摘 要 【目的】固體瀝青廣泛分布于全球各大含油氣盆地中,在油氣勘探領(lǐng)域具有廣闊的應(yīng)用前景,特別對(duì)深層—超深層碳酸鹽巖油氣勘探尤為重要。然而,在固體瀝青具體應(yīng)用過(guò)程中,也存在固體瀝青反射率難以確定、油氣源對(duì)比參數(shù)適用性受成因約束等諸多問(wèn)題,若不妥善處理,可能會(huì)得出錯(cuò)誤的成果認(rèn)識(shí)。因此,需要對(duì)固體瀝青在油氣勘探中的應(yīng)用進(jìn)行有效的歸納總結(jié)?!痉椒ā看舜窝芯拷Y(jié)合廣泛的文獻(xiàn)調(diào)研,首先對(duì)與應(yīng)用研究密切相關(guān)的固體瀝青形態(tài)學(xué)特征和成因類(lèi)型進(jìn)行分析,然后總結(jié)固體瀝青在油氣勘探中的諸多應(yīng)用并指出其中的優(yōu)勢(shì)與不足。【結(jié)果】固體瀝青發(fā)育復(fù)雜多樣的光性結(jié)構(gòu),主要受形成環(huán)境、母質(zhì)成分等因素控制;其同樣具有復(fù)雜多樣的超顯微形態(tài),可能受運(yùn)移和天然氣的生成及逸散等因素控制。固體瀝青具有多種成因類(lèi)型,在有機(jī)元素組成、碳和硫同位素值以及生物標(biāo)志化合物組成等方面差異顯著;可用于指示油氣的生成和運(yùn)聚、表征熱演化成熟度以及追蹤油氣來(lái)源等,但由于不同成因固體瀝青油氣源對(duì)比參數(shù)的適用性差異很大,應(yīng)用時(shí)需判斷其成因類(lèi)型?!窘Y(jié)論】該研究為固體瀝青的有效應(yīng)用提供了有力的支撐,對(duì)深層—超深層油氣勘探具有重要的指導(dǎo)作用。
關(guān)鍵詞 固體瀝青;微觀結(jié)構(gòu);成因類(lèi)型;熱演化成熟度;油氣源對(duì)比
第一作者簡(jiǎn)介 李長(zhǎng)志,男,1991年出生,博士,講師,油氣成藏地質(zhì)學(xué),E-mail: nwulcz@126.com
通信作者 文華國(guó),男,博士,教授,儲(chǔ)層沉積學(xué),E-mail: wenhuaguo08@cdut.edu.cn
中圖分類(lèi)號(hào) P618.13 文獻(xiàn)標(biāo)志碼 A
0 引言
瀝青的概念范疇在不同學(xué)科領(lǐng)域差異很大,在有機(jī)地球化學(xué)領(lǐng)域,瀝青被定義為石油中可溶于有機(jī)溶劑如二氯甲烷、甲苯等的組分[1?2];而在有機(jī)巖石學(xué)領(lǐng)域,瀝青被定義為充填巖石孔、洞、縫,由干酪根或原油等分解形成的次生組分[3?5]。本文采用有機(jī)巖石學(xué)的概念,為便于區(qū)分,稱(chēng)為固體瀝青。作為干酪根或原油等成巖蝕變的產(chǎn)物,固體瀝青與油氣之間存在密切的聯(lián)系,其巖石礦物學(xué)和地球化學(xué)等特征被廣泛應(yīng)用于油氣勘探,例如固體瀝青的反射率可以反映熱演化成熟度,固體瀝青蘊(yùn)含的生物標(biāo)志化合物等信息可以追蹤油氣的來(lái)源等[6?8]。固體瀝青廣泛分布于世界各大含油氣盆地中,例如美國(guó)的拉頓盆地[9]、加拿大的西加拿大沉積盆地[10]、中東的美索不達(dá)米亞盆地[11]、澳大利亞的喬治亞盆地[12] 和我國(guó)的四川盆地[13?14]、塔里木盆地[15?16]、準(zhǔn)噶爾盆地[17?18]以及鄂爾多斯盆地[19?20]等,因而固體瀝青具有廣闊的應(yīng)用前景。
近年來(lái),隨著油氣向深層—超深層領(lǐng)域的不斷推進(jìn),固體瀝青及其在油氣勘探中的應(yīng)用受到了越來(lái)越多的關(guān)注,已成為全球研究熱點(diǎn)[21?25]。然而,在固體瀝青具體應(yīng)用過(guò)程中,也存在諸多問(wèn)題,若不妥善處理,可能會(huì)得出錯(cuò)誤的成果認(rèn)識(shí)。典型的問(wèn)題有:(1)不同成因固體瀝青油氣源對(duì)比參數(shù)的適用性差異很大,不能直接應(yīng)用[26?29];(2)固體瀝青具有多種產(chǎn)狀且部分固體瀝青發(fā)育復(fù)雜的光性結(jié)構(gòu),給反射率的測(cè)定帶來(lái)很大困惑[9,21,30?31];(3)固體瀝青的反射率和拉曼光譜參數(shù)與成熟度的對(duì)應(yīng)關(guān)系不同地區(qū)差異很大,不能直接套用[32?35];(4)古油藏對(duì)應(yīng)的固體瀝青含量下限值仍有分歧,給古油藏的判別帶來(lái)很大不便等等[36?38]。
固體瀝青的應(yīng)用研究與其形態(tài)學(xué)特征和成因類(lèi)型密切相關(guān),例如固體瀝青反射率的測(cè)定受其微觀結(jié)構(gòu)的影響,固體瀝青油氣源對(duì)比參數(shù)的應(yīng)用受其成因類(lèi)型的約束。為了更好地推進(jìn)固體瀝青的應(yīng)用研究,筆者通過(guò)廣泛的文獻(xiàn)調(diào)研和分析,對(duì)固體瀝青的應(yīng)用研究、形態(tài)學(xué)特征和成因類(lèi)型進(jìn)行歸納總結(jié),梳理固體瀝青復(fù)雜的形態(tài)學(xué)特征和多樣的成因類(lèi)型,明確固體瀝青在實(shí)際應(yīng)用中的優(yōu)勢(shì)與不足,為固體瀝青在油氣勘探領(lǐng)域的應(yīng)用提供有力的支撐。
1 固體瀝青的形態(tài)學(xué)特征
1.1 產(chǎn)狀
作為干酪根或原油等成巖蝕變的產(chǎn)物,固體瀝青在野外露頭或探井巖心中多以充填溶洞或各類(lèi)裂縫的形式存在(圖1)。固體瀝青可以獨(dú)自全充填于溶洞、裂縫之中(圖1a~c),也可與方解石、白云石、黃鐵礦、閃鋅礦、石英等礦物共同充填溶洞、裂縫(圖1d~f)。對(duì)后者而言,根據(jù)固體瀝青與共存礦物的分布特征可以大致判別其形成時(shí)間和期次,若固體瀝青緊貼洞壁或縫壁分布(圖1d),說(shuō)明其形成時(shí)間早于共存礦物;若固體瀝青分布于溶洞或裂縫中心(圖1e,f),說(shuō)明其形成時(shí)間晚于共存礦物或與共存礦物一致。
在顯微鏡下,固體瀝青多呈貼邊充填(圖2a)、獨(dú)自全充填(圖2b,c)或與其他礦物共同充填(圖2d)于各類(lèi)孔隙以及微裂縫之中,獨(dú)自全充填的固體瀝青產(chǎn)狀受所充填的孔隙或裂縫的形態(tài)約束。與其他礦物共同充填孔隙或微裂縫時(shí),也可根據(jù)固體瀝青與共存礦物的賦存特征判斷其形成時(shí)間和期次。在單偏光下,固體瀝青為黑色、棕黑色(圖2a~d);在熒光下,低成熟固體瀝青大多數(shù)情況下發(fā)黃綠色熒光,而高—過(guò)成熟固體瀝青基本不發(fā)光[24,42](圖2e,f)。
1.2 微觀結(jié)構(gòu)
在微觀視角下,固體瀝青并不像表觀那樣具有均一的質(zhì)地,反而具有復(fù)雜多樣的微觀結(jié)構(gòu)特征。在油浸偏振光/反射光下,固體瀝青具有兩類(lèi)光性結(jié)構(gòu):均一性(isotropic)和各向異性(anisotropy),其中各向異性光學(xué)結(jié)構(gòu)主要出現(xiàn)在熱成因固體瀝青(在高溫條件下受熱作用形成的固體瀝青)中,可進(jìn)一步分為細(xì)粒馬賽克型(fine-grained mosaic)、中粒馬賽克型(medium-grained mosaic)、粗粒馬賽克型(coarsegrainedmosaic)、粗流線(xiàn)馬賽克型(coarse flowmosaic)、域型(domain)以及纖維型(fibrous)等[10,31,43](圖3)。在高精度場(chǎng)發(fā)射掃描電鏡下,固體瀝青同樣具有多樣的超顯微形態(tài),常呈塊狀、指狀、多孔狀、瘤狀、片狀、薄皮球狀、葡萄狀以及蠕蟲(chóng)狀等(圖4)。
固體瀝青的各向異性光學(xué)結(jié)構(gòu)主要緣于有機(jī)質(zhì)受熱在內(nèi)部形成的中間相,一些模擬實(shí)驗(yàn)表明固體瀝青光性結(jié)構(gòu)由均一性向各向異性轉(zhuǎn)變一般需要350 ℃左右高溫[45?48]。但母質(zhì)成分同樣影響固體瀝青受熱形成的各向異性光性結(jié)構(gòu)類(lèi)型,具有弱各向異性光性結(jié)構(gòu)的固體瀝青(如細(xì)粒馬賽克型)可能來(lái)源于高分子量、低可塑性、低流動(dòng)性的富瀝青質(zhì)原油,而具有強(qiáng)各向異性光性結(jié)構(gòu)的固體瀝青(如粗粒馬賽克型、域型以及纖維型等)可能來(lái)源于低分子量、高可塑性、高流動(dòng)性的富芳香烴原油[40,43]。此外,值得注意的是,Khavari-Khorosani et al.[49]、Creaney etal.[50]、Goodarzi et al.[51]、Wilson[52]和Zhang et al.[53]認(rèn)為具有強(qiáng)各向異性光性結(jié)構(gòu)固體瀝青的形成與異常熱事件有關(guān)。另外,Gao et al.[43]認(rèn)為固體瀝青的粗流線(xiàn)馬賽克型和域型光性結(jié)構(gòu)是由小尺寸顆粒馬賽克型光性結(jié)構(gòu)合并而成,而粗流線(xiàn)馬賽克型和域型光性結(jié)構(gòu)向纖維型光性結(jié)構(gòu)的轉(zhuǎn)變與大量原油裂解生氣造成的超壓有關(guān)。
固體瀝青的超顯微形態(tài)受到了廣大學(xué)者們的密切關(guān)注,但一直未明確其具體成因,可能受多種因素控制[43?44,54]。Gao et al.[43]認(rèn)為固體瀝青的囊泡或多孔狀形態(tài)主要源自原油向固體瀝青轉(zhuǎn)化過(guò)程中天然氣的生成和逸散。另外,固體瀝青的超顯微形態(tài)也可能與其是否經(jīng)歷運(yùn)移有關(guān)。一般而言,原地形成的固體瀝青形態(tài)較為完整,多貼靠孔壁或縫壁,發(fā)育收縮縫,而異地運(yùn)移固體瀝青類(lèi)似碎屑顆粒,較為破碎,分散分布在孔隙或裂縫中的自生礦物之間[44,55]。四川盆地東北部長(zhǎng)興組—飛仙關(guān)組蠕蟲(chóng)狀固體瀝青并未緊貼孔壁或縫壁,而是雜亂不規(guī)則地堆積于溶縫或溶蝕孔之中,具有斷裂接觸結(jié)構(gòu),且被伊利石等黏土礦物包裹纏繞。因此,李勝勇等[44]認(rèn)為蠕蟲(chóng)狀超顯微形態(tài)可能是固體瀝青呈固態(tài)或半固態(tài)狀隨熱液型流體異地運(yùn)移,然后由于溫壓條件改變雜亂堆積于孔洞及裂縫中且形態(tài)發(fā)生改變的結(jié)果。
2 固體瀝青的成因類(lèi)型
固體瀝青存在多種成因類(lèi)型,可分為熱成因和冷變質(zhì)成因兩類(lèi)[56],其中熱成因包括熱化學(xué)蝕變作用和熱化學(xué)硫酸鹽還原作用,冷變質(zhì)成因包括脫瀝青作用、生物降解作用等(圖5)。值得注意的是,很多研究表明有些固體瀝青是多種機(jī)制共同作用的產(chǎn)物[24,57],例如南阿曼鹽盆前寒武晚期—早寒武世Ara群儲(chǔ)層內(nèi)固體瀝青是由熱蝕變作用和氣體脫瀝青共同作用形成[58]。
熱化學(xué)蝕變作用是指原油等烴類(lèi)在高溫下熱裂解形成固體瀝青以及天然氣等小分子烴類(lèi),需要較高的溫度,通常在150 ℃以上[59?60]。熱化學(xué)蝕變作用形成的固體瀝青典型案例有英國(guó)北海中部中生界儲(chǔ)集層中的固體瀝青[61]和美國(guó)阿拉斯加布魯克斯山脈區(qū)域三疊系—下白堊統(tǒng)地表露頭處的固體瀝青[62]。值得注意的是,熱化學(xué)蝕變作用可分為正常熱演化蝕變作用(埋藏引起溫度升高)和熱液蝕變作用(熱液引起溫度升高)。Gao et al.[43]和Zhang et al.[53]認(rèn)為川中地區(qū)震旦系—寒武系儲(chǔ)集層中部分固體瀝青由熱液蝕變作用形成,與晚二疊世峨眉山玄武巖噴發(fā)這一異常熱事件有關(guān)[43,53]。由熱化學(xué)蝕變作用形成的固體瀝青通常在巖石熱解參數(shù)上具有低氫指數(shù)(HI)和高最高熱解峰溫(Tmax)的特征[24],具有較高的N/C 原子比和δ13C 值以及較低的S/C 原子比、δ34S值[28,62?64]、多環(huán)生物標(biāo)志化合物含量[65],其中由熱液蝕變作用形成的固體瀝青常與熱液礦物(如馬鞍狀白云石等)共存[53]。
熱化學(xué)硫酸鹽還原作用通常發(fā)生在深埋藏碳酸鹽巖儲(chǔ)集層中,硫酸根離子與油氣發(fā)生還原反應(yīng)形成固體瀝青以及小分子烴類(lèi)、硫化氫、二氧化碳等。熱化學(xué)硫酸鹽還原作用形成的固體瀝青典型案例有美國(guó)懷俄明州LaBarge油田密西西比系Madison組碳酸鹽巖儲(chǔ)集層中的固體瀝青[66]和加拿大阿爾伯塔省布拉佐河區(qū)域Nisku 組儲(chǔ)集層中的固體瀝青[67]。由熱化學(xué)硫酸鹽還原作用形成的固體瀝青一般具有較低的N/C原子比和δ13C值以及較高的S/C原子比和δ34S值[53,66,68?69]。
脫瀝青作用是指在外界影響下原油中沉淀析出固體瀝青,通常受控于天然氣的注入(gas deasphalting,天然氣脫瀝青作用)和黏土礦物對(duì)瀝青質(zhì)的吸附(natural deasphalting,自然脫瀝青作用)[1,43,70?71]。烴類(lèi)氣體或二氧化碳注入未飽和油藏中會(huì)使原油中瀝青溶解度降低進(jìn)而造成固體瀝青的沉淀[72],天然氣脫瀝青作用形成的固體瀝青典型案例有美國(guó)得克薩斯州東部West Purt 油田斷控油藏中發(fā)育的固體瀝青[73]。黏土礦物(特別是伊利石和高嶺石)表面具有很強(qiáng)的吸附極性化合物(如瀝青質(zhì)和樹(shù)脂)能力,可以使固體瀝青從原油中沉淀析出,因此在富含大量黏土礦物的砂巖儲(chǔ)集層中,固體瀝青常由自然脫瀝青作用形成[70?71]。由自然脫瀝青作用形成的固體瀝青典型案例如埃及Shushan盆地侏羅系Khatatba砂巖儲(chǔ)集層中發(fā)育的固體瀝青[71]。脫瀝青作用形成的固體瀝青主要由NSO 化合物、芳烴和瀝青質(zhì)組成[24,74],通常具有較低的熱演化成熟度,發(fā)黃綠色等熒光,其中天然氣脫瀝青作用形成的固體瀝青常發(fā)育豐富的不均勻分布的囊泡[52,74?75]。
生物降解作用是指在微生物作用下原油中的正構(gòu)烷烴、異戊二烯烴、芳香族化合物等易降解成分逐漸被消耗,瀝青質(zhì)和NSO化合物含量逐漸增加,進(jìn)而衍變?yōu)楣腆w瀝青[76?78]。生物降解作用多發(fā)生在近地表溫度小于80 ℃的環(huán)境中[79?80],由生物降解作用形成的固體瀝青典型案例如塔里木盆地哈拉哈塘次洼志留系和石炭系儲(chǔ)集層中的固體瀝青[27]以及美國(guó)俄克拉何馬州Ouachita山區(qū)的固體瀝青[81]。由生物降解作用形成的固體瀝青中正構(gòu)烷烴、甾烷及藿烷等易降解組分被生物降解,通常存在生物降解的產(chǎn)物,如25-降藿烷、17-降三環(huán)萜烷、C23去甲基四環(huán)萜烷等系列生物標(biāo)志化合物[27,82]。
3 固體瀝青在油氣勘探中的應(yīng)用
固體瀝青在油氣勘探中主要有以下應(yīng)用:(1)是油氣生成、運(yùn)移、聚集的有效證據(jù)[6,83?84];(2)光學(xué)和譜學(xué)特征是評(píng)價(jià)宿主巖石熱演化成熟度的有利指標(biāo)[31,58,85?86];(3)蘊(yùn)含來(lái)自源巖的地球化學(xué)信息,是油氣源對(duì)比的重要研究對(duì)象[87?89]。
3.1 指示油氣的生成、運(yùn)移和聚集
固體瀝青可分為前油固體瀝青(pre-oil solidbitumen)和后油固體瀝青(post-oil solid bitumen),前者形成于原油生成之前,由烴源巖中的有機(jī)質(zhì)轉(zhuǎn)化而成,而后者形成于原油生成之后,由烴源巖生成的原油、濕氣等蝕變而成[24,90]。因此,固體瀝青特別是后油固體瀝青的存在可以有效證明地質(zhì)歷史時(shí)期曾發(fā)生過(guò)油氣的生成、運(yùn)移和聚集,在油氣勘探的早期甚至是尋找地下油氣藏的主要標(biāo)志之一[91]。
固體瀝青對(duì)油氣在烴源巖中的初次運(yùn)移起著非常重要的作用[24,83,92]。油氣的初次運(yùn)移發(fā)生在烴源巖互相連通的油潤(rùn)濕相孔隙網(wǎng)絡(luò)中[93],然而在油氣生成期,烴源巖中的干酪根卻難以形成互相連通的網(wǎng)絡(luò)[24]。由烴源巖中有機(jī)質(zhì)轉(zhuǎn)化而成的網(wǎng)絡(luò)狀前油固體瀝青形成于原油形成之前,是早期油氣初次運(yùn)移的有利通道[94]。后油固體瀝青網(wǎng)絡(luò)最早可形成于中成熟階段(Ro=0.76%)(圖6a,b),在Rogt;0.80%~0.90%時(shí)便可發(fā)育納米級(jí)孔隙(圖6c,d)[84,95?96]。由于納米級(jí)孔隙的存在,固體瀝青更容易破裂形成微裂縫,因此,網(wǎng)絡(luò)狀后油固體瀝青中的納米級(jí)孔隙和微裂縫相互連通,是中成熟階段以來(lái)油氣初次運(yùn)移的重要通道[24,84]。另外,由于儲(chǔ)集層中的固體瀝青主要由原油后期蝕變形成,因此固體瀝青中的生物標(biāo)志化合物特征與原油相似,也應(yīng)受到運(yùn)移分餾效應(yīng)的影響,故可用來(lái)研究原油二次運(yùn)移的方向。Chen et al.[6]以四川盆地高磨地區(qū)下寒武統(tǒng)氣藏為例,利用固體瀝青的二苯并噻吩以及烷基二苯并噻吩系列參數(shù)順利恢復(fù)了原油的運(yùn)移方向。
古油藏的識(shí)別有多種方法,例如含油包裹體顆粒指數(shù)(GOI)、定量顆粒熒光(QGF)、可溶有機(jī)質(zhì)或殘余油含量等[36,97?98],但對(duì)處于高—過(guò)成熟階段的古老深埋藏地層而言,由于原油已經(jīng)大規(guī)模裂解成天然氣和固體瀝青,上述方法基本已不再適用[38],因此利用固體瀝青含量識(shí)別古油藏成為極為重要一種方法。關(guān)于古油藏對(duì)應(yīng)的固體瀝青含量下限值,前人有不同的見(jiàn)解,王飛宇等[36]認(rèn)為當(dāng)固體瀝青含量大于2%時(shí)存在古油藏,而Li et al.[37?38]認(rèn)為這一下限值為1%。因而在利用固體瀝青含量判斷古油藏時(shí),應(yīng)結(jié)合研究區(qū)具體實(shí)際,謹(jǐn)慎選取合適的下限值進(jìn)行分析。
3.2 表征熱演化成熟度
成熟度是評(píng)價(jià)烴源巖有機(jī)質(zhì)生烴和成藏演化的一個(gè)重要指標(biāo),長(zhǎng)久以來(lái)是石油地質(zhì)地球化學(xué)和有機(jī)巖石學(xué)研究的重要科學(xué)問(wèn)題[24,99]。鏡質(zhì)體反射率是表征熱演化成熟度最為常用的指標(biāo),然而對(duì)于缺少鏡質(zhì)體的古老海相地層而言,固體瀝青的反射率和拉曼光譜參數(shù)是表征熱演化成熟度的有利指標(biāo)[7?8,31,56]。
與鏡質(zhì)體反射率能夠表征熱演化成熟度的原理一致,隨著熱演化程度的逐漸增高,固體瀝青中鏈烷結(jié)構(gòu)逐漸減少,由于縮合、締合等作用,芳環(huán)結(jié)構(gòu)出現(xiàn)片狀結(jié)構(gòu),且芳香片的間距逐漸縮小,因而導(dǎo)致反射率逐漸增高[100]。已有大量的研究表明,固體瀝青反射率與鏡質(zhì)體反射率具有很好的對(duì)應(yīng)關(guān)系,因此可以有效表征熱演化成熟度[32?33,58,101?102]。然而,固體瀝青反射率表征熱演化成熟度也存在一些不足,需謹(jǐn)慎使用。首先,巖石中可能存在多種固體瀝青[21,30],同時(shí)高熱演化固體瀝青大多具有很強(qiáng)的光性結(jié)構(gòu)各向異性[9,31],致使瀝青反射率測(cè)定目標(biāo)鎖定困難、測(cè)值偏差很大。其次,固體瀝青可以以非常小的顆粒形式存在,容易與鏡質(zhì)組混淆[24,103]。再次,不同區(qū)域不同巖性中固體瀝青反射率與鏡質(zhì)體反射率的對(duì)應(yīng)關(guān)系存在較大差異[32?33],不能隨意地套換公式,甚至在一些區(qū)域,固體瀝青反射率根本不能有效表征熱演化成熟度[21,104?105]。
隨著熱演化程度的增高,固體瀝青的分子結(jié)構(gòu)從無(wú)序向有序變化,對(duì)應(yīng)的拉曼光譜特征也會(huì)隨之變化(圖7),因而,固體瀝青的拉曼光譜參數(shù)可以表征熱演化成熟度[107]。拉曼光譜由兩個(gè)區(qū)域組成:一級(jí)區(qū)域(1 000~1 800 cm-1)和二級(jí)區(qū)域(2 400~3 500 cm-1),其中一級(jí)區(qū)域包含兩個(gè)主峰:無(wú)序峰(D峰,1 340~1 360 cm-1)和石墨峰(G峰,約1 580 cm-1)[35]。常用的拉曼參數(shù)大都為這兩個(gè)峰的特征參數(shù)或參數(shù)比值,例如G峰半高寬、D峰半高寬、G-D峰間距、峰面積比、半高寬比、峰高比以及D峰或G峰峰位等[8,34,85]。利用固體瀝青的拉曼參數(shù)表征熱演化成熟度也需注意以下問(wèn)題:首先,不同區(qū)域、不同類(lèi)型樣品對(duì)應(yīng)的能夠有效反映熱演化成熟度的拉曼光譜參數(shù)不同[8,34?35];其次,不同拉曼參數(shù)可以有效表征的熱演化成熟度范圍不同,這可能與不同熱演化成熟度范圍內(nèi)有機(jī)質(zhì)結(jié)構(gòu)變化不同有關(guān)[108],例如G-D峰間距可以有效表征Rolt;3.5%時(shí)的成熟度,而峰高比可以有效表征Rogt;3.5%時(shí)的成熟度[85,109];另外,由于數(shù)據(jù)處理方法以及擬合方法等差異,可能導(dǎo)致不同學(xué)者得出的拉曼參數(shù)與熱演化成熟度的擬合結(jié)果不同,使得研究可復(fù)制性低[34?35]。
3.3 追蹤油氣來(lái)源
固體瀝青是烴源巖中的有機(jī)質(zhì)直接或間接轉(zhuǎn)化后的產(chǎn)物,因此固體瀝青中蘊(yùn)含了母巖的地球化學(xué)信息,可以用于追蹤油氣來(lái)源,特別對(duì)高—過(guò)成熟階段地層而言,由于烴類(lèi)主要以天然氣形式存在,蘊(yùn)含的地化信息少,與其共生的固體瀝青是確定天然氣來(lái)源的有利研究對(duì)象。固體瀝青常用的油氣源對(duì)比指標(biāo)可分為有機(jī)和無(wú)機(jī)兩種,有機(jī)指標(biāo)包括碳同位素、生物標(biāo)志化合物等,無(wú)機(jī)指標(biāo)包括微量元素、稀土元素以及錸—鋨同位素等[6,26,39,110?111]。
一般而言,由原油熱化學(xué)蝕變作用形成的固體瀝青,其碳同位素值比原油重2‰~3‰,而原油碳同位素值一般比其源巖輕1‰~2‰,因此固體瀝青的碳同位素值與源巖相似,可以有效用于油氣源對(duì)比研究[112?115]。陳哲龍等[18]結(jié)合有機(jī)碳同位素對(duì)比分析認(rèn)為,準(zhǔn)噶爾盆地瑪湖凹陷百口泉組固體瀝青來(lái)自風(fēng)城組烴源巖而非烏爾禾組烴源巖。生物標(biāo)志化合物可以指示源巖的生物來(lái)源、沉積環(huán)境、熱演化成熟度等,是固體瀝青最為常用的油氣源對(duì)比指標(biāo)[78,116?119]。Chen et al.[6]成功地利用甾烷、藿烷、三環(huán)萜烷、三芳甾烷、三芴系列等生物標(biāo)志化合物參數(shù)對(duì)四川盆地中部高磨地區(qū)震旦系固體瀝青的來(lái)源進(jìn)行了分析,認(rèn)為其主要源自震旦系燈影組藻云巖和下寒武統(tǒng)筇竹寺組海相頁(yè)巖。
利用固體瀝青的無(wú)機(jī)指標(biāo)進(jìn)行油氣源對(duì)比是目前較新的研究領(lǐng)域,特別對(duì)高—過(guò)成熟階段油氣源對(duì)比研究具有非常重要的作用[120]。某些微量元素和稀土元素在油氣運(yùn)移過(guò)程中較為穩(wěn)定且受成熟度和后期蝕變作用影響小[3,120?122],因此可用于固體瀝青的油氣源對(duì)比研究。常用的指標(biāo)有反映沉積環(huán)境的V/(V+Ni)、Th/U、V/Cr、Mo/Ni、Ce異常值等以及反映物源的Ni和V含量、La/Co、La/Sc等[29,111]。Zhu et al.[29]綜合利用上述指標(biāo)對(duì)比分析了川中地區(qū)震旦系—下寒武統(tǒng)固體瀝青與潛在烴源巖的親緣性,認(rèn)為與固體瀝青共生的下寒武統(tǒng)龍王廟組天然氣來(lái)自下寒武統(tǒng)筇竹寺組烴源巖,而震旦系燈影組天然氣主要來(lái)自筇竹寺組以及燈三段(燈影組第三段)烴源巖。錸和鋨具有明顯的親有機(jī)質(zhì)特征[123],主要存在于重組分瀝青質(zhì)中,受熱演化、生物降解和水洗作用影響小[78,120,124],在原油運(yùn)移過(guò)程中同樣較為穩(wěn)定[125?126],因此也可用于固體瀝青的油氣源對(duì)比研究。錸—鋨同位素常用于確定固體瀝青的形成時(shí)間[16,39,127?128],結(jié)合恢復(fù)的潛在烴源巖的生烴史,便可確定固體瀝青的源巖。另外,單獨(dú)利用固體瀝青的鋨同位素(187Os/188Os)也可進(jìn)行油氣源對(duì)比,例如Liu et al.[129]通過(guò)對(duì)比固體瀝青和烴源巖的鋨同位素值,認(rèn)為安哥拉近海Kwanza盆地Chela組碳酸鹽巖中固體瀝青主要來(lái)源于Red Cuvo和Grey Cuvo組烴源巖。
利用固體瀝青的地球化學(xué)特征進(jìn)行油氣源對(duì)比研究時(shí)需謹(jǐn)慎使用相關(guān)地化參數(shù)指標(biāo),特別是要充分考慮不同成因固體瀝青地化參數(shù)的適用性。一般而言,由熱化學(xué)硫酸鹽還原作用形成的固體瀝青,其碳同位素值會(huì)明顯降低[28,53],甚至比熱化學(xué)蝕變作用形成的固體瀝青低7‰[130],相反由嚴(yán)重生物降解作用形成的固體瀝青,其碳同位素值可能增高[11,131]。由于微生物的降解,固體瀝青源自母巖的生物標(biāo)志化合物特征發(fā)生改變,致使易降解的生物標(biāo)志化合物系列可能不再適用于分析由生物降解作用形成的固體瀝青的來(lái)源,應(yīng)根據(jù)其生物降解級(jí)別謹(jǐn)慎使用相關(guān)油氣源對(duì)比參數(shù)[26?27]。另外,部分生物標(biāo)志化合物在高—過(guò)成熟條件下會(huì)發(fā)生復(fù)雜的轉(zhuǎn)變,可能致使由熱化學(xué)蝕變作用等形成的高—過(guò)成熟固體瀝青中一些對(duì)應(yīng)的參數(shù)失去原本的指示意義[29,78,89]。值得注意的是,由于微量元素、稀土元素以及錸—鋨同位素可以有效用于油氣源對(duì)比研究的理論基礎(chǔ)仍存在不足[120],考慮到不同成因固體瀝青在形成過(guò)程中受到的復(fù)雜流體—巖石相互作用差異性很大,因此不同成因固體瀝青微量元素、稀土元素以及錸—鋨同位素等參數(shù)的適用性可能存在差異,所以在進(jìn)行油氣源對(duì)比時(shí)需注意所選參數(shù)的有效性分析。
4 對(duì)油氣勘探的啟示
由于國(guó)際油氣需求量的持續(xù)增長(zhǎng)和常規(guī)油氣資源的后繼乏力,深層—超深層逐步變?yōu)橛蜌饪碧降闹攸c(diǎn)領(lǐng)域。對(duì)于深層—超深層地層,由于埋深大,地層熱演化程度高,大多處于高—過(guò)成熟狀態(tài),烴源巖生成的原油大都熱裂解形成天然氣和固體瀝青,因此固體瀝青是指示油氣生成、運(yùn)移和聚集的有利證據(jù)。同時(shí),天然氣成分簡(jiǎn)單,可用的地球化學(xué)指標(biāo)少,難以精確地追蹤源巖,而固體瀝青成分復(fù)雜,蘊(yùn)含豐富的地球化學(xué)信息,是確定共生天然氣來(lái)源的有效手段。另外,對(duì)于深層—超深層海相碳酸鹽巖地層而言,由于鏡質(zhì)體相對(duì)缺乏,固體瀝青反射率同樣是表征熱演化成熟度的主要手段。因此,固體瀝青在深層—超深層油氣勘探領(lǐng)域具有不可替代的作用,應(yīng)用前景廣闊。
利用固體瀝青的碳同位素、生物標(biāo)志化合物等特征追蹤油氣來(lái)源,在油氣勘探中應(yīng)用最為普遍[6,29,132]。由于不同成因類(lèi)型的固體瀝青在形成過(guò)程中一些源自母巖的地球化學(xué)特征會(huì)發(fā)生不同程度的改變,其油氣源對(duì)比參數(shù)的適用性差異很大[28?29,53,89,133]。因此,在利用固體瀝青進(jìn)行油氣源對(duì)比研究時(shí)應(yīng)首先判別其成因類(lèi)型,然后再選擇合適的參數(shù)進(jìn)行研究。
5 結(jié)論
(1) 固體瀝青發(fā)育復(fù)雜多樣的微觀結(jié)構(gòu),主要受形成環(huán)境、母質(zhì)成分、天然氣的生成和逸散等因素控制,常見(jiàn)的光性結(jié)構(gòu)可分為均一性和各向異性,其中各向異性光性結(jié)構(gòu)包括細(xì)粒馬賽克型、中粒馬賽克型、粗粒馬賽克型、粗流線(xiàn)馬賽克型、域型以及纖維型等;常見(jiàn)的超顯微形態(tài)有塊狀、指狀、多孔狀、瘤狀、片狀、薄皮球狀、葡萄狀以及蠕蟲(chóng)狀等。
(2) 固體瀝青具有多種成因類(lèi)型,地球化學(xué)等特征差異顯著。由熱化學(xué)蝕變作用形成的固體瀝青具有較高的N/C原子比和δ13C值以及較低的S/C原子比和δ34S值,其中由熱液蝕變作用形成的固體瀝青常與熱液礦物如馬鞍狀白云石等共存。由熱化學(xué)硫酸鹽還原作用形成的固體瀝青具有較低的N/C原子比和δ13C值以及較高的S/C原子比和δ34S值。由脫瀝青作用形成的固體瀝青主要由NSO化合物、芳烴和瀝青質(zhì)組成,通常具有較低的熱演化成熟度,發(fā)黃綠色等熒光,并且由天然氣脫瀝青作用形成的固體瀝青常發(fā)育豐富的不均勻分布的囊泡。由生物降解作用形成的固體瀝青中正構(gòu)烷烴、甾烷及藿烷等易降解組分被生物降解并且通常存在生物降解的產(chǎn)物,如25-降藿烷、17-降三環(huán)萜烷、C23去甲基四環(huán)萜烷等系列生物標(biāo)志化合物。
(3) 固體瀝青在油氣勘探領(lǐng)域具有廣泛的應(yīng)用,其本身可用于指示油氣的生成、運(yùn)移和聚集,反射率和激光拉曼參數(shù)可用于表征熱演化成熟度,碳同位素、生物標(biāo)志化合物、微量和稀土元素以及錸—鋨同位素等可用于追蹤油氣來(lái)源。由于不同成因固體瀝青的形成機(jī)制不同,源自母巖的地球化學(xué)特征會(huì)發(fā)生不同程度的改變,致使不同成因固體瀝青油氣源對(duì)比參數(shù)的適用性差異很大,因此在應(yīng)用前需要判別固體瀝青的成因類(lèi)型。
致謝 感謝評(píng)審專(zhuān)家提出的寶貴修改意見(jiàn),使得文章內(nèi)容更加詳實(shí);同時(shí)也感謝編輯對(duì)稿件的快速處理,使得文章能夠順利錄用。
參考文獻(xiàn)(References)
[1] Hwang R J, Teerman S C, Carlson R M. Geochemical comparison
of reservoir solid bitumens with diverse origins[J]. Organic
Geochemistry, 1998, 29(1/2/3): 505-517.
[2] Killops S, Killops V. Introduction to organic geochemistry[M].
2nd ed. Malden: Blackwell Publishing, 2005: 1-406.
[3] Hunt J M. Petroleum geochemistry and geology[M]. 2nd ed.
New York: W. H. Freeman, 1996: 1-743.
[4] Waliczek M, Machowski G, Wi?c?aw D, et al. Properties of solid
bitumen and other organic matter from Oligocene shales of the
Fore-Magura Unit in Polish Outer Carpathians: Microscopic and
geochemical approach[J]. International Journal of Coal Geology,
2019, 210: 103206.
[5] Suárez-Ruiz I, Juliao T, Rodrigues S, et al. Optical parameters
and microstructural properties of solid bitumens of high reflectance
(Impsonites). Reflections on their use as an indicator of organic
maturity[J]. International Journal of Coal Geology, 2020,
229: 103570.
[6] Chen Z H, Yang Y M, Wang T G, et al. Dibenzothiophenes in
solid bitumens: Use of molecular markers to trace paleo-oil filling
orientations in the lower Cambrian reservoir of the Moxi-Gaoshiti
Bulge, Sichuan Basin, southern China[J]. Organic Geochemistry,
2017, 108: 94-112.
[7] 王曄,邱楠生,馬中良,等. 固體瀝青反射率與鏡質(zhì)體反射率的
等效關(guān)系評(píng)價(jià)[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2020,49(3):563-575.
[Wang Ye, Qiu Nansheng, Ma Zhongliang, et al. Evaluation of
equivalent relationship between vitrinite reflectance and solid bitumen
reflectance[J]. Journal of China University of Mining amp;
Technology, 2020, 49(3): 563-575.]
[8] 肖賢明,周秦,程鵬,等. 高—過(guò)成熟海相頁(yè)巖中礦物—有機(jī)質(zhì)復(fù)
合體(MOA)的顯微激光拉曼光譜特征作為成熟度指標(biāo)的意義[J].
中國(guó)科學(xué)(D輯):地球科學(xué),2020,50(9):1228-1241.[Xiao Xianming,
Zhou Qin, Cheng Peng, et al. Thermal maturation as revealed
by micro-Raman spectroscopy of mineral-organic aggregation
(MOA) in marine shales with high and over maturities[J].
Science China (Seri. D): Earth Sciences, 2020, 50(9): 1228-1241.]
[9] Rimmer S M, Crelling J C, Yoksoulian L E. An occurrence of
coked bitumen, Raton Formation, Purgatoire River Valley, Colorado,
U. S. A. [J]. International Journal of Coal Geology, 2015, 141-
142: 63-73.
[10] Stasiuk L D. The origin of pyrobitumens in Upper Devonian
Leduc Formation gas reservoirs, Alberta, Canada: An optical and
EDS study of oil to gas transformation[J]. Marine and Petroleum
Geology, 1997, 14(7/8): 915-929.
[11] Alkhafaji M W, Connan J, Engel M H, et al. Origin, biodegradation,
and water washing of bitumen from the Mishraq sulfur
mine, northern Iraq[J]. Marine and Petroleum Geology, 2021,
124: 104786.
[12] Misch D, Gross D, Hawranek G, et al. Solid bitumen in shales:
Petrographic characteristics and implications for reservoir characterization[
J]. International Journal of Coal Geology, 2019, 205:
14-31.
[13] 田興旺,胡國(guó)藝,李偉,等. 四川盆地樂(lè)山—龍女寺古隆起地
區(qū)震旦系儲(chǔ)層瀝青地球化學(xué)特征及意義[J]. 天然氣地球科學(xué),
2013,24(5):982-990.[Tian Xingwang, Hu Guoyi, Li Wei, et
al. Geochemical characteristics and significance of Sinian reser‐
voir bitumen in Leshan-Longnvsi paleo-uplift area, Sichuan Basin[
J]. Natural Gas Geoscience, 2013, 24(5): 982-990.]
[14] 黃文明,徐邱康,劉樹(shù)根,等. 中國(guó)海相層系油氣成藏過(guò)程與
儲(chǔ)層瀝青耦合關(guān)系:以四川盆地為例[J]. 地質(zhì)科技情報(bào),2015,
34(6):159-168.[Huang Wenming, Xu Qiukang, Liu Shugen, et
al. Coupling relationship between oil amp; gas accumulation process
and reservoir bitumen of marine system: Taking Sichuan Basin
as an example[J]. Geological Science and Technology Information,
2015, 34(6): 159-168.]
[15] 劉洛夫,趙建章,張水昌,等. 塔里木盆地志留系瀝青砂巖的
成因類(lèi)型及特征[J]. 石油學(xué)報(bào),2000,21(6):12-17.[Liu Luofu,
Zhao Jianzhang, Zhang Shuichang, et al. Genetic types and
characteristics of the Silurian asphaltic sandstones in Tarim Basin
[J]. Acta Petrolei Sinica, 2000, 21(6): 12-17.]
[16] 陳強(qiáng)路,范明,尤東華. 塔里木盆地志留系瀝青砂巖儲(chǔ)集性非
常規(guī)評(píng)價(jià)[J]. 石油學(xué)報(bào),2006,27(1):30-33.[Chen Qianglu,
Fan Ming, You Donghua. Non-traditional method for evaluating
physical property of Silurian bitumen sandstone reservoirs in
Tarim Basin[J]. Acta Petrolei Sinica, 2006, 27(1): 30-33.]
[17] 路俊剛,陳世加,王緒龍,等. 準(zhǔn)東三臺(tái)—北三臺(tái)地區(qū)儲(chǔ)層瀝
青和稠油特征與成因分析[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)
版),2011,35(5):27-31,50.[Lu Jungang, Chen Shijia, Wang
Xulong, et al. Characteristics and origin analysis of viscous oil
and reservoir bitumen in Santai-Beisantai area[J]. Journal of
China University of Petroleum, 2011, 35(5): 27-31, 50.]
[18] 陳哲龍,柳廣弟,曹正林,等. 儲(chǔ)層瀝青成因及其石油地質(zhì)意
義:以準(zhǔn)噶爾盆地瑪湖凹陷百口泉組為例[J]. 中國(guó)礦業(yè)大學(xué)學(xué)
報(bào),2018,47(2):391-399.[Chen Zhelong, Liu Guangdi, Cao
Zhenglin, et al. Origin of solid bitumen and its significance to
petroleum geology: A case study of Baikouquan Formation in
Mahu Sag of Junggar Basin[J]. Journal of China University of
Mining amp; Technology, 2018, 47(2): 391-399.]
[19] 張春林,孫粉錦,劉銳娥,等. 鄂爾多斯盆地南部奧陶系瀝青
及古油藏生氣潛力[J]. 石油勘探與開(kāi)發(fā),2010,37(6):668-
673.[Zhang Chunlin, Sun Fenjin, Liu Rui'e, et al. Bitumen and
hydrocarbon generation potential of paleo-reservoirs in the Ordovician,
south Ordos Basin[J]. Petroleum Exploration and Development,
2010, 37(6): 668-673.]
[20] 黃軍平,林俊峰,張雷,等. 鄂爾多斯盆地下古生界—中元古
界儲(chǔ)層固體瀝青地質(zhì)特征及油氣勘探意義[J]. 河南理工大學(xué)
學(xué)報(bào)(自然科學(xué)版),2021,40(4):48-58.[Huang Junping, Lin
Junfeng, Zhang Lei, et al. Geological characteristics and exploration
significance of reservoir solid bitumen in the Lower Paleozoic-
Middle Proterozoic in Ordos Basin[J]. Journal of Henan
Polytechnic University (Natural Science), 2021, 40(4): 48-58.]
[21] Gon?alves P A, Filho J G M, da Silva F S, et al. Solid bitumen
occurrences in the Arruda sub-basin (Lusitanian Basin, Portugal):
Petrographic features[J]. International Journal of Coal Geology,
2014, 131: 239-249.
[22] Wang G W, Li P P, Hao F, et al. Impact of sedimentology, diagenesis,
and solid bitumen on the development of a tight gas
grainstone reservoir in the Feixianguan Formation, Jiannan area,
China: Implications for gas exploration in tight carbonate reservoirs[
J]. Marine and Petroleum Geology, 2015, 64: 250-265.
[23] Liu Y K, Xiong Y Q, Li Y, et al. Effect of thermal maturation on
chemical structure and nanomechanical properties of solid bitumen[
J]. Marine and Petroleum Geology, 2018, 92: 780-793.
[24] Mastalerz M, Drobniak A, Stankiewicz A B. Origin, properties,
and implications of solid bitumen in source-rock reservoirs: A review[
J]. International Journal of Coal Geology, 2018, 195:
14-36.
[25] Li Y, Chen S J, Wang Y X, et al. Relationships between hydrocarbon
evolution and the geochemistry of solid bitumen in the
Guanwushan Formation, NW Sichuan Basin[J]. Marine and Petroleum
Geology, 2020, 111: 116-134.
[26] Wu L L, Liao Y H, Fang Y X, et al. The study on the source of
the oil seeps and bitumens in the Tianjingshan structure of the
northern Longmen Mountain structure of Sichuan Basin, China
[J]. Marine and Petroleum Geology, 2012, 37(1): 147-161.
[27] Cheng B, Wang T G, Chen Z H, et al. Biodegradation and possible
source of Silurian and Carboniferous reservoir bitumens
from the Halahatang sub-depression, Tarim Basin, NW China
[J]. Marine and Petroleum Geology, 2016, 78: 236-246.
[28] Cai C F, Xiang L, Yuan Y Y, et al. Sulfur and carbon isotopic
compositions of the Permian to Triassic TSR and non-TSR altered
solid bitumen and its parent source rock in NE Sichuan Basin[
J]. Organic Geochemistry, 2017, 105: 1-12.
[29] Zhu L Q, Liu G D, Song Z Z, et al. Reservoir solid bitumensource
rock correlation using the trace and rare earth elements:
Implications for identifying the natural gas source of the
Ediacaran-lower Cambrian reservoirs, central Sichuan Basin[J].
Marine and Petroleum Geology, 2022, 137: 105499.
[30] Landis C R, Casta?o J R. Maturation and bulk chemical properties
of a suite of solid hydrocarbons[J]. Organic Geochemistry,
1995, 22(1): 137-149.
[31] 左兆喜,曹劍,胡文瑄,等. 高演化有機(jī)質(zhì)的芳烴成熟度表征:基
于焦瀝青反射率和拉曼參數(shù)的優(yōu)選[J]. 中國(guó)科學(xué)(D輯):地球科
學(xué),2022,52(12):2454-2478.[Zuo Zhaoxi, Cao Jian, Hu Wenxuan,
et al. Characterizing the maturity of highly evolved organic
matter based on aromatic hydrocarbons and optimization with
pyrobitumen reflectance and Raman spectral parameters[J]. Science
China (Seri. D): Earth Sciences, 2022, 52(12): 2454-2478.]
[32] Bertrand R. Standardization of solid bitumen reflectance to vitrinite
in some Paleozoic sequences of Canada[J]. Energy Sources,
1993, 15(2): 269-287.
[33] Bertrand R, Malo M. Source rock analysis, thermal maturation
and hydrocarbon generation in Siluro-Devonian rocks of the
Gaspé Belt Basin, Canada[J]. Bulletin of Canadian Petroleum
Geology, 2001, 49(2): 238-261.
[34] Henry D G, Jarvis I, Gillmore G, et al. A rapid method for deter‐
mining organic matter maturity using Raman spectroscopy: Application
to Carboniferous organic-rich mudstones and coals[J].
International Journal of Coal Geology, 2019, 203: 87-98.
[35] 劉強(qiáng),柳少波,魯雪松,等. 拉曼光譜在油氣地質(zhì)應(yīng)用中的研
究進(jìn)展[J]. 光譜學(xué)與光譜分析,2022,42(9):2679-2688.[Liu
Qiang, Liu Shaobo, Lu Xuesong, et al. Research progress in the
application of Raman spectroscopy in petroleum geology[J].
Spectroscopy and Spectral Analysis, 2022, 42(9): 2679-2688.]
[36] 王飛宇,師玉雷,曾花森,等. 利用油包裹體豐度識(shí)別古油藏
和限定成藏方式[J]. 礦物巖石地球化學(xué)通報(bào),2006,25(1):12-
18.[Wang Feiyu, Shi Yulei, Zeng Huasen, et al. To identify
paleo-oil reservoir and to constrain petroleum charging model
using the abundance of oil inclusions[J]. Bulletin of Mineralogy,
Petrology and Geochemistry, 2006, 25(1): 12-18.]
[37] Li P P, Hao F, Zhang B Q, et al. Heterogeneous distribution of
pyrobitumen attributable to oil cracking and its effect on carbonate
reservoirs: Feixianguan Formation in the Jiannan gas field,
China[J]. AAPG Bulletin, 2015, 99(4): 763-789.
[38] Li P P, Li T, Zou H Y, et al. Heterogeneous distribution and potential
significance of solid bitumen in paleo-oil reservoirs: Evidence
from oil cracking experiments and geological observations
[J]. Journal of Petroleum Science and Engineering, 2022, 208:
109340.
[39] Zhao B S, Li R X, Qin X L, et al. Biomarkers and Re-Os geochronology
of solid bitumen in the Beiba dome, northern
Sichuan Basin, China: Implications for solid bitumen origin and
petroleum system evolution[J]. Marine and Petroleum Geology,
2021, 126: 104916.
[40] Yao L P, Zhong N N, Khan I, et al. Comparison of in-source solid
bitumen with migrated solid bitumen from Ediacaran-Cambrian
rocks in the Upper Yangtze region, China[J]. International Journal
of Coal Geology, 2021, 240: 103748.
[41] 余新亞,李平平,鄒華耀,等. 川東北長(zhǎng)興組:飛仙關(guān)組古原油
成藏的孔隙度門(mén)限[J]. 地質(zhì)學(xué)報(bào),2014,88(11):2131-2140.
[Yu Xinya, Li Pingping, Zou Huayao, et al. Porosity threshold
for paleo-oil accumulation of Changxing: Feixianguan Formations
in the northeastern Sichuan Basin[J]. Acta Geologica Sinica,
2014, 88(11): 2131-2140.]
[42] Shi C H, Cao J, Tan X C, et al. Discovery of oil bitumen coexisting
with solid bitumen in the lower Cambrian Longwangmiao
giant gas reservoir, Sichuan Basin, southwestern China:
Implications for hydrocarbon accumulation process[J]. Organic
Geochemistry, 2017, 108: 61-81.
[43] Gao P, Liu G D, Lash G G, et al. Occurrences and origin of
reservoir solid bitumen in Sinian Dengying Formation dolomites
of the Sichuan Basin, SW China[J]. International Journal of
Coal Geology, 2018, 200: 135-152.
[44] 李勝勇,傅恒,李仲東,等. 川東北地區(qū)長(zhǎng)興組—飛仙關(guān)組固體瀝
青的形貌特征與成因分析[J]. 沉積與特提斯地質(zhì),2011,31(1):
72-79.[Li Shengyong, Fu Heng, Li Zhongdong, et al. Morphology
and genesis of the solid bitumen from the Changxing
Formation-Feixianguan Formation in northeastern Sichuan[J].
Sedimentary Geology and Tethyan Geology, 2011, 31(1): 72-79.]
[45] Ragan S, Marsh H. Carbonization and liquid-crystal (mesophase)
development. 22. Micro-strength and optical textures of
cokes from coal-pitch co-carbonizations[J]. Fuel, 1981, 60(6):
522-528.
[46] Nandi B N, Belinko K, Ciavaglia L A, et al. Formation of coke
during thermal hydrocracking of Athabasca bitumen[J]. Fuel,
1978, 57(5): 265-268.
[47] Brooks J D, Taylor G H. Formation of graphitizing carbons
from the liquid phase[J]. Nature, 1965, 206(4985): 697-699.
[48] White J L. Mesophase mechanisms in the formation of the microstructure
of petroleum coke[M]//Deviney M L, O’Grady T
M. Petroleum derived carbons. Washington: American Chemical
Society, 1976: 282-314.
[49] Khavari-Khorosani G, Murchison D G. Thermally metamorphosed
bitumen from Windy Knoll, Derbyshire, England[J].
Chemical Geology, 1978, 22: 91-105.
[50] Creaney S, Jones J M, Holliday D W, et al. The occurrence of bitumen
in the Great Limestone around Matfen, Northumberland–
its characterisation and possible genesis[J]. Proceedings of the
Yorkshire Geological Society, 1980, 43(1): 69-79.
[51] Goodarzi F, Stasiuk L D. Thermal alteration of gilsonite due to
bushfire, an example from southwest Iran[J]. International Journal
of Coal Geology, 1991, 17(3/4): 333-342.
[52] Wilson N S F. Organic petrology, chemical composition, and reflectance
of pyrobitumen from the El Soldado Cu deposit, Chile
[J]. International Journal of Coal Geology, 2000, 43(1/2/3/4):
53-82.
[53] Zhang P W, Liu G D, Cai C F, et al. Alteration of solid bitumen
by hydrothermal heating and thermochemical sulfate reduction
in the Ediacaran and Cambrian dolomite reservoirs in the central
Sichuan Basin, SW China[J]. Precambrian Research, 2019, 321:
277-302.
[54] Rahman M W, Rimmer S M, Rowe H D. The impact of rapid
heating by intrusion on the geochemistry and petrography of
coals and organic-rich shales in the Illinois Basin[J]. International
Journal of Coal Geology, 2018, 187: 45-53.
[55] Liu S G, Li Z Q, Deng B, et al. Occurrence morphology of bitumen
in Dengying Formation deep and ultra-deep carbonate reservoirs
of the Sichuan Basin and its indicating significance to oil
and gas reservoirs[J]. Natural Gas Industry B, 2022, 9(1):
73-83.
[56] 李勇,陳世加,尹相東,等. 儲(chǔ)層中固體瀝青研究現(xiàn)狀、地質(zhì)意
義及其發(fā)展趨勢(shì)[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2020,50
(3):732-746.[Li Yong, Chen Shijia, Yin Xiangdong, et al. Research
status, geological significance and development trend of
solid bitumen in reservoirs[J]. Journal of Jilin University (Earth
Science Edition), 2020, 50(3): 732-746.]
[57] Huc A Y, Nederlof P, Debarre R, et al. Pyrobitumen occurrence
and formation in a Cambro-Ordovician sandstone reservoir, Fahud
Salt Basin, North Oman[J]. Chemical Geology, 2000, 168(1/
2): 99-112.
[58] Schoenherr J, Littke R, Urai J L, et al. Polyphase thermal evolution
in the Infra-Cambrian Ara Group (South Oman Salt Basin)
as deduced by maturity of solid reservoir bitumen[J]. Organic
Geochemistry, 2007, 38(8): 1293-1318.
[59] Horsfield B, Schenk H J, Mills N, et al. An investigation of the
in-reservoir conversion of oil to gas: Compositional and kinetic
findings from closed-system programmed-temperature pyrolysis
[J]. Organic Geochemistry, 1992, 19(1/2/3): 191-204.
[60] Dahl J E, Moldowan J M, Peters K E, et al. Diamondoid hydrocarbons
as indicators of natural oil cracking[J]. Nature, 1999,
399(6731): 54-57.
[61] Isaksen G H. Central North Sea hydrocarbon systems: Generation,
migration, entrapment, and thermal degradation of oil and
gas[J]. AAPG Bulletin, 2004, 88(11): 1545-1572.
[62] Kelemen S R, Walters C C, Kwiatek P J, et al. Distinguishing
solid bitumens formed by thermochemical sulfate reduction and
thermal chemical alteration[J]. Organic Geochemistry, 2008, 39
(8): 1137-1143.
[63] Kelemen S R, Walters C C, Kwiatek P J, et al. Characterization
of solid bitumens originating from thermal chemical alteration
and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica
Acta, 2010, 74(18): 5305-5332.
[64] Cai C F, Li K K, Zhu Y M, et al. TSR origin of sulfur in Permian
and Triassic reservoir bitumen, east Sichuan Basin, China[J].
Organic Geochemistry, 2010, 41(9): 871-878.
[65] Blanc P, Connan J. Preservation, degradation, and destruction of
trapped oil[C]//Magoon L B, Dow W G. The petroleum systemfrom
source to trap. Tulsa: American Association of Petroleum
Geologists, 1994, 60: 237-247.
[66] King H E, Walters C C, Horn W C, et al. Sulfur isotope analysis
of bitumen and pyrite associated with thermal sulfate reduction
in reservoir carbonates at the Big Piney-La Barge production
complex[J]. Geochimica et Cosmochimica Acta, 2014, 134:
210-220.
[67] Manzano B K, Fowler M G, Machel H G. The influence of thermochemical
sulphate reduction on hydrocarbon composition in
Nisku reservoirs, Brazeau river area, Alberta, Canada[J]. Organic
Geochemistry, 1997, 27(7/8): 507-521.
[68] Powell T G, Macqueen R W. Precipitation of sulfide ores and organic
matter: Sulfate reactions at Pine Point, Canada[J]. Science,
1984, 224(4644): 63-66.
[69] Machel H G, Krouse H R, Sassen R. Products and distinguishing
criteria of bacterial and thermochemical sulfate reduction[J].
Applied Geochemistry, 1995, 10(4): 373-389.
[70] Sachsenhofer R F, Gratzer R, Tschelaut W, et al. Characterisation
of non-producible oil in Eocene reservoir sandstones (Bad
Hall Nord field, Alpine Foreland Basin, Austria)[J]. Marine and
Petroleum Geology, 2006, 23(1): 1-15.
[71] Shalaby M R, Hakimi M H, Abdullah W H. Geochemical
characterization of solid bitumen (migrabitumen) in the Jurassic
sandstone reservoir of the Tut field, Shushan Basin, northern
western desert of Egypt[J]. International Journal of Coal Geology,
2012, 100: 26-39.
[72] Wilhelms A, Larter S R. Origin of tar mats in petroleum reservoirs.
Part II: Formation mechanisms for tar mats[J]. Marine
and Petroleum Geology, 1994, 11(4): 442-456.
[73] Lomando A J. The influence of solid reservoir bitumen on reservoir
quality[J]. AAPG Bulletin, 1992, 76(8): 1137-1152.
[74] Rogers M A, McAlary J D, Bailey N J L. Significance of reservoir
bitumens to thermal-maturation studies, western Canada Basin[
J]. AAPG Bulletin, 1974, 58(9): 1806-1824.
[75] Jacob H. Nomenclature, classification, characterization, and
genesis of natural solid bitumen (migrabitumen) [M]//Parnell J,
Kucha H, Landais P. Bitumens in ore deposits. Berlin Heidelberg:
Springer, 1993: 11-27.
[76] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic
hydrocarbons in crude oils from the Barrow sub-basin of
western Australia[J]. Organic Geochemistry, 1984, 6: 619-632.
[77] Miiller D E, Holba A G, Hughes W B. Effects of biodegradation
on crude oils[M]//Meyer R F. Exploration for heavy crude oil
and natural bitumen. Tulsa: American Association of Petroleum
Geologists, 1987: 233-241.
[78] Peters K E, Walters C C, Moldowan J M. The biomarker guide,
volume 2, biomarkers and isotopes in petroleum exploration and
earth history[M]. 2nd ed. New York: Cambridge University
Press, 2005: 608-647.
[79] Curiale J A. Origin of solid bitumens, with emphasis on biological
marker results[J]. Organic Geochemistry, 1986, 10(1/2/3):
559-580.
[80] Head I M, Jones D M, Larter S R. Biological activity in the deep
subsurface and the origin of heavy oil[J]. Nature, 2003, 426
(6964): 344-352.
[81] Curiale J A, Harrison W E. Correlation of oil and asphaltite in
Ouachita Mountain region of Oklahoma: Geologic notes[J].
AAPG Bulletin, 1981, 65(11): 2426-2432.
[82] Huang H P, Li J. Molecular composition assessment of biodegradation
influence at extreme levels: A case study from oilsand
bitumen in the Junggar Basin, NW China[J]. Organic Geochemistry,
2017, 103: 31-42.
[83] Xiao X M, Wang F, Wilkins R W T, et al. Origin and gas potential
of pyrobitumen in the Upper Proterozoic strata from the middle
paleo-uplift of the Sichuan Basin, China[J]. International
Journal of Coal Geology, 2007, 70(1/2/3): 264-276.
[84] Cardott B J, Landis C R, Curtis M E. Post-oil solid bitumen network
in the Woodford Shale, USA:A potential primary migration
pathway[J]. International Journal of Coal Geology, 2015, 139:
106-113.
[85] Zhou Q, Xiao X M, Pan L, et al. The relationship between
micro-Raman spectral parameters and reflectance of solid bitumen[
J]. International Journal of Coal Geology, 2014, 121:
19-25.
[86] Lohr C D, Hackley P C. Relating Tmax and hydrogen index to vitrinite
and solid bitumen reflectance in hydrous pyrolysis residues:
Comparisons to natural thermal indices[J]. International
Journal of Coal Geology, 2021, 242: 103768.
[87] Gao G, Ren J L, Yang S R, et al. Characteristics and origin of
solid bitumen in glutenites: A case study from the Baikouquan
Formation reservoirs of the Mahu Sag in the Junggar Basin, China[
J]. Energy amp; Fuels, 2017, 31(12): 13179-13189.
[88] Cheng B, Chen Z H, Chen T, et al. Biomarker signatures of the
Ediacaran–early Cambrian origin petroleum from the central Sichuan
Basin, South China: Implications for source rock characteristics[
J]. Marine and Petroleum Geology, 2018, 96: 577-590.
[89] Shi C H, Cao J, Luo B, et al. Major elements trace hydrocarbon
sources in over-mature petroleum systems: Insights from the Sinian
Sichuan Basin, China[J]. Precambrian Research, 2020, 343:
105726.
[90] 吳小奇,陳迎賓,翟常博,等. 川西坳陷中三疊統(tǒng)雷口坡組瀝
青地球化學(xué)特征及氣源示蹤[J]. 石油與天然氣地質(zhì),2022,43
(2):407-418.[Wu Xiaoqi, Chen Yingbin, Zhai Changbo, et al.
Geochemical characteristics of bitumen and tracing of gas source
in the Middle Triassic Leikoupo Formation, western Sichuan Depression[
J]. Oil amp; Gas Geology, 2022, 43(2): 407-418.]
[91] 柳廣第. 石油地質(zhì)學(xué)[M]. 4 版. 北京:石油工業(yè)出版社,2009:
252-258.[Liu Guangdi. Petroleum geology[M]. 4th ed. Beijing:
Petroleum Industry Press, 2009: 252-258.]
[92] L?hr S C, Baruch E T, Hall P A, et al. Is organic pore development
in gas shales influenced by the primary porosity and structure
of thermally immature organic matter? [J]. Organic Geochemistry,
2015, 87: 119-132.
[93] Ungerer P, Behar E, Discamps D. Tentative calculation of the
overall volume expansion of organic matter during hydrocarbon
genesis from geochemistry data. Implications for primary
migration[M]//Bjor?y M. Advances in organic geochemistry.
Chichester: John Wiley, 1981: 129-135.
[94] Lewan M D. Petrographic study of primary petroleum migration
in the Woodford Shale and related rock units[C]//Proceedings of
the IFP exploration research conference. Paris: Technip, 1987:
113-130.
[95] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of
organic porosity in the Woodford Shale with increasing thermal
maturity[J]. International Journal of Coal Geology, 2012, 103:
26-31.
[96] Reed R M, Loucks R, Milliken K L. Heterogeneity of shape and
microscale spatial distribution in organic-matter-hosted pores of
gas shales[C]//Proceedings of 2012 AAPG annual convention
and exhibition. Long Beach: AAPG, 2012: 1236631.
[97] Lisk M, O’Brien G W, Eadington P J. Quantitative evaluation of
the oil-leg potential in the Oliver gas field, Timor Sea, Australia
[J]. AAPG Bulletin, 2002, 86(9): 1531-1542.
[98] Liu K Y, Eadington P, Middleton H, et al. Applying quantitative
fluorescence techniques to investigate petroleum charge history
of sedimentary basins in Australia and Papuan New Guinea[J].
Journal of Petroleum Science and Engineering, 2007, 57(1/2):
139-151.
[99] Tissot B P, Welte D H. Petroleum formation and occurrence
[M]. 2nd ed. Berlin: Springer-Verlag Press, 1984.
[100] 崔潔珺. 海相烴源巖鏡狀體反射率測(cè)定方法在塔東地區(qū)的
應(yīng)用[J]. 大慶石油地質(zhì)與開(kāi)發(fā),2016,35(6):33-36.[Cui Jiejun.
Application of the vitrinite-like maceral reflectance measuring
method for the marine hydrocarbon source rocks in east
Tarim[J]. Petroleum Geology and Oilfield Development in
Daqing, 2016, 35(6): 33-36.]
[101] Jacob H. Classification, structure, genesis and practical importance
of natural solid oil bitumen (“migrabitumen”)[J]. International
Journal of Coal Geology, 1989, 11(1): 65-79.
[102] Valentine B J, Hackley P C, Enomoto C B, et al. Reprint of
“Organic petrology of the Aptian-age section in the downdip
Mississippi Interior Salt Basin, Mississippi, USA: Observations
and preliminary implications for thermal maturation history”
[J]. International Journal of Coal Geology, 2014, 136: 38-51.
[103] Wei L, Wang Y Z, Mastalerz M. Comparative optical properties
of macerals and statistical evaluation of mis-identification
of vitrinite and solid bitumen from early mature Middle
Devonian-Lower Mississippian New Albany Shale: Implications
for thermal maturity assessment[J]. International Journal
of Coal Geology, 2016, 168: 222-236.
[104] Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements
of zooclasts and solid bitumen in Lower Paleozoic
shales, southern Scandinavia: Correlation to vitrinite reflectance
[J]. International Journal of Coal Geology, 2013, 114: 1-18.
[105] Kus J, Khanaqa P, Mohialdeen I M J, et al. Solid bitumen, bituminite
and thermal maturity of the Upper Jurassic-Lower Cretaceous
Chia Gara Formation, Kirkuk oil field, Zagros Fold Belt,
Kurdistan, Iraq[J]. International Journal of Coal Geology,
2016, 165: 28-48.
[106] 王茂林,肖賢明,魏強(qiáng),等. 頁(yè)巖中固體瀝青拉曼光譜參數(shù)作
為成熟度指標(biāo)的意義[J]. 天然氣地球科學(xué),2015,26(9):
1712-1718.[Wang Maolin, Xiao Xianming, Wei Qiang, et al.
Thermal maturation of solid bitumen in shale as revealed by Raman
spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9):
1712-1718.]
[107] Henry D G, Jarvis I, Gillmore G, et al. Raman spectroscopy as
a tool to determine the thermal maturity of organic matter: Application
to sedimentary, metamorphic and structural geology
[J]. Earth-Science Reviews, 2019, 198: 102936.
[108] Zhang Y L, Li Z S. Raman spectroscopic study of chemical
structure and thermal maturity of vitrinite from a suite of Australia
coals[J]. Fuel, 2019, 241: 188-198.
[109] 劉德漢,肖賢明,田輝,等. 固體有機(jī)質(zhì)拉曼光譜參數(shù)計(jì)算樣
品熱演化程度的方法與地質(zhì)應(yīng)用[J]. 科學(xué)通報(bào),2013,58
(13):1228-1241.[Liu Dehan, Xiao Xianming, Tian Hui, et al.
Sample maturation calculated using Raman spectroscopic parameters
for solid organics: Methodology and geological applications[
J]. China Science Bulletin, 2013, 58(13): 1228-1241.]
[110] 郝彬,胡素云,黃士鵬,等. 四川盆地磨溪地區(qū)龍王廟組儲(chǔ)層
瀝青的地球化學(xué)特征及其意義[J]. 現(xiàn)代地質(zhì),2016,30(3):
614-626. [Hao Bin, Hu Suyun, Huang Shipeng, et al. Geochemical
characteristics and its significance of reservoir bitumen
of Longwangmiao Formation in Moxi area, Sichuan Basin
[J]. Geoscience, 2016, 30(3): 614-626.]
[111] Chen Z H, Simoneit B R T, Wang T G, et al. Molecular markers,
carbon isotopes, and rare earth elements of highly mature
reservoir pyrobitumens from Sichuan Basin, southwestern China:
Implications for PreCambrian-lower Cambrian petroleum
systems[J]. Precambrian Research, 2018, 317: 33-56.
[112] Sackett W M. Carbon and hydrogen isotope effects during the
thermocatalytic production of hydrocarbons in laboratory simulation
experiments[J]. Geochimica et Cosmochimica Acta,
1978, 42(6): 571-580.
[113] Peters K E, Rohrback B G, Kaplan I R. Carbon and hydrogen
stable isotope variations in kerogen during laboratory-simulated
thermal maturation[J]. AAPG Bulletin, 1981, 65(3): 501-508.
[114] Xiong Y Q, Jiang W M, Wang X T, et al. Formation and evolution
of solid bitumen during oil cracking[J]. Marine and Petroleum
Geology, 2016, 78: 70-75.
[115] Fang X Y, Geng A S, Liang X, et al. Comparison of the Ediacaran
and Cambrian petroleum systems in the Tianjingshan and
the Micangshan uplifts, northern Sichuan Basin, China[J]. Marine
and Petroleum Geology, 2022, 145: 105876.
[116] Hao F, Zhou X H, Zhu Y M, et al. Mechanisms of petroleum
accumulation in the Bozhong sub-basin, Bohai Bay Basin, China.
Part 1: Origin and occurrence of crude oils[J]. Marine and
Petroleum Geology, 2009, 26(8): 1528-1542.
[117] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition
in response to co-evolution of environments and
organisms controlled by tectonic subsidence and climate, Bohai
Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4):
323-339.
[118] Wang Q, Hao F, Xu C G, et al. Geochemical characterization of
QHD29 oils on the eastern margin of Shijiutuo uplift, Bohai Sea,
China: Insights from biomarker and stable carbon isotope analysis[
J]. Marine and Petroleum Geology, 2015, 64: 266-275.
[119] Li C Z, Xu F H, Huang X B, et al. Migration directions of
crude oils from multiple source rock intervals based on biomarkers:
A case study of Neogene reservoirs in the Bodong
Sag, Bohai Bay Basin[J]. Energy Reports, 2022, 8: 8151-8164.
[120] 施春華. 四川盆地震旦系—下寒武統(tǒng)大氣藏高演化烴源對(duì)
比無(wú)機(jī)地球化學(xué)研究[D]. 南京:南京大學(xué),2017:3-5.[Shi
Chunhua. Applying inorganic geochemical approaches to conduct
hydrocarbon source correlation under post- to over-mature
conditions: A case in the Sinian and the low Cambrian giant gas
accumulation, Sichuan Basin, southwestern China[D]. Nanjing:
Nanjing University, 2017: 3-5.]
[121] Lewan M D. Factors controlling the proportionality of vanadium
to nickel in crude oils[J]. Geochimica et Cosmochimica Acta,
1984, 48(11): 2231-2238.
[122] Kuznetsova A, Kuznetsov P, Foght J M, et al. Trace metal mobilization
from oil sands froth treatment thickened tailings exhibiting
acid rock drainage[J]. Science of the Total Environment,
2016, 571: 699-710.
[123] Selby D, Creaser R A. Direct radiometric dating of hydrocarbon
deposits using Rhenium-Osmium isotopes[J]. Science,
2005, 308(5726): 1293-1295.
[124] Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer
in the Phosphoria petroleum system, Bighorn Basin
of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica
Acta, 2013, 118: 312-330.
[125] Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen
as a 187Re-187Os geochronometer for hydrocarbon maturation and
migration: A test case from the Polaris MVT deposit, Canada[J].
Earth and Planetary Science Letters, 2005, 235(1/2): 1-15.
[126] Selby D, Creaser R A, Fowler M G. Re-Os elemental and isotopic
systematics in crude oils[J]. Geochimica et Cosmochimica
Acta, 2007, 71(2): 378-386.
[127] Chu Z Y, Wang M J, Liu D W, et al. Re-Os dating of gas accumulation
in Upper Ediacaran to lower Cambrian dolostone reservoirs,
central Sichuan Basin, China[J]. Chemical Geology,
2023, 620: 121342.
[128] Yin L, Zhao P P, Liu J J, et al. Re-Os isotope system in organicrich
samples for dating and tracing: Methodology, principle,
and application[J]. Earth-Science Reviews, 2023, 238: 104317.
[129] Liu J J, Zhou H G, Pujol M, et al. The bitumen formation and
Re-Os characteristics of a CO2-rich pre-salt gas reservoir of the
Kwanza Basin, offshore Angola[J]. Marine and Petroleum Geology,
2022, 143: 105786.
[130] Sassen R. Geochemical and carbon isotopic studies of crude oil
destruction, bitumen precipitation, and sulfate reduction in the
deep Smackover Formation[J]. Organic Geochemistry, 1988,
12(4): 351-361.
[131] Charrié-Duhaut A, Lemoine S, Adam P, et al. Abiotic oxidation
of petroleum bitumens under natural conditions[J]. Organic
Geochemistry, 2000, 31(10): 977-1003.
[132] 謝增業(yè),張本健,楊春龍,等. 川西北地區(qū)泥盆系天然氣瀝青
地球化學(xué)特征及來(lái)源示蹤[J]. 石油學(xué)報(bào),2018,39(10):1103-
1118.[Xie Zengye, Zhang Benjian, Yang Chunlong, et al. Geo‐
chemical characteristics and source trace of the Devonian natural
gas and bitumen in northwest Sichuan Basin[J]. Acta Petrolei
Sinica, 2018, 39(10): 1103-1118.]
[133] 朱揚(yáng)明,李穎,郝芳,等. 四川盆地東北部海、陸相儲(chǔ)層瀝青
組成特征及來(lái)源[J]. 巖石學(xué)報(bào),2012,28(3):870-878.[Zhu
Yangming, Li Ying, Hao Fang, et al. Compositional characteristics
and origin of marine and terrestrial solid reservoir bitumen
in the northeast Sichuan Basin[J]. Acta Petrologica Sinica,
2012, 28(3): 870-878.]