国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于環(huán)氧合酶-2/p53軸防治潰瘍性結(jié)腸炎異型增生的研究進(jìn)展

2024-01-01 00:00:00張儀霖楊樹森劉禹杉閆曙光
關(guān)鍵詞:屏障穩(wěn)態(tài)氧化應(yīng)激

摘要:潰瘍性結(jié)腸炎(UC)是一種慢性炎癥性腸病,非特異性、持續(xù)的腸道炎癥為其主要特征,這種慢性炎癥往往會(huì)增加罹患結(jié)直腸癌等嚴(yán)重并發(fā)癥的風(fēng)險(xiǎn)。異型增生作為推動(dòng)癌癥發(fā)展的后備軍,對(duì)慢性腸道炎癥與結(jié)直腸癌的發(fā)生發(fā)展起到銜接作用。而細(xì)胞增殖/凋亡失衡則是異型增生發(fā)展的驅(qū)動(dòng)因素。其中,腸黏膜上皮細(xì)胞增殖/凋亡異??赡苁墉h(huán)氧合酶-2(COX-2)、抑癌基因p53及二者串?dāng)_關(guān)系的影響,對(duì)COX-2/p53軸的合理調(diào)控可能是實(shí)現(xiàn)腸黏膜增殖/凋亡平衡的關(guān)鍵。本文從腸黏膜上皮增殖/凋亡失衡入手,思考COX-2、p53在UC異型增生發(fā)生發(fā)展中的影響及其具體作用機(jī)制,以期為UC異型增生疾病機(jī)制及靶向治療藥物的開發(fā)提供參考。

關(guān)鍵詞:潰瘍性結(jié)腸炎;異型增生;環(huán)氧合酶-2;p53

中圖分類號(hào): R392.12" 文獻(xiàn)標(biāo)識(shí)碼: A" 文章編號(hào):1000-503X(2024)06-0940-09

DOI:10.3881/j.issn.1000-503X.15911

基金項(xiàng)目:國家自然科學(xué)基金(81873233)

Progress in Prevention and Treatment of Dysplasia in Ulcerative Colitis Based on Cyclooxygenase-2/p53 Axis

ZHANG Yilin1,YANG Shusen1,LIU Yushan1,YAN Shuguang1,2

1Basic Medical College of Shaanxi University of Chinese Medicine,Xianyang,Shaanxi 712046,China

2Key Laboratory of Prescriptions and Medicines for Gastrointestinal Diseases in Shaanxi Province,Xianyang,Shaanxi 712046,China

Corresponding author:YAN Shuguang" Tel:029-38185122,E-mail:ysg2002.student@sina.com

ABSTRACT:Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by non-specific,persistent inflammation in the intestines.This chronic inflammation often increases the risk of serious complications such as colorectal cancer.Dysplasia acts as a driver of cancer development and plays a connecting role in the occurrence and development of chronic intestinal inflammation and colorectal cancer.Cell proliferation/apoptosis imbalance is the driving factor for dysplasia development.The abnormal proliferation/apoptosis of intestinal mucosal epithelial cells may be affected by cyclooxygenase-2(COX-2),tumor suppressor gene p53,or both.Therefore,reasonable regulation of COX-2/p53 axis may be a key to achieving intestinal mucosal proliferation/apoptosis balance.This article discusses the effects and mechanism of COX-2 and p53 in regulating the occurrence and development of dysplasia in UC from the proliferation/apoptosis imbalance of intestinal mucosal epithelial cells,aiming to provide a reference for understanding the mechanism of dysplasia in UC and developing targeted therapeutic drugs.

Key words:ulcerative colitis;dysplasia;cyclooxygenase-2;p53 gene

Acta Acad Med Sin,2024,46(6):940-948

潰瘍性結(jié)腸炎(ulcerative colitis,UC)是一種在多病因誘導(dǎo)下,反復(fù)發(fā)作的自身免疫性疾病。該病總體呈現(xiàn)慢性發(fā)展態(tài)勢,腸道黏膜與黏膜下層作為UC的主要病變部位,隨著病情進(jìn)展可向近端對(duì)稱、圓周方向和間斷地延伸,甚至累及大腸[1]。有證據(jù)顯示罹患結(jié)直腸癌(colorectal cancer,CRC)以及結(jié)腸炎相關(guān)癌癥(colitis-associated cancer,CAC)的風(fēng)險(xiǎn)與UC患病時(shí)間呈正相關(guān),風(fēng)險(xiǎn)較普通人群高2~5倍[2-3]。炎癥-異型增生-癌是UC向CAC演變中的必經(jīng)途徑[4]。雖然引發(fā)UC異型增生的原因錯(cuò)綜復(fù)雜,但持續(xù)的腸道炎癥是其主要誘因[5]。慢性炎癥會(huì)使細(xì)胞增殖/凋亡發(fā)生失衡,而環(huán)氧合酶(cyclooxygenase,COX)-2、p53基因不僅能延長并加重UC的炎癥狀態(tài),還能誘導(dǎo)腸道異型增生的發(fā)生[6-7]。因此,積極防治慢性炎癥、抑制細(xì)胞異常增殖,可能是針對(duì)UC發(fā)生異型增生及癌變的潛在治療靶點(diǎn)。本文就增殖/凋亡失衡作為突破點(diǎn),闡述腸道異型增生同慢性炎癥之間的聯(lián)系,通過探究COX-2、p53在UC異型增生中的致病機(jī)制并思考如何對(duì)COX-2/p53軸進(jìn)行合理調(diào)控,以期對(duì)UC異型增生的防治進(jìn)行指導(dǎo)。

1" 慢性炎癥破壞腸道屏障功能誘發(fā)UC異型增生

炎癥作為機(jī)體的一種保護(hù)機(jī)制。在正常情況下,免疫系統(tǒng)通過引發(fā)炎癥反應(yīng)防止組織受損。然而,炎癥在疾病進(jìn)展中亦作為一把“雙刃劍”,過度的炎癥反應(yīng)會(huì)加重組織損傷并影響細(xì)胞正常的增殖/凋亡環(huán)節(jié),甚至使其向癌變發(fā)展。慢性炎癥作為UC異型增生的重要推力,究其原因是由于持續(xù)的炎癥狀態(tài)使腸道屏障功能發(fā)生異常,進(jìn)而影響腸黏膜上皮正常的增殖/凋亡過程。然而,被破壞的腸道屏障又能加重炎癥的發(fā)展,表明腸道屏障對(duì)炎癥-異型增生過程至關(guān)重要。

在正常情況下,腸道屏障由機(jī)械屏障、化學(xué)屏障以及免疫屏障共同組成[8]。對(duì)腸道的保護(hù)主要通過維持腸上皮細(xì)胞緊密連接的方式,防止大分子蛋白質(zhì)對(duì)腸道進(jìn)行滲透,并且通過激活黏液蛋白形成堿性pH環(huán)境,阻礙細(xì)菌等微生物入侵腸道上皮細(xì)胞,最后由自然殺傷細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞及肥大細(xì)胞所組成的腸道免疫屏障釋放炎癥因子從而引發(fā)腸道炎癥反應(yīng),清除病原體[9-10]。當(dāng)腸道受損時(shí),腸黏膜上皮細(xì)胞會(huì)產(chǎn)生蛋白質(zhì)抗炎介質(zhì),如分泌性白細(xì)胞蛋白酶抑制劑以及促上皮細(xì)胞生長的細(xì)胞因子進(jìn)而誘導(dǎo)細(xì)胞進(jìn)行增殖,推動(dòng)腸黏膜的修復(fù)[11]。由此可見,保護(hù)-修復(fù)作為腸道屏障功能的總體概括,密切影響腸道生理狀況。

而保護(hù)-修復(fù)失衡時(shí),腸黏膜可能面臨著持續(xù)受損、異常增殖的結(jié)果。UC作為炎癥性腸病,腸道慢性炎癥作為其主要特征,此時(shí)腸道內(nèi)易發(fā)生氧化應(yīng)激及過度的免疫反應(yīng)[1]。其中,活性氧(reactive oxygen species,ROS)是腸道氧化應(yīng)激所形成的代謝產(chǎn)物,過量的ROS以損傷細(xì)胞DNA、線粒體、使生物膜脂質(zhì)過氧化的方式對(duì)腸黏膜上皮細(xì)胞的構(gòu)成和腸道屏障產(chǎn)生破壞作用[12]。而UC患者的腸道黏膜也易招致炎癥細(xì)胞的過度浸潤,上調(diào)腫瘤壞死因子-α(tumor necrosis factor α,TNF-α)、白細(xì)胞介素-6等炎癥基因表達(dá),破壞腸道屏障生理功能[13-14]。不同于腸道屏障保護(hù)-修復(fù)的平衡狀態(tài),過度的氧化應(yīng)激也會(huì)使腸黏膜細(xì)胞反復(fù)修復(fù),干擾正常的腸道屏障增殖。結(jié)腸黏膜腺體上皮內(nèi)瘤變作為UC異型增生的關(guān)鍵事件,不僅同腸黏膜上皮細(xì)胞調(diào)控失衡密切相關(guān),還受腸道內(nèi)氧化應(yīng)激水平的影響及氧化酶的調(diào)控,當(dāng)氧化酶缺失或表達(dá)下調(diào)時(shí),能促進(jìn)細(xì)胞增殖并減少其凋亡[4,15]。表明腸道氧化應(yīng)激水平和腸黏膜增殖異常對(duì)結(jié)腸組織異型增生及腫瘤的產(chǎn)生起到推動(dòng)作用。

由此可見,UC異型增生的發(fā)生取決于結(jié)腸持續(xù)的炎癥狀態(tài),而因此產(chǎn)生的過度氧化應(yīng)激及免疫反應(yīng)則作為破壞腸道屏障保護(hù)-修復(fù)平衡的重要因素。當(dāng)腸道屏障功能持續(xù)損傷,不僅會(huì)導(dǎo)致腸黏膜上皮細(xì)胞凋亡/增殖功能異常,還會(huì)加重慢性炎癥的發(fā)生,最終構(gòu)建利于異型增生發(fā)生發(fā)展的病理環(huán)境。

2" 細(xì)胞凋亡/增殖失衡是慢性炎癥及異型增生的驅(qū)動(dòng)因素

2.1" 過度凋亡是慢性炎癥進(jìn)展的催化劑

細(xì)胞調(diào)節(jié)性死亡作為維持細(xì)胞形態(tài)、功能穩(wěn)態(tài)的機(jī)制,主要包括細(xì)胞凋亡、自噬和壞死。有研究發(fā)現(xiàn)壞死性凋亡作為由TNF-α觸發(fā)的一種受調(diào)節(jié)的細(xì)胞死亡形式,在推動(dòng)炎癥發(fā)展方面起到重要作用[16]。在無菌環(huán)境下,細(xì)胞死亡后會(huì)通過釋放損傷相關(guān)分子模式(damage-associated molecular patterns,DAMP)的因子誘導(dǎo)炎癥發(fā)生。不同于凋亡過程中細(xì)胞對(duì)DAMP分子的嚴(yán)格管控,在炎癥初期,壞死性凋亡會(huì)大量釋放DAMP分子,進(jìn)而廣泛引起機(jī)體炎癥反應(yīng),如在慢性肝炎和慢性阻塞性肺疾病中[17]。此外,通過靶向抑制壞死性凋亡后不僅能減緩UC中腸道炎癥,還能減少腸上皮細(xì)胞的死亡[18-20]。表明壞死性凋亡參與炎癥發(fā)展的始末。炎癥作為機(jī)體的適應(yīng)性反應(yīng),具有維持組織穩(wěn)態(tài)的功能。但當(dāng)其過表達(dá)時(shí),組織穩(wěn)態(tài)及其功能受損得不到有效恢復(fù)。此時(shí)機(jī)體只能下調(diào)穩(wěn)態(tài)值進(jìn)行代償,而這種病理狀態(tài)又會(huì)加重炎癥,從而會(huì)反復(fù)誘導(dǎo)巨噬細(xì)胞釋放TNF-α,引發(fā)壞死性凋亡的發(fā)生。提示炎癥-壞死性凋亡能作為加重炎癥反應(yīng)的正反饋環(huán),二者相互影響,成為慢性炎癥進(jìn)展的重要助力。

2.2" 過度增殖是異型增生的溫床

當(dāng)機(jī)體組織在有害因素的侵襲下受到損傷,修復(fù)則是應(yīng)對(duì)這種狀況的重要手段。炎癥反應(yīng)、細(xì)胞增殖以及組織重塑構(gòu)建了組織修復(fù)過程[21]。在生理?xiàng)l件下,當(dāng)組織炎癥得到控制,M2型巨噬細(xì)胞會(huì)分泌轉(zhuǎn)化生長因子、炎癥因子、膠原酶和腫瘤壞死因子等,通過刺激成纖維細(xì)胞、角質(zhì)細(xì)胞及血管的增殖,從而在損傷初期推動(dòng)組織愈合[22]。而損傷中期(增殖期)則是以推動(dòng)上皮細(xì)胞增殖重新恢復(fù)屏障功能、刺激內(nèi)皮細(xì)胞遷移形成毛細(xì)血管、肉芽組織以及對(duì)細(xì)胞基質(zhì)進(jìn)行重建為主要特征。表明確保大量細(xì)胞和結(jié)締組織的恢復(fù)是增殖期的重要目標(biāo)。然而,上皮細(xì)胞以及纖維結(jié)締組織的過度增生是異型增生發(fā)生不可缺少的環(huán)節(jié)[23-24]。導(dǎo)致增殖失衡的原因有以下幾方面:首先,由氧化應(yīng)激、免疫反應(yīng)失調(diào)及環(huán)境因素所引發(fā)的慢性炎癥會(huì)通過損傷DNA或使細(xì)胞突變的方式強(qiáng)化其增殖能力。其次,腫瘤微環(huán)境通過影響成纖維細(xì)胞、內(nèi)皮細(xì)胞,將其修復(fù)功能向促癌方向轉(zhuǎn)變[25]。最后,在疾病治療中,因組織損傷導(dǎo)致細(xì)胞的壞死凋亡,通過釋放DAMP分子進(jìn)一步擴(kuò)大炎癥損傷,進(jìn)而刺激增殖。以上證據(jù)表明慢性炎癥以及腫瘤微環(huán)境對(duì)促進(jìn)增殖失衡至關(guān)重要。相較于正常腸道黏膜,腸道腺瘤組織存在著炎癥細(xì)胞過度浸潤的情況,而腺瘤則是UC異型增生中的重要組成部分[26-27]。此外,在慢性炎癥或損傷狀態(tài)下,胃酶細(xì)胞通過免疫細(xì)胞進(jìn)行重編程,進(jìn)而能增強(qiáng)胃黏膜細(xì)胞的增殖,助力胃黏膜腸化生的發(fā)生[28]。表明慢性炎癥能強(qiáng)化增殖失衡與異型增生之間的聯(lián)系。綜上,組織正常的修復(fù)過程受到慢性炎癥環(huán)境的擾亂,進(jìn)而導(dǎo)致細(xì)胞增殖失去平衡,在這種病理狀態(tài)的持續(xù)影響下,則會(huì)產(chǎn)生異型增生。

2.3" 凋亡/增殖的平衡是維持UC腸道穩(wěn)態(tài)的關(guān)鍵

在生理情況下,組織穩(wěn)態(tài)是指細(xì)胞內(nèi)部組成部分與外界病理因素(如免疫細(xì)胞、炎癥因子等)維持的一個(gè)平衡狀態(tài),當(dāng)穩(wěn)態(tài)被打破無法恢復(fù)時(shí),會(huì)導(dǎo)致凋亡、增殖等細(xì)胞行為發(fā)生改變[29]。在UC中,維持腸道穩(wěn)態(tài)不僅能防止炎癥反應(yīng)的進(jìn)一步加劇,還能預(yù)防潛在的癌癥風(fēng)險(xiǎn)[4]。腸上皮細(xì)胞作為腸道屏障的重要組成部分,具有自我更新、不斷增殖的特性[1]。而持續(xù)的炎癥會(huì)導(dǎo)致腸上皮細(xì)胞凋亡/增殖失衡,從而打破腸道穩(wěn)態(tài)。因此,恢復(fù)腸上皮細(xì)胞的凋亡/增殖平衡對(duì)維持腸道穩(wěn)態(tài)至關(guān)重要。巨噬細(xì)胞作為腸道固有免疫細(xì)胞,不僅具有識(shí)別和清除死亡細(xì)胞的凋亡作用,還具備刺激新生細(xì)胞復(fù)制與分化的增殖功能,而這種微妙的平衡則是巨噬細(xì)胞對(duì)腸道穩(wěn)態(tài)的主要貢獻(xiàn)。通過對(duì)炎癥信號(hào)通路的抑制或者靶向調(diào)節(jié)巨噬細(xì)胞極化則能有效控制腸道炎癥并恢復(fù)其組織功能[30]。研究表明當(dāng)巨噬細(xì)胞M2極化被抑制后明顯減輕了CRC腸道中腫瘤細(xì)胞的增殖能力,而當(dāng)M1/M2型巨噬細(xì)胞比率增加時(shí),腸上皮細(xì)胞凋亡增加,加劇了腸道炎癥[31-32]。綜上,對(duì)巨噬細(xì)胞極化的合理調(diào)控是恢復(fù)腸上皮細(xì)胞凋亡/增殖平衡的重要手段,并有利于維持腸道穩(wěn)態(tài)。如何對(duì)UC狀態(tài)下腸道細(xì)胞的凋亡/增殖平衡進(jìn)行調(diào)控成為亟需解決的問題,而COX-2、p53基因同此聯(lián)系密切[6-7]。

3" 調(diào)控COX-2/p53軸具有平衡增殖/凋亡、治療UC異型增生的作用

3.1" COX-2、p53在UC異型增生中的作用機(jī)制

COX是前列腺素代謝中的一種氧化還原酶,在促血管生成、炎癥及癌變方面具有重要意義[33]。COX分為3種亞型:COX-1、COX-2及COX-3[34]。其中,COX-2在正常胃腸道中活性較低,而當(dāng)炎癥及腫瘤發(fā)生時(shí)COX-2表達(dá)水平被不斷上調(diào)[35]。花生四烯酸是細(xì)胞膜的重要組成部分,因炎癥而釋放的花生四烯酸作為COX的重要底物,能促進(jìn)生成COX-2[36]。而前列腺素E2(prostaglandin E2,PGE2)經(jīng)由COX-2及PGE2合成酶共同產(chǎn)生,具有促炎、促癌作用。COX-2不僅推動(dòng)生成PGE2,又與PGE2一起介導(dǎo)炎癥反應(yīng),表明二者能擴(kuò)大炎癥效應(yīng)并形成正反饋調(diào)節(jié),延長炎癥狀態(tài)。而在促癌方面,PGE2需要同膜受體結(jié)合才能發(fā)揮其作用。其中,PGE受體分為4種亞型,即EP1、EP2、EP3及EP4。在CAC進(jìn)程中,抑制EP1、EP2、EP4受體信號(hào)通路能有效減少癌前病變的發(fā)生[37]。Sonoshita等[38]發(fā)現(xiàn)通過推動(dòng)EP2基因產(chǎn)生純合子缺失后,減少了小鼠腸道中腺瘤的大小和數(shù)量,而這種效應(yīng)同破壞COX-2基因所產(chǎn)生的效果類似。此外,EP3已被證明能增強(qiáng)腺瘤組織相關(guān)血管生成以及推動(dòng)腸道腫瘤生長,但在CRC過程中EP3的表達(dá)卻有所下調(diào)[39]。表明EP3在促進(jìn)異型增生以及腫瘤發(fā)展中的作用可能是雙面性的,提示EP3可能具有爭議。COX-2具有調(diào)節(jié)細(xì)胞凋亡的能力。Bcl-2作為重要的原癌基因能夠抵抗細(xì)胞凋亡,同增殖異常及癌變密切相關(guān)。有證據(jù)顯示Bcl-2同結(jié)腸腺瘤及CRC有關(guān),而PGE2在誘導(dǎo)生成Bcl-2、促血管生成趨化因子等方面擾亂了組織上皮的增殖分裂[40-41]。綜上,提示COX-2、PGE2能影響細(xì)胞增殖/凋亡,進(jìn)而為腸黏膜上皮惡變提供有利條件,助力腸道異型增生的發(fā)生。

人類p53基因作為重要的抑癌基因,根據(jù)其功能差異分為野生型(wt-p53)和突變型(mt-p53)。其中wt-p53主要在正常組織內(nèi)表達(dá),具有控制細(xì)胞分裂、凋亡及修復(fù)細(xì)胞DNA的生理功能[42]。然而,大約50%的癌癥中p53會(huì)發(fā)生突變[43]。不同于wt-p53的守護(hù)者角色,mt-p53則作為促進(jìn)癌癥發(fā)展的幫兇。許多mt-p53獲得了新的致癌活性,而這種活性被稱為功能型獲得,但這種被賦予的致癌能力并不能簡單的等同于wt-p53抑癌失活[44-45],表明mt-p53能作為癌變的獨(dú)立誘因推動(dòng)其發(fā)展。關(guān)于p53參與到UC炎癥-異型增生過程中的機(jī)制可能為:首先,炎癥反應(yīng)同細(xì)胞凋亡/增殖密切相關(guān)。在炎癥中核因子-κB(nuclear factor Kappa B,NF-κB)與p53信號(hào)通路能相互拮抗,平衡細(xì)胞增殖與凋亡[46]。但mt-p53的出現(xiàn)則打破了局面。功能獲得型mt-p53能切實(shí)增強(qiáng)NF-κB下游靶基因的促炎和促細(xì)胞生長能力[47]。而在經(jīng)由葡聚糖硫酸鈉所誘導(dǎo)的UC小鼠腸道組織中發(fā)現(xiàn)p53、NF-κB、p65 mRNA水平及炎癥因子均高于對(duì)照組[48-49]。此外,mt-p53還能通過聯(lián)合TNF-α從而延長NF-κB的活化時(shí)間[50]。以上證據(jù)表明mt-p53、NF-κB可能是腸道炎癥經(jīng)久不愈的關(guān)鍵因素,而因此造成的慢性腸道炎癥則能影響腸道正常的增殖/凋亡。其次,氧化應(yīng)激不僅作為炎癥的重要推力,還能破壞細(xì)胞增殖/凋亡平衡。而ROS則是推動(dòng)氧化應(yīng)激的先頭兵。研究表明多種促細(xì)胞增殖以及生長信號(hào)通路與高ROS水平密切相關(guān)[51]。而wt-p53能監(jiān)測ROS,并使其保持一個(gè)穩(wěn)定的閾值水平[52],提示p53突變、wt-p53功能缺失能通過氧化應(yīng)激影響增殖。眾所周知,COX-2在UC相關(guān)結(jié)腸腺瘤中過表達(dá),這是由于炎癥損傷和ROS共同造成的結(jié)果。然而COX-2、ROS的高水平表達(dá)則對(duì)mt-p53具有誘導(dǎo)作用[53],表明ROS不僅是聯(lián)系COX-2與p53之間的一把重要鑰匙,還提示其能夠推動(dòng)慢性炎癥向異型增生轉(zhuǎn)變。最后,p53能調(diào)節(jié)免疫細(xì)胞影響細(xì)胞增殖,巨噬細(xì)胞在炎癥激活下會(huì)發(fā)生極化,而M2極化能推動(dòng)細(xì)胞增殖。在CAC中M2型巨噬細(xì)胞在腫瘤微環(huán)境下具有促瘤作用[54]。He等[55]發(fā)現(xiàn)通過活化p53能抑制CAC腸道中M2型巨噬細(xì)胞活力。而在p53突變及p53功能缺失的小鼠模型中,巨噬細(xì)胞中M2基因表達(dá)上升,當(dāng)通過Nutlin-3(p53下游靶基因MDM2的一種抑制劑)處理后發(fā)現(xiàn)p53活化并使M2型巨噬細(xì)胞表達(dá)下降[56],表明p53能通過調(diào)節(jié)巨噬細(xì)胞極化影響細(xì)胞增殖,對(duì)腸道異型增生及癌變具有促進(jìn)作用。綜上,p53通過調(diào)控NF-κB信號(hào)通路、氧化應(yīng)激及巨噬細(xì)胞極化的方式,在UC進(jìn)展中對(duì)腸道異型增生的發(fā)展具有推動(dòng)作用。

3.2" COX-2/p53串?dāng)_與UC異型增生的關(guān)系

UC異型增生是正常組織向癌癥轉(zhuǎn)變過程中的重要環(huán)節(jié),而慢性炎癥則是其有力推手。其中,慢性炎癥所引發(fā)的氧化應(yīng)激及DNA損傷信號(hào)像鎖鏈一樣將COX-2、p53串聯(lián)起來,能在誘導(dǎo)COX-2表達(dá)的同時(shí),促進(jìn)p53的表達(dá)。研究表明p53和COX-2之間具有串?dāng)_關(guān)系,在不同階段的炎癥狀態(tài)下COX-2/p53軸對(duì)組織的影響也各不相同[57]。

炎癥初期,在細(xì)胞因子及ROS等作用下細(xì)胞DNA受損,p53表達(dá)水平同細(xì)胞DNA損傷程度密切相關(guān),其誘導(dǎo)細(xì)胞凋亡的能力也隨炎癥進(jìn)展而增強(qiáng)。而NF-κB信號(hào)通路作為炎癥中心環(huán)節(jié)能同p53誘導(dǎo)產(chǎn)生COX-2[58-60]。然而,在對(duì)細(xì)胞內(nèi)COX-2敲除或抑制后,增強(qiáng)了p53誘導(dǎo)凋亡的能力[61]。COX-2具有抗凋亡作用,其通過調(diào)節(jié)Bcl-2能減少腸黏膜細(xì)胞凋亡。提示在p53介導(dǎo)的炎癥進(jìn)展中,誘導(dǎo)的COX-2可能有利于細(xì)胞的存活而不是使其凋亡。在對(duì)活躍期UC患者結(jié)腸組織檢測時(shí)發(fā)現(xiàn)COX-2呈高水平表達(dá)[62]。表明在UC初期p53能通過上調(diào)COX-2達(dá)到保護(hù)炎癥組織中受損細(xì)胞的作用,而這種保護(hù)-增殖回環(huán)能阻止炎癥初期細(xì)胞的過度凋亡。

然而,當(dāng)初期炎癥進(jìn)展至慢性炎癥時(shí),細(xì)胞增殖/凋亡逐漸失衡,組織異型增生及癌癥同細(xì)胞增殖能力、凋亡逃逸增強(qiáng)之間密切相關(guān)。此時(shí),因UC而受損的腸黏膜細(xì)胞將繼續(xù)暴露于p53、COX-2的保護(hù)-增殖回環(huán)中。因此,在腸道異型增生及其早期結(jié)腸癌中,wt-p53、COX-2常呈現(xiàn)高水平表達(dá)[63-65]。研究表明COX-2能下調(diào)p53的轉(zhuǎn)錄甚至抵消p53誘導(dǎo)的細(xì)胞凋亡[57],這必然導(dǎo)致受損的腸黏膜上皮細(xì)胞增殖凋亡失衡,而這種不受控制的增殖,為組織異型增生及腫瘤提供了溫床。此外,腸道異型增生及腫瘤的發(fā)生也并不局限于慢性炎癥。CRC中COX-2高表達(dá)會(huì)導(dǎo)致表皮生長因子表達(dá)上升,促進(jìn)細(xì)胞異常增殖[66]。而原癌基因c-Myb、TCF-4癌基因與COX-2的表達(dá)之間也存在顯著相關(guān)性[67],表明在慢性炎癥環(huán)境中,不僅存在p53/COX-2軸能促進(jìn)腸黏膜異型增生的發(fā)生,獨(dú)立于wt-p53的促生長信號(hào)也能有效激活COX-2,進(jìn)而與mt-p53一起作為重要推力推進(jìn)腸上皮的異常增殖。

因此,在慢性炎癥階段削弱COX-2抗凋亡能力、增強(qiáng)p53促凋亡作用可能是防治UC異型增生的一個(gè)潛在靶點(diǎn)。在偶氮甲烷/硫酸葡聚糖鈉誘導(dǎo)的CRC模型初期,當(dāng)小鼠結(jié)腸組織中COX-2水平下調(diào)時(shí),減緩了CRC細(xì)胞的增殖[68]。Li等[3]發(fā)現(xiàn)在炎癥后期通過劑量依賴的方式激活 p53信號(hào)通路能促進(jìn)CRC細(xì)胞凋亡。此外,Oh等[69]通過使用組合益生菌協(xié)同調(diào)控COX-2及p53的表達(dá)水平,從而抵御腸道黏膜的異常增殖,降低CAC風(fēng)險(xiǎn),表明在炎癥-異型增生環(huán)節(jié)中,通過對(duì)COX-2、p53表達(dá)的合理調(diào)控,能重塑細(xì)胞正常的增殖/凋亡過程,從而避免異型增生的形成。研究發(fā)現(xiàn)塞來昔布同COX-2及p53關(guān)系密切,它能阻止花生四烯酸與COX-2活性位點(diǎn)結(jié)合,進(jìn)而抑制PGE2的產(chǎn)生,在預(yù)防UC異型增生及CRC方面具有重要作用[70-71]。而持續(xù)抑制COX-2表達(dá)能下調(diào)NF-κB,進(jìn)一步減緩小鼠慢性腸道炎癥的發(fā)生[72]。另一方面,塞來昔布還能誘導(dǎo)CRC結(jié)腸細(xì)胞中p53上調(diào)凋亡調(diào)控因子并使其表達(dá)增加,而p53上調(diào)凋亡調(diào)控因子作為p53下游靶基因,通過結(jié)合Bcl-2樣蛋白進(jìn)而推動(dòng)p53誘導(dǎo)的細(xì)胞凋亡[73]。此外,阿司匹林及美沙拉嗪對(duì)COX-2及p53同樣具有調(diào)控作用[74]。在炎癥初期,美沙拉嗪通過下調(diào)COX-2的表達(dá)水平,有效緩解腸道炎癥的同時(shí)還能預(yù)防異型增生的產(chǎn)生[75]。而阿司匹林也能通過調(diào)控COX-2有效防治CRC[76]。另有研究顯示,阿司匹林可能對(duì)CRC結(jié)腸組織中的wt-p53進(jìn)行乙?;M(jìn)而推動(dòng)細(xì)胞凋亡的發(fā)生[77]。表明塞來昔布、阿司匹林及美沙拉嗪等藥物不僅能通過減少COX-2生成的方式阻止腸道炎癥微環(huán)境持續(xù)存在,還能增強(qiáng)p53對(duì)異常增殖細(xì)胞的凋亡水平,進(jìn)而破壞慢性炎癥狀態(tài)下的保護(hù)-增殖回環(huán),阻止腸道黏膜向異型增生轉(zhuǎn)化。研究表明塞來昔布還可通過抑制Wnt/β-連環(huán)蛋白信號(hào)通路阻止結(jié)腸癌細(xì)胞增殖[78]。綜上,通過抑制保護(hù)-增殖回環(huán)以及異常生長信號(hào)級(jí)聯(lián),能有效遏制腸黏膜異常增殖,并減緩慢性結(jié)腸炎向異型增生的轉(zhuǎn)變。

4" 總結(jié)與展望

通過系統(tǒng)闡述COX-2、p53與UC異型增生之間的聯(lián)系,將腸黏膜增殖/凋亡失衡作為防治異型增生的突破點(diǎn),并從中看到靶向調(diào)控COX-2/p53軸抑制UC異型增生的治療前景。首先,COX-2/PGE2通過加重炎癥、阻礙凋亡的方式促進(jìn)腸黏膜異常增殖。其次,mt-p53通過延長UC腸道炎癥時(shí)間、提高ROS表達(dá)水平、推動(dòng)M2型巨噬細(xì)胞極化的方式為UC異型增生提供有利條件。最后,COX-2/p53軸中的保護(hù)-增殖回環(huán)及促生長信號(hào)作為兩條重要途徑參與炎癥-異型增生過程。慢性炎癥常伴隨著高氧化應(yīng)激狀態(tài),而高ROS合并鐵過載則能推動(dòng)鐵死亡的發(fā)展。研究證實(shí)腸上皮細(xì)胞中的鐵死亡事件可能是UC的又一重要誘因[79]。而ROS又同COX-2、p53聯(lián)系緊密,能否通過靶向調(diào)控COX-2/p53軸誘導(dǎo)鐵死亡發(fā)生的方式、阻止UC異型增生及CAC的發(fā)生有待驗(yàn)證。此外,更多關(guān)于靶向COX-2/p53軸調(diào)控UC異型增生的藥物研究有待試驗(yàn)驗(yàn)證。期待在今后的臨床試驗(yàn)研究中,將COX-2/p53軸作為突破口,為今后治療相關(guān)疾病提供新的思路與方法。

利益沖突" 所有作者聲明無利益沖突

作者貢獻(xiàn)聲明" 張儀霖:論文構(gòu)思、撰寫與修改;楊樹森、劉禹杉:論文修改;閆曙光:論文指導(dǎo)與審閱

參" 考" 文" 獻(xiàn)

[1]Le Berre C,Honap S,Peyrin-Biroulet L.Ulcerative colitis[J].Lancet,2023,402(10401):571-584.DOI:10.1016/S0140-6736(23)00966-2.

[2]Buie MJ,Quan J,Windsor JW,et al.Global hospitalization trends for crohn’s disease and ulcerative colitis in the 21st century:a systematic review with temporal analyses[J].Clin Gastroenterol Hepatol,2023,21(9):2211-2221.DOI:10.1016/j.cgh.2022.06.030.

[3]Li J,Shang L,Zhou F,et al.Herba patriniae and its component isovitexin show anti-colorectal cancer effects by inducing apoptosis and cell-cycle arrest via p53 activation[J].Biomed Pharmacother,2023,168(1):115690.DOI:10.1016/j.biopha.2023.115690.

[4]Shah SC,Itzkowitz SH.Colorectal cancer in inflammatory bowel disease:mechanisms and management[J].Gastroenterology,2022,162(3):715-730.e3.DOI:10.1053/j.gastro.2021.10.035.

[5]Zhang R,Rabinovitch PS,Mattis AN,et al.DNA content abnormality frequently develops in the right/proximal colon in patients with primary sclerosing cholangitis and inflammatory bowel disease and is highly predictive of subsequent detection of dysplasia[J].Histopathology,2023,83(1):116-125.DOI:10.1111/his.14913.

[6]Abdel Hamed EF,Mostafa NE,F(xiàn)arag SM,et al.Human protozoa infection and dysplasia in ulcerative colitis:a neglected aspect in a prominent disease[J].Parasitol Res,2023,122(11):2709-2718.DOI:10.1007/s00436-023-07972-7.

[7]Uslukaya O,Yegin Z,Taskesen F,et al.Elevated expression levels of COX-2,IL-8 and VEGF in colon adenocarcinoma[J].Cell Mol Biol(Noisy-le-grand),2023,69(6):146-150.DOI:10.14715/cmb/2023.69.6.22.

[8]Buckley A,Turner JR.Cell biology of tight junction barrier regulation and mucosal disease[J].Cold Spring Harb Perspect Biol,2018,10(1):a029314.DOI:10.1101/cshperspect.a029314.

[9]Otani T,F(xiàn)uruse M.Tight junction structure and function revisited[J].Trends Cell Biol,2020,30(10):805-817.DOI:10.1016/j.tcb.2020.08.004.

[10]Saez A,Gomez-Bris R,Herrero-Fernandez B,et al.Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease[J].Int J Mol Sci,2021,22(14):7618.DOI:10.3390/ijms22147618.

[11]Boger KD,Sheridan AE,Ziegler AL,et al.Mechanisms and modeling of wound repair in the intestinal epithelium[J].Tissue Barriers,2023,11(2):2087454.DOI:10.1080/21688370.2022.2087454.

[12]Lei N,Kong P,Chen S,et al.Upregulated norad is implicated in apoptosis,inflammation,and oxidative stress in ulcerative colitis through the nuclear factor-κappab signaling[J].Eur J Gastroenterol Hepatol,2022,34(6):630-639.DOI:10.1097/MEG.0000000000002370.

[13]Velayos FS,Loftus EV,Jess T,et al.Predictive and protective factors associated with colorectal cancer in ulcerative colitis:a case-control study[J].Gastroenterology,2006,130(7):1941-1949.DOI:10.1053/j.gastro.2006.03.028.

[14]Stankovic B,Dragasevic S,Popovic D,et al.Variations in inflammatory genes as molecular markers for prediction of inflammatory bowel disease occurrence[J].J Dig Dis,2015,16(12):723-733.DOI:10.1111/1751-2980.12281.

[15]Moll F,Walter M,Rezende F,et al.Noxo1 controls proliferation of colon epithelial cells[J].Front Immunol,2018,9:973.DOI:10.3389/fimmu.2018.00973.

[16]Yan J,Wan P,Choksi S,et al.Necroptosis and tumor progression[J].Trends Cancer,2022,8(1):21-27.DOI:10.1016/j.trecan.2021.09.003.

[17]Lu Z,Van Eeckhoutte HP,Liu G,et al.Necroptosis signaling promotes inflammation,airway remodeling,and emphysema in chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2021,204(6):667-681.DOI:10.1164/rccm.202009-3442OC.

[18]Negroni A,Colantoni E,Pierdomenico M,et al.RIP3 and pmlkl promote necroptosis-induced inflammation and alter membrane permeability in intestinal epithelial cells[J].Dig Liver Dis,2017,49(11):1201-1210.DOI:10.1016/j.dld.2017.08.017.

[19]Liu Y,Xu Q,Wang Y,et al.Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge[J].Cell Death Dis,2021,12(1):62.DOI:10.1038/s41419-020-03365-1.

[20]Dong K,Zhu Y,Deng Q,et al.Salmonella pslt-encoded effector spvb promotes ripk3-dependent necroptosis in intestinal epithelial cells[J].Cell Death Discov,2022,8(1):44.DOI:10.1038/s41420-022-00841-9.

[21]Sorg H,Sorg CGG.Skin wound healing:of players,patterns,and processes[J].Eur Surg Res,2023,64(2):141-157.DOI:10.1159/000528271.

[22]Boutilier AJ,Elsawa SF.Macrophage polarization states in the tumor microenvironment[J].Int J Mol Sci,2021,22(13):6995.DOI:10.3390/ijms22136995.

[23]Peng D,F(xiàn)u M,Wang M,et al.Targeting tgf-β signal transduction for fibrosis and cancer therapy[J].Mol Cancer,2022,21(1):104.DOI:10.1186/s12943-022-01569-x.

[24]Dey A,Varelas X,Guan KL.Targeting the hippo pathway in cancer,fibrosis,wound healing and regenerative medicine[J].Nat Rev Drug Discov,2020,19(7):480-494.DOI:10.1038/s41573-020-0070-z.

[25]Xiao Y,Yu D.Tumor microenvironment as a therapeutic target in cancer[J].Pharmacol Ther,2021,221:107753.DOI:10.1016/j.pharmthera.2020.107753.

[26]Takada K.Severe fibrosis in patients with ulcerative colitis-related dysplasia:can we predict and manage it well[J].Dig Endosc,2023,20(7):14620.DOI:10.1111/den.14620.

[27]Bruggeling CE,Te groen M,Garza DR,et al.Bacterial oncotraits rather than spatial organization are associated with dysplasia in ulcerative colitis[J].J Crohns Colitis,2023,17(11):1870-1881.DOI:10.1093/ecco-jcc/jjad092.

[28]Goldenring JR,Mills JC.Cellular plasticity,reprogramming,and regeneration:metaplasia in the stomach and beyond[J].Gastroenterology,2022,162(2):415-430.DOI:10.1053/j.gastro.2021.10.036.

[29]Peterson LW,Artis D.Intestinal epithelial cells:regulators of barrier function and immune homeostasis[J].Nat Rev Immunol,2014,14(3):141-153.DOI:10.1038/nri3608.

[30]Pan X,Zhu Q,Pan LL,et al.Macrophage immunometabolism in inflammatory bowel diseases:from pathogenesis to therapy[J].Pharmacol Ther,2022,238:108176.DOI:10.1016/j.pharmthera.2022.108176.

[31]Li Y,Shi Y,Zhang X,et al.FGFR2 upregulates PAI-1 via JAK2/STAT3 signaling to induce M2 polarization of macrophages in colorectal cancer[J].Biochim Biophys Acta Mol Basis Dis,2023,1869(4):166665.DOI:10.1016/j.bbadis.2023.166665.

[32]Liu X,Zhou M,Dai Z,et al.Salidroside alleviates ulcerative colitis via inhibiting macrophage pyroptosis and repairing the dysbacteriosis-associated Th17/Treg imbalance[J].Phytother Res,2023,37(2):367-382.DOI:10.1002/ptr.7636.

[33]Kulesza A,Paczek L,Burdzinska A.The role of COX-2 and PGE2 in the regulation of immunomodulation and other functions of mesenchymal stromal cells[J].Biomedicines,2023,11(2):445.DOI:10.3390/biomedicines11020445.

[34]Stiller CO,Hjemdahl P.Lessons from 20 years with COX-2 inhibitors:importance of dose-response considerations and fair play in comparative trials[J].J Intern Med,2022,292(4):557-574.DOI:10.1111/joim.13505.

[35]Brown JR,Dubois RN.Cox-2:a molecular target for colorectal cancer prevention[J].J Clin Oncol,2005,23(12):2840-2855.DOI:10.1200/JCO.2005.09.051.

[36]Tsuge K,Inazumi T,Shimamoto A,et al.Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases[J].Int Immunol,2019,31(9):597-606.DOI:10.1093/intimm/dxz021.

[37]Schumacher Y,Aparicio T,Ourabah S,et al.Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth[J].Oncogene,2016,35(20):2602-2614.DOI:10.1038/onc.2015.283.

[38]Sonoshita M,Takaku K,Sasaki N,et al.Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716)knockout mice[J].Nat Med,2001,7(9):1048-1051.DOI:10.1038/nm0901-1048.

[39]Shoji Y,Takahashi M,Kitamura T,et al.Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development[J].Gut,2004,53(8):1151-1158.DOI:10. 1136/gut.2003.028787.

[40]Jung JH,Kwon HJ,Kim TJ,et al.Immunohistochemical expression of p53,bcl-2,and Ki-67 proteins in traditional serrated adenomas of colon[J].Korean J Gastroenterol,2013,62(6):336-343.

[41]Ramesh P,Medema JP.BCL-2 family deregulation in colorectal cancer:potential for BH3 mimetics in therapy[J].Apoptosis,2020,25(5-6):305-320.DOI:10.1007/s10495-020-01601-9.

[42]Hassin O,Oren M.Drugging p53 in cancer:one protein,many targets[J].Nat Rev Drug Discov,2023,22(2):127-144.DOI:10.1038/s41573-022-00571-8.

[43]Stein Y,Rotter V,Aloni-Grinstein R.Gain-of-function mutant p53:all the roads lead to tumorigenesis[J].Int J Mol Sci,2019,20(24):6197.DOI:10.3390/ijms20246197.

[44]Zhang C,Liu J,Xu D,et al.Gain-of-function mutant p53 in cancer progression and therapy[J].J Mol Cell Biol,2020,12(9):674-687.DOI:10.1093/jmcb/mjaa040.

[45]Blagih J,Buck MD,Vousden KH.p53,cancer and the immune response[J].J Cell Sci,2020,133(5):jcs237453.DOI:10.1242/jcs.237453.

[46]Qian K,Yuan L,Wang S,et al.Inhibitor of apoptosis-stimulating p53 protein protects against inflammatory bowel disease in mice models by inhibiting the nuclear factor kappa B signaling[J].Clin Exp Immunol,2021,205(2):246-256.DOI:10.1111/cei.13613.

[47]Carrà G,Lingua MF,Maffeo B,et al.p53 vs NF-κB:the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa[J].Cell Mol Life Sci,2020,77(22):4449-4458.DOI:10.1007/s00018-020-03524-9.

[48]Tran DN,Go SM,Park SM,et al.Loss of Nckx3 exacerbates experimental DSS-induced colitis in mice through p53/NF-κB pathway[J].Int J Mol Sci,2021,22(5):2645.DOI:10.3390/ijms22052645.

[49]Huo X,Liu D,Gao L,et al.Flavonoids extracted from licorice prevents colitis-associated carcinogenesis in AOM/DSS mouse model[J].Int J Mol Sci,2016,17(9):1343.DOI:10.3390/ijms17091343.

[50]Cooks T,Pateras IS,Tarcic O,et al.Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer[J].Cancer Cell,2013,23(5):634-646.DOI:10.1016/j.ccr.2013.03.022.

[51]Moloney JN,Cotter TG.Ros signalling in the biology of cancer[J].Semin Cell Dev Biol,2018,80:50-64.DOI:10.1016/j.semcdb.2017.05.023.

[52]Mi W,Wang C,Luo G,et al.Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer[J].Cell Death Discov,2021,7(1):375.DOI:10.1038/s41420-021-00677-9.

[53]Yang H,Wang B,Wang T,et al.Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis[J].PLoS One,2014,9(10):e109980.DOI:10.1371/journal.pone.0109980.

[54]Zhang M,Li X,Zhang Q,et al.Roles of macrophages on ulcerative colitis and colitis-associated colorectal cancer[J].Front Immunol,2023,14:1103617.DOI:10.3389/fimmu.2023.1103617.

[55]He XY,Xiang C,Zhang CX,et al.p53 in the myeloid lineage modulates an inflammatory microenvironment limiting initiation and invasion of intestinal tumors[J].Cell Rep,2015,13(5):888-897.DOI:10.1016/j.celrep.2015.09.045.

[56]Li L,Ng DS,Mah WC,et al.A unique role for p53 in the regulation of M2 macrophage polarization[J].Cell Death Differ,2015,22(7):1081-1093.DOI:10.1038/cdd.2014.212.

[57]De Moraes E,Dar NA,De Moura Gallo CV,et al.Cross-talks between cyclooxygenase-2 and tumor suppressor protein p53:balancing life and death during inflammatory stress and carcinogenesis[J].Int J Cancer,2007,121(5):929-937.DOI:10.1002/ijc.22899.

[58]Benoit V,De Moraes E,Dar NA,et al.Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappa B[J].Oncogene,2006,25(42):5708-5718.DOI:10.1038/sj.onc.1209579.

[59]Choi SE,Park YS,Koh HC.NF-κB/p53-activated inflammatory response involves in diquat-induced mitochondrial dysfunction and apoptosis[J].Environ Toxicol,2018,33(10):1005-1018.DOI:10.1002/tox.22552.

[60]Hidalgo-Estévez AM,Stamatakis K,Jiménez-Martínez M,et al.Cyclooxygenase 2-regulated genes an alternative avenue to the development of new therapeutic drugs for colorectal cancer[J].Front Pharmacol,2020,11:533.DOI:10.3389/fphar.2020.00533.

[61]Han JA,Kim JI,Ongusaha PP,et al.P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis[J].EMBO J,2002,21(21):5635-5644.DOI:10.1093/emboj/cdf591.

[62]Deng L,He S,Li Y,et al.Identification of lipocalin 2 as a potential ferroptosis-related gene in ulcerative colitis[J].Inflamm Bowel Dis,2023,29(9):1446-1457.DOI:10.1093/ibd/izad050.

[63]Roser C,Tóth C,Renner M,et al.Expression of apoptosis repressor with caspase recruitment domain(ARC)in familial adenomatous polyposis(FAP)adenomas and its correlation with DNA mismatch repair proteins,p53,Bcl-2,COX-2 and beta-catenin[J].Cell Commun Signal,2021,19(1):15.DOI:10.1186/s12964-020-00702-x.

[64]Ogino S,Brahmandam M,Kawasaki T,et al.Combined analysis of COX-2 and p53 expressions reveals synergistic inverse correlations with microsatellite instability and CpG island methylator phenotype in colorectal cancer[J].Neoplasia,2006,8(6):458-464.DOI:10.1593/neo.06247.

[65]Dave M,Islam ABMMK,Jensen RV,et al.Proteomic analysis shows constitutive secretion of MIF and p53-associated activity of COX-2-/-lung fibroblasts[J].Genomics Proteomics Bioinformatics,2017,15(6):339-351.DOI:10.1016/j.gpb.2017.03.005.

[66]Ceccarelli C,Piazzi G,Paterini P,et al.Concurrent EGFr and Cox-2 expression in colorectal cancer:proliferation impact and tumour spreading[J].Ann Oncol,2005,16(Suppl 4):iv74-iv9.DOI:10.1093/annonc/mdi912.

[67]Xie R,Yang Y,Zhang H,et al.c-Myb and its effector COX-2 as an indicator associated with prognosis and therapeutic outcome in colorectal cancer[J].J Cancer,2019,10(7):1601-1610.DOI:10.7150/jca.27261.

[68]Zhang Y,Pu W,Bousquenaud M,et al.Emodin inhibits inflammation,carcinogenesis,and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis[J].Front Oncol,2021,10:564674.DOI:10.3389/fonc.2020.564674.

[69]Oh NS,Lee JY,Kim YT,et al.Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer[J].Gut Microbes,2020,12(1):1785803.DOI:10.1080/19490976.2020.1785803.

[70]Carothers AM,Davids JS,Damas BC,et al.Persistent cyclooxygenase-2 inhibition downregulates NF-kappa B,resulting in chronic intestinal inflammation in the min/+ mouse model of colon tumorigenesis[J].Cancer Res,2010,70(11):4433-4442.DOI:10.1158/0008-5472.CAN-09-4289.

[71]Yin X,Zhang Y,Wen Y,et al.Celecoxib alleviates zinc deficiency-promoted colon tumorigenesis through suppressing inflammation[J].Aging(Albany NY),2021,13(6):8320-8334.DOI:10.18632/aging.202642.

[72]Poligone B,Baldwin AS.Positive and negative regulation of NF-kappa B by COX-2:roles of different prostaglandins[J].J Biol Chem,2001,276(42):38658-38664.DOI:10.1074/jbc.M106599200.

[73]Wang J,Thomas HR,Li Z,et al.Puma,noxa,p53,and p63 differentially mediate stress pathway induced apoptosis[J].Cell Death Dis,2021,12(7):659.DOI:10.1038/s41419-021-03902-6.

[74]Patel SG,Karlitz JJ,Yen T,et al.The rising tide of early-onset colorectal cancer:a comprehensive review of epidemiology,clinical features,biology,risk factors,prevention,and early detection[J].Lancet Gastroenterol Hepatol,2022,7(3):262-274.DOI:10.1016/S2468-1253(21)00426-X.

[75]Sun K,Yu J,HU J,et al.Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment[J].Acta Biomater,2022,148:230-243.DOI:10.1016/j.actbio.2022.06.026.

[76]Tougeron D,Sha D,Manthravadi S,et al.Aspirin and colorectal cancer:back to the future[J].Clin Cancer Res,2014,20(5):1087-1094.DOI:10.1158/1078-0432.CCR-13-2563.

[77]Ai G,Dachineni R,Kumar DR,et al.Aspirin acetylates wild type and mutant p53 in colon cancer cells:identification of aspirin acetylated sites on recombinant p53[J].Tumour Biol,2016,37(5):6007-6016.DOI:10.1007/s13277-015-4438-3.

[78]Srivastava S,Dewangan J,Mishra S,et al.Piperine and celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/β-catenin signaling pathway[J].Phytomedicine,2021,84:153484.DOI:10.1016/j.phymed.2021.153484.

[79]Xu M,Tao J,Yang Y,et al.Ferroptosis involves in intestinal epithelial cell death inulcerative colitis[J].Cell Death Dis,2020,11(2):86.DOI:10.1038/s41419-020-2299-1.

(收稿日期:2023-11-01)

猜你喜歡
屏障穩(wěn)態(tài)氧化應(yīng)激
咬緊百日攻堅(jiān) 筑牢安全屏障
可變速抽水蓄能機(jī)組穩(wěn)態(tài)運(yùn)行特性研究
碳化硅復(fù)合包殼穩(wěn)態(tài)應(yīng)力與失效概率分析
屏障修護(hù)TOP10
電廠熱力系統(tǒng)穩(wěn)態(tài)仿真軟件開發(fā)
煤氣與熱力(2021年4期)2021-06-09 06:16:54
基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
一道屏障
元中期歷史劇對(duì)社會(huì)穩(wěn)態(tài)的皈依與維護(hù)
中華戲曲(2020年1期)2020-02-12 02:28:18
維護(hù)網(wǎng)絡(luò)安全 筑牢網(wǎng)絡(luò)強(qiáng)省屏障
氧化應(yīng)激與糖尿病視網(wǎng)膜病變
嘉鱼县| 连城县| 台江县| 都匀市| 奉新县| 资溪县| 砚山县| 浙江省| 翼城县| 惠州市| 丹棱县| 无极县| 福建省| 原阳县| 万山特区| 镇江市| 白城市| 泰来县| 秀山| 平谷区| 灌云县| 如东县| 宁武县| 昔阳县| 鸡泽县| 克拉玛依市| 朔州市| 临沧市| 兖州市| 浦城县| 平罗县| 神农架林区| 兴城市| 福泉市| 灯塔市| 青阳县| 广南县| 舟曲县| 庆阳市| 通渭县| 镇远县|