xiàn)出比ChatGPT更高的智能,如果不是相反的話。換言之,大語(yǔ)言模型較之許許多多自詡嘗遍各類(lèi)美食的人,更具有“美食家”的水準(zhǔn)——在飲食上,ChatGPT的建議絕對(duì)比“吃貨”們可靠得多。

這里的關(guān)鍵就是,盡管目前大語(yǔ)言模型因沒(méi)有感知器官而不具備具身認(rèn)知,但這并不影響它對(duì)“世界”的符號(hào)性捕捉。誠(chéng)如OpenAI的首席科學(xué)家伊利亞·蘇茨科弗所言:

它知道紫色更接近藍(lán)色而不是紅色,它知道橙色比紫色更接近紅色。它僅僅通過(guò)文本知道所有這些事。[17]

大語(yǔ)言模型不需要親“眼”看見(jiàn)過(guò)紅色、藍(lán)色或紫色,便能夠精確地、恰如其分地談?wù)撍鼈儭TS多“眼神”好得很的人類(lèi)個(gè)體,恐怕會(huì)認(rèn)為紫色更接近紅色而非藍(lán)色——再一次地,“模擬模式”在精確性與可靠性上往往不如“數(shù)字模式”。

大語(yǔ)言模型僅僅通過(guò)對(duì)“符號(hào)性秩序”的深度學(xué)習(xí),就能夠?qū)θ祟?lèi)處身其內(nèi)的這個(gè)“世界”了如指掌。索緒爾的結(jié)構(gòu)主義語(yǔ)言學(xué)研究已然揭示出,作為生活在語(yǔ)言中的“說(shuō)話的存在”,我們并無(wú)法抵達(dá)“是”(譬如,什么“是”藍(lán)色)。這就意味著,我們必須放棄關(guān)于“是”的形而上學(xué)的聚焦,轉(zhuǎn)而聚焦一個(gè)符號(hào)性秩序中“是”與“是”之間的差異(亦即,符號(hào)之間的差異)。

語(yǔ)言,是一個(gè)關(guān)于差異的系統(tǒng)。語(yǔ)言把前語(yǔ)言的“存在”轉(zhuǎn)化為各種“是”。和“存在”不同,“是”涉及指號(hào)化,涉及能指與所指間的一種專(zhuān)斷的對(duì)應(yīng)。[18]“紅色”,就是一個(gè)能指——大語(yǔ)言模型無(wú)法“看見(jiàn)”它所指號(hào)化的內(nèi)容,但完全不影響其在“世界”中有效地“說(shuō)出”它(在溝通中有效)。大語(yǔ)言模型,同前語(yǔ)言的“存在”無(wú)涉,同拉康所說(shuō)的“真實(shí)秩序”無(wú)涉。

以伊曼紐爾·康德為代表人物的“認(rèn)識(shí)論轉(zhuǎn)向”,被以索緒爾為代表人物的“語(yǔ)言學(xué)轉(zhuǎn)向”革命性地推進(jìn),正是因?yàn)槿藗儾坏珶o(wú)法企及“物自體”(故此必須放棄研究“是”的形而上學(xué)),并且他們對(duì)“現(xiàn)象”的體驗(yàn)(如眼中的紅色),也只能通過(guò)語(yǔ)言(作為能指的“紅色”)進(jìn)行有效溝通。完全不具備具身認(rèn)知的大語(yǔ)言模型(無(wú)法通過(guò)感官來(lái)進(jìn)行體驗(yàn)),卻依然能夠呈現(xiàn)出關(guān)于這個(gè)“世界”的通用性的智能,那是因?yàn)椋粩噙M(jìn)行深度學(xué)習(xí)的,不是“世界”內(nèi)的某一種專(zhuān)門(mén)系統(tǒng),而是那個(gè)符號(hào)性地編織出“世界”的系統(tǒng)——一個(gè)處在不斷變化中的差異系統(tǒng)。

純粹潛能:論知識(shí)實(shí)踐的原創(chuàng)性(I)

生活在大語(yǔ)言模型時(shí)代,“躺平”似乎無(wú)可厚非。那么,讓我們?cè)俅位氐缴衔膾伋龅膯?wèn)題:走出“舒適區(qū)”,跨學(xué)科地進(jìn)行知識(shí)實(shí)踐,具有必要性嗎?

筆者的答案是:仍然有必要。首先,對(duì)于人類(lèi)的知識(shí)實(shí)踐而言,學(xué)科疆界不僅會(huì)限制研究的視野,并且會(huì)造成認(rèn)知偏差。靈長(zhǎng)類(lèi)動(dòng)物學(xué)家、神經(jīng)生物學(xué)家羅伯特·薩波斯基提醒我們注意到:

不同類(lèi)別之間的疆界經(jīng)常是武斷的,然而一旦某些武斷的疆界存在著,我們就會(huì)忘記它是武斷的,反而過(guò)分注重其重要性。[19]

對(duì)此,薩波斯基舉的例子,便是從紫色到紅色的可見(jiàn)光譜。在作為符號(hào)性秩序的“世界”中,存在著不同的“顏色”,分別由不同指號(hào)(如紅、藍(lán)色)來(lái)標(biāo)識(shí)。然而,光譜實(shí)際上是不同波長(zhǎng)無(wú)縫構(gòu)成的一個(gè)連續(xù)體。這就意味著,每種“顏色”各自的疆界,實(shí)則都是被武斷決定的,并被固化在某個(gè)指號(hào)上。不同的語(yǔ)言,有不同的顏色指號(hào)系統(tǒng),也就是說(shuō),可見(jiàn)光譜在不同語(yǔ)言中,以不同的方式被分割,由此“武斷”地產(chǎn)生出各種疆界。

而進(jìn)一步的問(wèn)題在于,疆界一旦形成,會(huì)使人產(chǎn)生認(rèn)知偏差。薩波斯基寫(xiě)道:

給某人看兩種類(lèi)似的顏色。如果那人使用的語(yǔ)言剛好在這兩種顏色之間劃分了疆界,他/她就會(huì)高估這兩種顏色的差異。假如這兩種顏色落在同一類(lèi)別內(nèi),結(jié)果則相反。[20]

薩氏認(rèn)為,要理解這種被疆界所宰制的認(rèn)知行為,就需要越出學(xué)科疆界進(jìn)行研究,如此才能避免作出片面解釋。[21]在本文討論的脈絡(luò)中,我們可以定位到如下關(guān)鍵性的要素:人腦所采取的“模擬模式”。

人的認(rèn)知,無(wú)法以大語(yǔ)言模型所采取的精確的“數(shù)字模式”展開(kāi)。采用“數(shù)字模式”的大語(yǔ)言模型,其知識(shí)實(shí)踐不但具有精確性,并且能夠無(wú)障礙地跨越疆界。無(wú)論認(rèn)肯與否、接受與否,我們正在邁入一個(gè)“后人類(lèi)的世界”,在其中大量“非人類(lèi)”(nonhumans)亦是知識(shí)生產(chǎn)的中堅(jiān)貢獻(xiàn)者,是參與世界化成的重要能動(dòng)者。[22]

然而,在這個(gè)后人類(lèi)世界中,采取“模擬模式”的人類(lèi)的知識(shí)實(shí)踐——當(dāng)其努力克服疆界宰制來(lái)展開(kāi)實(shí)踐時(shí)——對(duì)于世界化成而言,卻仍然至關(guān)重要。

我們有必要看到:以ChatGPT為代表的大語(yǔ)言模型,誠(chéng)然是堪稱(chēng)“通用”的大“專(zhuān)”家,知識(shí)覆蓋幾乎無(wú)死角,但它精于回答問(wèn)題,卻拙于創(chuàng)造新知。語(yǔ)言學(xué)家諾姆·喬姆斯基將ChatGPT稱(chēng)作“高科技剽竊”[23]。話雖尖刻,但按照我們關(guān)于“剽竊”的定義,大語(yǔ)言模型的知識(shí)的的確確全部來(lái)自于對(duì)人類(lèi)文本的預(yù)訓(xùn)練——這就意味著,即便通過(guò)預(yù)測(cè)下一個(gè)詞的方式,它能夠做到源源不斷地生成“全新”的文本,但卻是已有文本語(yǔ)料的重新排列組合。換言之,大語(yǔ)言模型無(wú)法原創(chuàng)性地創(chuàng)造新知。

大語(yǔ)言模型用規(guī)模提升(scale)的方式讓自身變“大”,從而“涌現(xiàn)”出近乎通用的智能。然而,它在文本生產(chǎn)上的“潛能”(potentiality)卻是可計(jì)算的——盡管那會(huì)是天文數(shù)字。而人類(lèi)的“模擬模式”,不僅使其跨越學(xué)科疆界展開(kāi)知識(shí)實(shí)踐成為可能,并且使其“潛能”無(wú)可精確計(jì)算——要知道,人的知識(shí)實(shí)踐,在生物化學(xué)層面上呈現(xiàn)為超過(guò)一千億個(gè)大腦神經(jīng)元用電信號(hào)進(jìn)行復(fù)雜的彼此“觸發(fā)”。盡管兩個(gè)神經(jīng)元之間的“觸發(fā)”與“不觸發(fā)”可以用數(shù)字形態(tài)(0和1)來(lái)表達(dá),但整個(gè)大腦的“生物性計(jì)算”進(jìn)程,卻無(wú)法予以數(shù)字化。大腦這個(gè)“濕件”(wetware),實(shí)則是一個(gè)不透明的黑箱。

以保羅·麥克萊恩為代表的神經(jīng)科學(xué)家們,把大腦區(qū)分為主導(dǎo)自主神經(jīng)系統(tǒng)的中腦和腦干、主導(dǎo)情緒的邊緣系統(tǒng)、主導(dǎo)邏輯與分析的皮質(zhì)(尤其前額葉皮質(zhì))這三層不同的區(qū)塊。[24]然而誠(chéng)如薩波斯基所言,這又是把“一個(gè)連續(xù)體類(lèi)別化”(categorizing a continuum)的經(jīng)典操作,這些區(qū)塊只能當(dāng)作“隱喻”,那是因?yàn)?,“解剖意義上這三層之間很大程度重疊”,“行為中的自動(dòng)化面向(簡(jiǎn)化來(lái)看這屬于第一層的權(quán)限)、情緒(第二層)和思考(第三層)并非分離的”。[25]

由于大腦具有可塑性(譬如,盲人的視覺(jué)皮質(zhì)經(jīng)由訓(xùn)練能用于處理其他信號(hào),大幅強(qiáng)化觸覺(jué)或聽(tīng)覺(jué)),并且每年都有大量新的神經(jīng)元生長(zhǎng)出來(lái)——人終其一生,都具有不斷更新其知識(shí)實(shí)踐的潛能。政治哲學(xué)家吉奧喬·阿甘本曾提出“潛在論”(potentiology),其核心主旨是,不被實(shí)現(xiàn)的潛能具有本體論的優(yōu)先性。阿氏本人將“潛在論”建立在對(duì)亞里士多德學(xué)說(shuō)的改造之上。[26]在筆者看來(lái),“潛在論”的地基,實(shí)則應(yīng)該是當(dāng)代神經(jīng)科學(xué)與計(jì)算機(jī)科學(xué):正是因?yàn)槿祟?lèi)大腦采取“模擬模式”,人才會(huì)是如阿甘本所描述的“一種純粹潛能的存在”(a being of pure potentiality)。[27]所有被特殊性地實(shí)現(xiàn)的東西(包括人類(lèi)整個(gè)文明在內(nèi)),都僅僅是這種純粹潛能的“例外”。人,可以原創(chuàng)性地創(chuàng)造——亦即,從其純粹潛能中產(chǎn)生——新事物。

同人類(lèi)相比照,大語(yǔ)言模型具有潛能,但不具有潛在論意義上的純粹潛能:“數(shù)字模式”使得其潛能變得可計(jì)算,亦即,可窮盡性地全部實(shí)現(xiàn)(僅僅是原則上可實(shí)現(xiàn),實(shí)際操作將耗費(fèi)巨額算力);換言之,它沒(méi)有純粹的、在本體論層面上能夠始終不被實(shí)現(xiàn)的潛能。ChatGPT能夠跨越學(xué)科疆界生成極富知識(shí)含量的文本,但它做不到徹底原創(chuàng)性地生成新知——這件事辛頓所說(shuō)的“超智人工智能”或可做到,但目前的大語(yǔ)言模型做不到。

有意思的是,在一個(gè)晚近的對(duì)談中,OpenAI首席執(zhí)行官山姆·奧特曼這樣界定“通用人工智能”:

如果我們能夠開(kāi)發(fā)出一個(gè)系統(tǒng),能自主研發(fā)出人類(lèi)無(wú)法研發(fā)出的科學(xué)知識(shí)時(shí),我就會(huì)稱(chēng)這個(gè)系統(tǒng)為通用人工智能。[28]

按照奧特曼的上述界定,現(xiàn)階段包括GPT-4在內(nèi)的大語(yǔ)言模型盡管已然是堪稱(chēng)“通用”的大“專(zhuān)”家,但卻仍未能抵達(dá)通用人工智能的境界,因?yàn)樗鼈內(nèi)詿o(wú)法“自主研發(fā)”新知。與之對(duì)照,不同學(xué)科領(lǐng)域的人類(lèi)“專(zhuān)”家,卻可以通過(guò)彼此交叉、互相觸動(dòng)的知識(shí)實(shí)踐(甚至通過(guò)和ChatGPT的對(duì)話),既能夠“溫故”,也能夠“知新”,并且能夠“溫故而知新”。

人不僅是“說(shuō)話的存在”,同時(shí)在本體論層面上是“一種純粹潛能的存在”。正是在純粹潛能的意義上,即便生活在大語(yǔ)言模型時(shí)代,我們亦不能躺平。

量子思維:論知識(shí)實(shí)踐的原創(chuàng)性(II)

進(jìn)而,對(duì)于思考人類(lèi)在大語(yǔ)言模型時(shí)代展開(kāi)跨學(xué)科知識(shí)實(shí)踐的必要性問(wèn)題,我們可以進(jìn)一步引入量子思維。量子思維,顧名思義是量子物理學(xué)的諸種“詭異”(spooky,阿爾伯特·愛(ài)因斯坦所使用的形容詞)發(fā)現(xiàn)所引入的思考視角。

量子物理學(xué)家、女性主義者、后人類(lèi)主義者凱倫·芭拉德2007年推出了一本廣受贊譽(yù)的巨著,題為《半途遇上宇宙》(Meeting the Universe Halfway)。[29]量子物理學(xué)的實(shí)驗(yàn)結(jié)果揭示出,人實(shí)際上總是半途(halfway)地遭遇宇宙,不可能整個(gè)地碰見(jiàn)它。你能知道動(dòng)量,就注定會(huì)不知道位置,知道位置就不知道動(dòng)量。動(dòng)量、位置乃至溫度、密度、濕度等,都是人類(lèi)語(yǔ)言設(shè)定出的概念,而不是宇宙本身的屬性。[30]

時(shí)至今天我們所知道的那個(gè)世界,只是人類(lèi)半途構(gòu)建出來(lái)的“世界”,所有人類(lèi)知識(shí)(甚至包括量子力學(xué)本身在內(nèi)),都屬于“智人”讓自己安身其中的這一半“宇宙”——它可以被妥切地稱(chēng)作“符號(hào)性宇宙”(symbolic universe)。[31]

這也就是為什么諾貝爾物理學(xué)獎(jiǎng)得主尼爾斯·玻爾曾說(shuō),“‘量子世界’并不存在”[32]。玻爾可謂量子力學(xué)的核心奠基人,他竟然說(shuō)“量子世界”并不存在?!他的意思是,“量子世界”僅僅是一個(gè)由量子力學(xué)的各種概念、方程與描述構(gòu)建起來(lái)的“世界”,換句話說(shuō),屬于人類(lèi)半途認(rèn)識(shí)的那個(gè)“宇宙”。人的認(rèn)識(shí)本身,就是在參與“宇宙”的構(gòu)建。[33]

即便你是一個(gè)邁出學(xué)科疆界的終身學(xué)習(xí)者與知識(shí)生產(chǎn)者,你也只能半途遇見(jiàn)宇宙,遇見(jiàn)人類(lèi)(包括你本人)參與構(gòu)建的那半個(gè)“宇宙”。這就意味著,任何整體化的嘗試——嘗試用已有知識(shí)已有做法來(lái)判斷一切事情、處理一切事情——都注定要失敗。你覺(jué)得你學(xué)富五車(chē),讀了很多書(shū),總是忍不住對(duì)身邊伴侶說(shuō)“你不應(yīng)該這樣想”“你怎么就不懂”,其實(shí)就是在把自己的知識(shí)整體化。一個(gè)國(guó)家看到別的國(guó)家跟自己做法不一樣就受不了,想方設(shè)法“卡脖子”逼迫對(duì)方就范、想使其變成跟它一樣,這同樣是不恰當(dāng)?shù)恼w化思維。政治學(xué)者弗朗西斯·福山把這種整體化思維美其名曰“歷史的終結(jié)”。[34]歷史終結(jié)論,就是缺乏量子思維的產(chǎn)物。[35]

面對(duì)大語(yǔ)言模型,我們確實(shí)要對(duì)它的學(xué)習(xí)速度、對(duì)其堪稱(chēng)“通用”的大“專(zhuān)”家水平心悅誠(chéng)服,而不是頑固秉持“我們更行”的人類(lèi)中心主義態(tài)度。但我們?nèi)匀豢梢员S形覀兊闹腔?,仍然可以做一個(gè)名副其實(shí)的“智人”而不僅僅是“吃貨”,如果我們學(xué)會(huì)使用量子思維的話。

大語(yǔ)言模型是用人類(lèi)已生產(chǎn)的古往今來(lái)的文本語(yǔ)料預(yù)訓(xùn)練出來(lái)的。所有文本,都結(jié)構(gòu)性地內(nèi)嵌人類(lèi)認(rèn)知。這也就意味著,用文本語(yǔ)料訓(xùn)練的大語(yǔ)言模型再智能、再勤奮學(xué)習(xí),至多也只能對(duì)人類(lèi)所半途遇見(jiàn)的那一半宇宙了如指掌。它的知識(shí)無(wú)法整體化,無(wú)法思考因自身的出現(xiàn)而可能帶來(lái)的“技術(shù)奇點(diǎn)”(technological singularity)。實(shí)際上,它無(wú)法思考任何一種“奇點(diǎn)”,因?yàn)椤捌纥c(diǎn)”在定義上(by definition)標(biāo)識(shí)了人類(lèi)一切已有知識(shí)“失敗”的那個(gè)位置。如史蒂芬·霍金所言,在奇點(diǎn)上所有科學(xué)規(guī)則和我們預(yù)言未來(lái)的能力都將崩潰。[36]

也就是說(shuō),如果大語(yǔ)言模型真的造成人類(lèi)文明的技術(shù)奇點(diǎn),它自己不會(huì)有辦法來(lái)應(yīng)對(duì)它。所以,人工智能的智能,解決不了它自己帶來(lái)的挑戰(zhàn)。[37]當(dāng)問(wèn)及ChatGPT會(huì)帶來(lái)怎樣的挑戰(zhàn)時(shí),它會(huì)給出自己“只是提供服務(wù),不會(huì)帶來(lái)任何威脅”等諸如此類(lèi)的回答。

人,能思考技術(shù)奇點(diǎn)——“技術(shù)奇點(diǎn)”這個(gè)概念就是一群學(xué)者提出的。人——就像以往文明史上那些不斷拓展已有知識(shí)邊界的人——有能力去思考那半途之外的黑暗宇宙,一步步把“黑洞”(black hole)、“暗物質(zhì)”(dark matter)、“暗能量”(dark energy)這些曾經(jīng)或仍是深淵性的、只能用“黑”“暗”來(lái)描述的假說(shuō),拉進(jìn)我們認(rèn)知范圍內(nèi)的一半宇宙中——那個(gè)大語(yǔ)言模型可以掌握甚至是高精度掌握、并能模型化重構(gòu)的“符號(hào)性宇宙”中。

今天,大語(yǔ)言模型已經(jīng)深度參與世界化成,參與構(gòu)建我們生活在其中的符號(hào)性宇宙。然而,我們不能躺平——大語(yǔ)言模型可以跨越學(xué)科疆界生成知識(shí),而人可以跨越學(xué)科疆界生成原創(chuàng)性知識(shí)?;艚鸾o我們帶來(lái)了一個(gè)特別有分量的案例?;忌蠞u凍癥后,這位物理學(xué)家喪失了絕大多數(shù)具身認(rèn)知的能力。2018年去世的霍金如果多活兩年,2020年諾貝爾物理學(xué)獎(jiǎng)大概率會(huì)同時(shí)頒給他,因?yàn)椤捌纥c(diǎn)定理”(singularity theorem)是他和羅杰·彭羅斯共同構(gòu)建的。更令人無(wú)比敬重的是,霍金在學(xué)術(shù)生涯中并沒(méi)有躺平并止步于“奇點(diǎn)定理”,盡管這是達(dá)到諾貝爾獎(jiǎng)級(jí)別并且最后收獲該獎(jiǎng)的研究成果。霍金后來(lái)提出的“無(wú)邊界宇宙”(no-boundary universe)假說(shuō),就是繞過(guò)奇點(diǎn)(“大爆炸奇點(diǎn)”)這個(gè)設(shè)定來(lái)思考宇宙的智性努力。[38]至于更為世人所熟知的作為公共知識(shí)分子的霍金,則是源于他不斷越出學(xué)科疆界的知識(shí)實(shí)踐取得令人矚目的成果。

結(jié)語(yǔ)

在同大語(yǔ)言模型知識(shí)實(shí)踐的并置中,我們可以定位到學(xué)科交叉融合的必要性。

以ChatGPT為代表的大語(yǔ)言模型,盡管才剛剛進(jìn)入人類(lèi)的視野中,但已經(jīng)在知識(shí)實(shí)踐上展現(xiàn)出卓越能力,成為堪稱(chēng)“通”家的大“專(zhuān)”家。我們可以用“模擬模式”與“數(shù)字模式”來(lái)分別描述人類(lèi)與大語(yǔ)言模型的知識(shí)實(shí)踐。大語(yǔ)言模型問(wèn)世前的人工神經(jīng)網(wǎng)絡(luò)算法(譬如AlphaGo),數(shù)字模式的知識(shí)實(shí)踐僅僅令其在狹窄的垂直領(lǐng)域展露出卓越智能。然而以海量人類(lèi)文本為訓(xùn)練數(shù)據(jù)的大模型,其知識(shí)實(shí)踐則呈現(xiàn)出跨越領(lǐng)域疆界的通用性。

面對(duì)大語(yǔ)言模型在知識(shí)實(shí)踐中的應(yīng)用,我們不能躺平,不能躲在知識(shí)實(shí)踐的舒適區(qū)。潛在論與量子物理學(xué),給出了我們積極展開(kāi)跨學(xué)科知識(shí)實(shí)踐的理?yè)?jù)。

(本文系國(guó)家社會(huì)科學(xué)基金重大項(xiàng)目“后現(xiàn)代主義哲學(xué)發(fā)展路徑與新進(jìn)展研究”的階段性研究成果,項(xiàng)目編號(hào):18ZDA017)

注釋

[1]2023年3月29日,1000余位人工智能業(yè)界領(lǐng)袖聯(lián)名呼吁立即暫停訓(xùn)練比GPT-4更強(qiáng)的人工智能。2023年5月30日,包括圖靈獎(jiǎng)得主杰弗里·辛頓、約書(shū)亞·本吉奧以及谷歌DeepMind首席執(zhí)行官戴密斯·哈薩比斯、OpenAI首席執(zhí)行官山姆·奧特曼、Anthropic首席執(zhí)行官達(dá)里奧·阿莫代伊在內(nèi)的超過(guò)350名人工智能行業(yè)研究人員、工程師和首席執(zhí)行官,聯(lián)合簽署并發(fā)布如下聲明:“降低人工智能帶來(lái)的滅絕風(fēng)險(xiǎn),應(yīng)該同大流行病、核戰(zhàn)爭(zhēng)等其他社會(huì)級(jí)規(guī)模的風(fēng)險(xiǎn)一起,成為一個(gè)全球優(yōu)先事項(xiàng)?!眳⒁?jiàn)《AI可能滅絕人類(lèi)!22字聲明,ChatGPT之父和AI教父都簽了》,2023年5月30日,https://www.thepaper.cn/newsDetail_forward_23282744;《馬斯克率一眾科技圈大佬發(fā)聲:應(yīng)暫停訓(xùn)練比GPT-4更強(qiáng)大的AI系統(tǒng)》,2023年3月29日,https://baijiahao.baidu.com/s?id=1761688767716274674。

[2]參見(jiàn)《首本由ChatGPT寫(xiě)的實(shí)體書(shū)出版,國(guó)內(nèi)出版界如何應(yīng)對(duì)?》,2023年2月28日,https://baijiahao.baidu.com/s?id=1759063407725941025。

[3]參見(jiàn)吳冠軍:《再見(jiàn)智人:技術(shù)-政治與后人類(lèi)境況》,北京大學(xué)出版社,2023年。

[4]S. Bubeck et al., "Sparks of Artificial General Intelligence: Early experiments with GPT-4," 22 Mar 2023, https://arxiv.org/abs/2303.12712.

[5]在這個(gè)論述中,“常見(jiàn)”與“大量出現(xiàn)”很重要,因?yàn)榇笳Z(yǔ)言模型計(jì)算的是概率分布,如果某個(gè)錯(cuò)誤(譬如,“天是橙色”,事實(shí)錯(cuò)誤抑或錯(cuò)別字)很少出現(xiàn),那么模型的輸出便絕不會(huì)出現(xiàn)這種錯(cuò)誤。

[6]關(guān)于大語(yǔ)言模型獨(dú)特的出錯(cuò)方式的進(jìn)一步分析,參見(jiàn)吳冠軍:《大語(yǔ)言模型的信任問(wèn)題與資本邏輯》,《當(dāng)代世界與社會(huì)主義》,2023年第5期;吳冠軍:《大語(yǔ)言模型的技術(shù)政治學(xué)研究——知識(shí)生產(chǎn)的后人類(lèi)境況與意識(shí)形態(tài)批判》,《中國(guó)社會(huì)科學(xué)評(píng)價(jià)》,2022年第5期。

[7][12][13]G. Hinton, "Two Paths to Intelligence," 10 June 2023, https://mp.weixin.qq.com/s/_wXjuAo7q5Nkn1l_ormcmQ.

[8]參見(jiàn)吳冠軍:《從人類(lèi)世到元宇宙——當(dāng)代資本主義演化邏輯及其行星效應(yīng)》,《當(dāng)代世界與社會(huì)主義》,2022年第5期;吳冠軍:《人類(lèi)世、資本世與技術(shù)世——一項(xiàng)政治經(jīng)濟(jì)學(xué)-政治生態(tài)學(xué)考察》,《山東社會(huì)科學(xué)》,2022年第12期。

[9]除了生物性的“默會(huì)知識(shí)”(分享困難且極其不精確)外,智人在分享知識(shí)時(shí)主要倚靠符號(hào)性-話語(yǔ)性的“蒸餾”。

[10]為了降低大語(yǔ)言模型的運(yùn)行能耗,辛頓同其合作者提出使用蒸餾方法,將原始數(shù)據(jù)集上訓(xùn)練的重量級(jí)模型作為教師,讓一個(gè)相對(duì)更輕量(參數(shù)更少)的模型作為學(xué)生,對(duì)于相同的輸入,讓學(xué)生輸出的概率分布盡可能地逼近教師輸出的分布。于是,大模型的知識(shí)就可以通過(guò)這種監(jiān)督訓(xùn)練的方式“蒸餾”到小模型里。小模型的準(zhǔn)確率下降往往很小,卻能大幅度減少參數(shù)量,從而降低對(duì)硬件和能耗的需求。See G. Hinton; O. Vinyals and J. Dean, "Distilling the Knowledge in a Neural Network," 9 March 2015, https://arxiv.org/pdf/1503.02531.pdf。

[11]吳冠軍:《有人說(shuō)過(guò)“大他者”嗎?——論精神分析化的政治哲學(xué)》,《同濟(jì)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》,2015年第5期。

[14]關(guān)于教學(xué)實(shí)踐的進(jìn)一步討論,參見(jiàn)吳冠軍:《后人類(lèi)狀況與中國(guó)教育實(shí)踐:教育終結(jié)抑或終身教育?——人工智能時(shí)代的教育哲學(xué)思考》,《華東師范大學(xué)學(xué)報(bào)(教育科學(xué)版)》,2019年第1期。

[15]故此,辛頓呼吁年輕一代研究人員要努力“弄清楚如何讓人工智能在不獲得控制的情況下,為我們生活更好而奮斗”。See Hinton, "Two Paths to Intelligence"。

[16]《〈咬文嚼字〉發(fā)布“2021年十大流行語(yǔ)”:雙減、躺平、元宇宙等入選》,2021年12月10日,https://new.qq.com/rain/a/20211210A08A2800。

[17]I. Sutskever and C. Smith, "Episode #116," 15 March 2023, https://www.eye-on.ai/podcast-archive.

[18]一旦能指與所指的對(duì)應(yīng)被固化(比如,被理解為“自然的”),那就會(huì)出現(xiàn)“形而上學(xué)/元物理學(xué)”(meta-physics)——一門(mén)以本質(zhì)主義的方式研究“being”(是什么)的學(xué)問(wèn)。

[19][20][21][25]R. M. Sapolsky, Behave: The Biology of Humans at Our Best and Worst, New York: Penguin, 2017 (ebook), p. 14, pp. 29-30.

[22][30]吳冠軍:《從元宇宙到量子現(xiàn)實(shí):邁向后人類(lèi)主義政治本體論》,北京:中信出版集團(tuán),2023年,第371~373頁(yè)。

[23]"Noam Chomsky on ChatGPT, Universal Grammar and the Human Mind: Unlocking Language and AI Mysteries," 29 July 2023, https://www.youtube.com/watch?v=VdszZJMbBIU.

[24]P. MacLean, The Triune Brain in Evolution, New York: Springer, 1990.

[26]參見(jiàn)吳冠軍:《生命權(quán)力的兩張面孔:透析阿甘本的生命政治論》,《哲學(xué)研究》,2014年第8期;吳冠軍:《阿甘本論神圣與褻瀆》,《國(guó)外理論動(dòng)態(tài)》,2014年第3期。

[27]G. Agamben, "The Work of Man," in M. Calarco and S. DeCaroli, Giorgio Agamben: Sovereignty and Life, Stanford: Stanford University Press, 2007, p. 2.

[28]《Sam Altman預(yù)言2030年前出現(xiàn)AGI,GPT-10智慧將超越全人類(lèi)總和!》,2023年9月7日,https://new.qq.com/rain/a/20230907A04O0Q00。

[29]K. Barad, Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning, Durham: Duke University Press, 2007.

[31]吳冠軍:《陷入奇點(diǎn):人類(lèi)世政治哲學(xué)研究》,北京:商務(wù)印書(shū)館,2021年,第93~115頁(yè)。

[32]See A. Shimony, "Metaphysical Problems in the Foundations of Quantum Mechanics," lnternotionol Philosophical Quanerly, 1978, 18(1); A. Petersen, "The Philosophy of Niels Bohr," Bulletin of the Atomic Scientists, 1963, 19(7).

[33]物理學(xué)家約翰·惠勒(“黑洞”概念的提出者)甚至提出了“參與性宇宙”(participatory universe)命題。詳細(xì)討論參見(jiàn)吳冠軍:《從元宇宙到量子現(xiàn)實(shí):邁向后人類(lèi)主義政治本體論》,第373~375頁(yè)。

[34]F. Fukuyama, "The End of History?" The National Interest, 1989, Summer.

[35]進(jìn)一步的分析,參見(jiàn)吳冠軍:《量子思維對(duì)政治學(xué)與人類(lèi)學(xué)的激進(jìn)重構(gòu)》,載錢(qián)旭紅等:《量子思維》,上海:華東師范大學(xué)出版社,2022年。

[36]S. W. Hawking, A Brief History of Time: From the Big Bang to Black Holes, New York: Bantam, 2009, p. 84.

[37]參見(jiàn)吳冠軍:《通用人工智能:是“賦能”還是“危險(xiǎn)”》,《人民論壇》,2023年第5期。

[38]S. W. Hawking, The Theory of Everything: The Origin and Fate of the Universe, Beverly Hills: Phoenix Books, 2005, p. 113, pp. 98-99.

責(zé) 編∕張 貝

原阳县| 和田市| 沭阳县| 依兰县| 滨海县| 黄陵县| 大余县| 陇西县| 商丘市| 平定县| 图木舒克市| 永和县| 定日县| 修武县| 峨眉山市| 麦盖提县| 奈曼旗| 买车| 泰顺县| 繁昌县| 海阳市| 吉首市| 南城县| 马鞍山市| 翼城县| 淳化县| 文化| 康定县| 福州市| 湟中县| 新和县| 屏南县| 阜康市| 桦甸市| 安阳县| 江山市| 宜章县| 襄樊市| 广饶县| 土默特右旗| 六安市|