国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

滴灌施肥對(duì)桉樹(shù)人工林土壤酶活性和細(xì)菌群落組成的影響

2024-01-01 00:00:00毛健輝張健朗霍春宇劉秋彤楊歆竹高尚坤何茜李吉躍陳祖靜
關(guān)鍵詞:土壤酶活性土壤養(yǎng)分桉樹(shù)

摘 要:【目的】滴灌施肥是提高桉樹(shù)人工林生產(chǎn)力的重要措施,了解滴灌施肥對(duì)土壤酶活性和細(xì)菌群落結(jié)構(gòu)的影響,為滴灌施肥技術(shù)在桉樹(shù)人工林生產(chǎn)中的科學(xué)應(yīng)用提供一定的理論依據(jù)。【方法】本研究通過(guò)16s rRNA測(cè)序分析尾巨桉人工林土壤細(xì)菌群落,利用生理生化方法檢測(cè)土壤酶活性對(duì)滴灌施肥的響應(yīng)特征?!窘Y(jié)果】滴灌施肥處理后尾巨桉人工林土壤纖維素酶、酸性磷酸酶、蔗糖酶、脲酶、幾丁質(zhì)酶活性分別顯著增加了41.5%、12.5%、23.4%、28.4%和25.7%。尾巨桉人工林土壤細(xì)菌主要包含26門,63綱,127目,208科,298屬,555種,優(yōu)勢(shì)菌門為酸桿菌Acidobacteria、變形菌Proteobacteria、綠彎菌Chloroflexi和放線菌Actinobacteria,主要參與代謝功能。與不施肥處理相比,滴灌施肥顯著增加尾巨桉人工林土壤細(xì)菌多樣性,優(yōu)勢(shì)細(xì)菌相對(duì)豐度差異明顯,變形菌門、放線菌門和厚壁菌門Firmicutes相對(duì)豐度顯著增加,而酸桿菌門相對(duì)豐度顯著降低;在目水平上,根瘤菌Rhizobiales、柄桿菌Caulobacterales、鞘脂單胞菌Sphingomonadales和鹽厭氧菌目Halanaerobiales等氮和鉀循環(huán)相關(guān)細(xì)菌顯著富集。此外,桉樹(shù)人工林土壤纖維素酶、酸性磷酸酶、蔗糖酶、脲酶、幾丁質(zhì)酶、pH值、總氮含量是影響土壤細(xì)菌群落組成的關(guān)鍵因子。【結(jié)論】滴灌施肥通過(guò)提高桉樹(shù)人工林土壤相關(guān)酶活性,增加細(xì)菌群落多樣性,富集土壤氮和鉀養(yǎng)分循環(huán)相關(guān)細(xì)菌,促進(jìn)土壤養(yǎng)分循環(huán)以促進(jìn)桉樹(shù)生長(zhǎng)。

關(guān)鍵詞:土壤細(xì)菌;土壤酶活性;滴灌施肥;桉樹(shù);土壤養(yǎng)分

中圖分類號(hào):S714.3 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)06-0081-11

基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目 (31800541) ;廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項(xiàng)目(2021A1515010561);廣州市生態(tài)園林科技協(xié)同創(chuàng)新中心項(xiàng)目(202206010058)。

Effects of drip fertilization on soil enzyme activities and bacterial community composition in Eucalyptus artificial forest

MAO Jianhui, ZHANG Jianlang, HUO Chunyu, LIU Qiutong, YANG Xinzhu, GAO Shangkun, HE Qian, LI Jiyue, CHEN Zujing

(a. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm; b. College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, China)

Abstract:【Objective】Drip fertigation is an important measure to improve the productivity of Eucalyptus plantation, to understand the effects of drip fertilization on soil enzyme activity and bacterial community structure, and to provide certain theoretical basis for the scientific application of drip fertilization technology in the production of Eucalyptus plantation.【Method】We analysed the soil bacterial community in Eucalyptus artificial forest by 16s rRNA sequencing, and used physiological and biochemical methods to detect the characteristics of soil enzyme activities in response to drip fertilization.【Result】Enzyme activities of cellulase, acid phosphatase, sucrase, urease and chitin were significantly increased by 41.5%, 12.5%, 23.4%, 28.4% and 25.7% under drip fertilization in the soil of Eucalyptus artificial forest. A total of 26 phyla, 63 classes, 127 orders, 208 families, 298 genera and 555 species of soil bacteria in Eucalyptus artificial forest. The phyla of Acidobacteria, Proteobacteria, Chloroflexi and Actinobacteria were dominated, which were mainly involved in metabolic function. Compared non-fertilization treatment, the bacterial diversity increased significantly under drip fertilization in the Eucalyptus artificial forest, and the relative abundance of dominant bacteria differed significantly. The relative abundance of Proteobacteria, Actinobacteria and Firmicutes was significantly increased under drip fertilization and Acidobacteria was significantly reduced. At the order level, there was a significant enrichment of nitrogen and potassium cycling related bacteria such as Rhizobiales, Caulobacterales, Sphingomonadales, and Halanaerobiales increased significantly. Moreover, soil pH, total nitrogen content and water content were the main factors affecting cellulase, acid phosphatase, sucrase, urease, chitin and soil bacterial communities.【Conclusion】Drip fertilization significantly increased the activities of a number of soil enzymes in Eucalyptus artificial forest, increased diversity of soil bacterial communities and enrichment of soil nitrogen and potassium nutrient cycling related soil bacteria, promoting soil nutrient cycling for eucalyptus growth.

Keywords: soil bacterial; soil enzyme activities; drip fertilization; Eucalyptus; soil nutrients

土壤細(xì)菌作為土壤微生物的一部分,是地球上數(shù)量最豐富和種類最多的有機(jī)體之一[1],參與土壤養(yǎng)分制造、全球碳氮循環(huán)以及植物生長(zhǎng)等過(guò)程[2]。土壤細(xì)菌對(duì)環(huán)境變化敏感[3],土壤理化性質(zhì)和土壤酶活性的改變以及其他人為或非人為干擾都會(huì)引起土壤細(xì)菌的變化[4]。施肥和灌溉作為農(nóng)業(yè)生產(chǎn)中重要的2種管理方式,在提高作物產(chǎn)量的同時(shí)也顯著影響土壤細(xì)菌群落。施肥能夠改變土壤理化性質(zhì),例如土壤中碳、氮、磷和鉀等養(yǎng)分含量[5],維持土壤生物多樣性和土壤生態(tài)系統(tǒng)可持續(xù)發(fā)展,土壤微生物生物量和細(xì)菌豐度在一定程度上與施肥正相關(guān)[6]。灌溉可以顯著影響土壤含水量[7],土壤水分通過(guò)土壤微生物呼吸、酶活性、土壤pH值等因素影響土壤微生物群落結(jié)構(gòu)[4,8],并且在干旱脅迫下土壤微生物生物量和活性降低[9]。與常規(guī)施肥灌溉相比,滴灌施肥處理能節(jié)水節(jié)肥[10],顯著促進(jìn)林木如楊樹(shù)Populus L.[11]、桃樹(shù)Amygdalus persica L.[12]和茶樹(shù)Camellia sinensis[13]根系生長(zhǎng)及其形態(tài)結(jié)構(gòu),促進(jìn)桃樹(shù)[12]和玉米Zea mays[14]對(duì)氮元素的吸收利用,提高林地生產(chǎn)力[10,15]。研究表明,滴灌施肥處理顯著提高了楸樹(shù)人工林吸收土壤養(yǎng)分的能力,增加了楸樹(shù)人工林腐生生物類群[16];咖啡Coffea arabica土壤根區(qū)養(yǎng)分含量在滴灌條件下增加,但土壤中速效養(yǎng)分的含量會(huì)隨滴灌的灌水量增多而減少[17]。

土壤酶活性是衡量土壤質(zhì)量的重要指標(biāo),參與土壤養(yǎng)分循環(huán)和物質(zhì)流動(dòng)等生物地球化學(xué)過(guò)程,同樣對(duì)土壤外界環(huán)境變化敏感[18]。土壤纖維素酶和蔗糖酶活性常用來(lái)反映土壤碳循環(huán)狀況,土壤脲酶活性通常用來(lái)反映土壤氮循環(huán)狀況,土壤酸性磷酸酶活性常用來(lái)反映土壤磷循環(huán)狀況[19]。因此,土壤酶活性可以用來(lái)描述滴灌施肥引起的桉樹(shù)人工林土壤變化。

桉樹(shù)具有速生、豐產(chǎn)、抗逆性強(qiáng)、耐貧瘠、干形良好和用途廣泛等優(yōu)勢(shì)[20],是熱帶和亞熱帶地區(qū)的主要用材樹(shù)種,具有很高的經(jīng)濟(jì)和生態(tài)價(jià)值,在我國(guó)木材和紙漿生產(chǎn)上發(fā)揮著重要作用。研究表明施肥灌溉可顯著提高桉樹(shù)人工林生產(chǎn)力[21-22],了解滴灌施肥對(duì)桉樹(shù)人工林土壤細(xì)菌的群落結(jié)構(gòu)和功能的影響有助于維持桉樹(shù)人工林生態(tài)系統(tǒng)的可持續(xù)發(fā)展,更好地對(duì)其進(jìn)行水肥管理。因此,本試驗(yàn)研究對(duì)象為桉樹(shù)人工林土壤,探索桉樹(shù)人工林土壤酶活性和細(xì)菌群落組成對(duì)滴灌施肥處理的響應(yīng)特征,可為桉樹(shù)人工林灌溉施肥和林地管理提供一定的數(shù)據(jù)支撐。

1 樣地概況與研究方法

1.1 樣地概況

研究樣地位于廣東省廣州市增城區(qū)華南農(nóng)業(yè)大學(xué)增城教學(xué)科研基地(113°38′20E,23°14′48N),屬南亞熱帶濕潤(rùn)性季風(fēng)氣候,夏季高溫多雨,冬季溫暖濕潤(rùn),年均日照數(shù)1 800 h以上,年均氣溫為21.91 ℃,年均降水量為2 004.5 mm,旱季和雨季分明。地帶性土壤為赤紅壤,供試桉樹(shù)為尾巨桉Eucalyptus urophylla×E. grandis DH32-29無(wú)性系健康苗。

1.2 樣地設(shè)置

樣地設(shè)置不施肥處理為對(duì)照(Control,CK)和滴灌施肥(Fertilizer,F(xiàn)),每個(gè)處理設(shè)置4個(gè)小區(qū),每個(gè)小區(qū)為1個(gè)重復(fù),共4個(gè)重復(fù),小區(qū)與小區(qū)之間用寬度為60 cm的聚丙烯板隔開(kāi)。CK和F處理分別為189和186株桉樹(shù),栽植密度為3 m×2 m。其中滴灌施肥以每株10.28 g CH4N2O、16.24 g KCl、67.11 g NH4H2PO4、1.06 g Na2B4O7、0.26 g ZnSO4溶于水后進(jìn)行滴灌,滴速為4 L/h,每次連續(xù)3 h,每周2次,每周共處理6 h,連續(xù)處理1 a。

1.3 研究方法

1.3.1 土壤樣品采集

采集滴灌施肥處理1年生的桉樹(shù)人工林土壤。在每個(gè)小區(qū)采用對(duì)角線采樣法隨機(jī)挑選8個(gè)采樣點(diǎn),去除表面枯枝落葉層,用內(nèi)徑為5 cm的土鉆采集0~20 cm的表層土壤,剔除石礫、樹(shù)根和枯落葉等雜物。采集的土樣分成3份,一份樣品液氮冷凍后用于DNA提取和細(xì)菌群落分析;一份樣品置于冰箱中4 ℃下保存,用于土壤酶活性測(cè)定;一份樣品進(jìn)行土壤含水量和土壤理化性質(zhì)測(cè)定。

1.3.2 土壤理化性質(zhì)和酶活性測(cè)定

記錄土壤鮮質(zhì)量和干質(zhì)量,土壤含水量W(%)=(鮮質(zhì)量-干質(zhì)量)/(干質(zhì)量-鋁盒質(zhì)量)×100%。土壤pH值采用1∶2.5(m∶V)土水比測(cè)定。土壤全氮(TN)和土壤有機(jī)碳(SOC)采用凱氏定氮法測(cè)定,利用穩(wěn)定同位素質(zhì)譜儀(Isoprime 100,英國(guó))測(cè)定。土壤全磷(TP)采用HClO4?H2SO4消煮?鉬銻抗比色法測(cè)定;土壤速效磷(AP)采用HCl?NH4F?鉬銻抗比色法測(cè)定;土壤速效鉀(AK)采用C2H7NO2浸提?火焰光度計(jì)測(cè)定,具體操作參考《土壤農(nóng)化分析》[23]。

土壤脲酶活性采用苯酚-次氯酸鈉比色法;土壤酸性磷酸酶活性采用磷酸苯二鈉比色法;土壤纖維素酶活性和土壤蔗糖酶活性采用3,5-二硝基水楊酸比色法;幾丁質(zhì)酶采用酶標(biāo)法;過(guò)氧化氫酶活性采用高錳酸鉀滴定法,多酚氧化酶活性采用鄰苯三酚比色法;過(guò)氧化物酶活性采用紫色沒(méi)食子素比色法,具體操作參考《土壤酶及其研究法》[24]。

1.3.3 土壤DNA提取和Illumina測(cè)序

采用PowerSoil kit(MoBio Laboratories Carlsbad,CA,美國(guó))試劑盒提取土壤微生物DNA。通過(guò)細(xì)菌16s通用引物進(jìn)行PCR擴(kuò)增。用1%瓊脂糖凝膠電泳檢測(cè)PCR產(chǎn)物質(zhì)量,產(chǎn)物純化后構(gòu)建文庫(kù)并通過(guò)Illumina MiSeq(PE300,Sandiego,CA,美國(guó))平臺(tái)對(duì)文庫(kù)進(jìn)行測(cè)序(美吉生物公司,上海)。

1.4 數(shù)據(jù)處理與分析

將原始數(shù)據(jù)通過(guò)Flash軟件(https://ccb.jhu. edu/software/FLASH/index.shtml)進(jìn)行序列拼接與質(zhì)控,獲得高質(zhì)量序列。使用Uparse(http://www. drive5.com/uparse/)軟件對(duì)序列進(jìn)行分析,其中將相似超過(guò)97%的合并為一個(gè)OTU(Operationl taxonomic units),再通過(guò)比對(duì)SILVA rRNA(http:// www.arb-silva.de/)和GreenGenes數(shù)據(jù)庫(kù)(http:// greengenes.secondgenome.com/),在各個(gè)分類水平上對(duì)群落物種組成進(jìn)行注釋。采用Mothur(1.30.2)(https://www.mothur.org/wiki/Download_mothur)軟件計(jì)算樣品α多樣性指數(shù);通過(guò)Qiime(http:// qiime.org/install/index.html)軟件計(jì)算β多樣性;采用PICRUSt2(2.2.0)軟件預(yù)測(cè)分析土壤細(xì)菌功能。桉樹(shù)人工林土壤細(xì)菌群落結(jié)構(gòu)與土壤環(huán)境因子之間的相關(guān)性采用冗余分析(Redundancy analysis,RDA)。

采用R語(yǔ)言(V3.3.1)vegan軟件對(duì)物種群落組成和對(duì)冗余分析繪圖。采用SPSS 24.0軟件分析數(shù)據(jù)顯著性差異和統(tǒng)計(jì)相關(guān)性,細(xì)菌群落結(jié)構(gòu)的差異采用單因素(One-way ANOVA)方差分析,相關(guān)性分析采用Spearman相關(guān)性分析。其余圖片繪制采用TBtools 24.0和Graphd Prism 8.0進(jìn)行。

2 結(jié)果與分析

2.1 滴灌施肥對(duì)桉樹(shù)人工林土壤酶活性的影響

與不施肥相比,滴灌施肥顯著提高了桉樹(shù)人工林土壤纖維素酶、酸性磷酸酶、蔗糖酶、脲酶和幾丁質(zhì)酶活性(圖1)。滴灌施肥處理桉樹(shù)人工林土壤中纖維素酶、酸性磷酸酶和蔗糖酶活性分別為91.90 μmol·h-1·mg-1、6.21 μmol·h-1·g-1和5.53 mg·h-1·g-1,與CK處理相比分別提高了41.5%、11.5%和23.4%,三者極顯著增加;脲酶活性和幾丁質(zhì)酶活性分別為17.10 μg·h-1·g-1和96.57 μmol·h-1·mg-1,與CK處理相比分別提高了28.4%和25.7%,兩者顯著增加。

2.2 桉樹(shù)人工林土壤細(xì)菌測(cè)序數(shù)據(jù)

對(duì)滴灌施肥處理的桉樹(shù)人工林8個(gè)土壤樣本進(jìn)行16s rDNA高通量測(cè)序獲得252 245個(gè)數(shù)據(jù),平均測(cè)序讀長(zhǎng)為412.45 bp,共獲得1 729個(gè)OTU。隨序列數(shù)增加,Chao1指數(shù)和Shannon指數(shù)從急劇上升到趨于平緩,說(shuō)明測(cè)序樣本能夠合理反映土壤細(xì)菌群落結(jié)構(gòu),測(cè)序深度合理(圖2)。

2.3 桉樹(shù)人工林土壤細(xì)菌群落結(jié)構(gòu)及其多樣性對(duì)滴灌施肥處理的響應(yīng)

與CK處理相比,滴灌施肥處理后桉樹(shù)人工林土壤細(xì)菌Shannon指數(shù)極顯著升高,Simpson指數(shù)極顯著降低,而Chao1指數(shù)和ACE指數(shù)無(wú)顯著差異(圖3)。說(shuō)明滴灌施肥處理后桉樹(shù)人工林土壤細(xì)菌群落多樣性顯著增加,而物種豐富度無(wú)明顯變化。

桉樹(shù)人工林土壤樣本中共檢測(cè)到26門,63綱,127目,208科,298屬,555種細(xì)菌,其中相對(duì)豐度大于1.0%的分別為酸桿菌門、變形菌門、綠彎菌門、放線菌門、疣微菌門Verrucomicrobia、浮霉菌門Planctomycetes、GAL 15和厚壁菌門Firmicutes(圖4a)。桉樹(shù)人工林土壤中酸桿菌門、變形菌門和綠彎菌門為優(yōu)勢(shì)菌,占總細(xì)菌的80%以上。與CK處理相比,滴灌施肥后變形菌門、放線菌門、疣微菌門和厚壁菌門的相對(duì)豐度分別顯著增加了5.4%、1.3%、0.6%和0.3%,酸桿菌門相對(duì)豐度顯著減少了3.8%。

在綱水平上,桉樹(shù)人工林土壤中主要包括酸桿菌Acidobacteria、α-變形菌Alphaproteobacteria、纖線桿菌Ktedonobacteria、JG37-AG-4、放線菌 Actinobacteria、γ-變形菌Gammaproteobacteria、OPB35_soil_group、δ-變形菌Deltaproteobacteria、浮霉菌Planctomycetacia、norank_p__GAL15、β-變形菌Betaproteobacteria、unclassified_k__norank、Spartobacteria和梭菌Clostridia。滴灌施肥后桉樹(shù)人工林土壤細(xì)菌α-變形菌和γ-變形菌相對(duì)豐度極顯著增加,與CK處理相比分別增加了4.4%和 0.8%,放線菌綱、OPB35_soil_group和梭菌相對(duì)豐度顯著增加,分別增加了0.6%、0.2%和0.4%,而酸桿菌相對(duì)豐度減少了7.7%(圖4b)。

桉樹(shù)人工林土壤細(xì)菌群落主要有27目。與CK處理相比,灌溉施肥桉樹(shù)人工林土壤中變形菌門α-變形菌綱的根瘤菌目、柄桿菌目和鞘脂單胞菌目的相對(duì)豐度極顯著增加,分別比對(duì)應(yīng)CK處理提高了27.8%、45.9%和222.2%。滴灌施肥后桉樹(shù)人工林土壤中黃單胞菌Xanthomonadales、弗蘭克氏菌Frankiales、細(xì)鏈孢菌Catenulisporales和鹽厭氧菌的相對(duì)豐度顯著增加,分別比CK處理提高了18.3%、31.7%、225.0%和37.6%。滴灌施肥后桉樹(shù)人工林土壤中酸桿菌Acidobacteria和JG37-AG-4相對(duì)豐度顯著減少,分別比CK提高了21.2%和29.3%(圖4c)。

桉樹(shù)人工林土壤細(xì)菌主坐標(biāo)分析結(jié)果顯示第1主成分(PC1)和第2主成分(PC2)分別解釋了桉樹(shù)土壤細(xì)菌群落結(jié)構(gòu)差異的33.0%和19.2%,共同解釋了群落結(jié)構(gòu)差異的52.2%。2個(gè)處理桉樹(shù)人工林土壤細(xì)菌群落明顯分開(kāi),差異極顯著,說(shuō)明滴灌施肥顯著改變了桉樹(shù)人工林土壤細(xì)菌群落組成(圖5)。

2.4 滴灌施肥對(duì)桉樹(shù)人工林土壤細(xì)菌功能的影響

桉樹(shù)人工林土壤細(xì)菌功能主要參與新陳代謝、遺傳信息處理、環(huán)境信息處理、細(xì)胞過(guò)程、人類疾病和有機(jī)系統(tǒng)。其中,桉樹(shù)人工林土壤細(xì)菌參與新陳代謝功能基因占據(jù)絕對(duì)優(yōu)勢(shì),滴灌施肥后桉樹(shù)人工林土壤細(xì)菌中參與環(huán)境信息處理基因功能的相對(duì)占比為6.35%,與CK處理相比顯著提高0.07%,遺傳信息處理基因功能相對(duì)占比為7.0%,與CK處理相比顯著降低了0.08%(圖6a)。

二級(jí)功能預(yù)測(cè)結(jié)果顯示桉樹(shù)人工林細(xì)菌主要參與全局概覽通路、碳水化合物代謝和氨基酸代謝等19個(gè)功能。其中滴灌施肥后桉樹(shù)人工林土壤細(xì)菌與CK相比,膜運(yùn)輸功能相對(duì)占比顯著增加0.06%,核苷酸代謝相對(duì)占比顯著減少了0.01%,折疊、定位和降解相對(duì)占比顯著減少了0.01%,復(fù)制和修復(fù)功能相對(duì)占比顯著減少了0.02%(圖6b)。

2.5 桉樹(shù)人工林土壤細(xì)菌群落變化與土壤環(huán)境因子的關(guān)系

冗余分析結(jié)果顯示,第一軸序列特征值為60.55%,第二軸序列特征值為14.45%,桉樹(shù)人工林土壤環(huán)境因子基本解釋了(75.1%)細(xì)菌群落結(jié)構(gòu)差異。樣點(diǎn)分布較散說(shuō)明滴灌施肥后桉樹(shù)人工林土壤細(xì)菌群落組成與CK處理的土壤細(xì)菌群落組成存在差異且受土壤理化性質(zhì)和土壤酶活性影響較大。桉樹(shù)人工林細(xì)菌群落組成與土壤有機(jī)碳(r=0.975)、有效鉀含量(r=0.958)、有效磷含量(r=0.905)和纖維素酶活性(r=0.793)呈顯著正相關(guān),桉樹(shù)人工林細(xì)菌群落組成與土壤含水量(r=-0.933)和pH值(r=-0.833)呈顯著負(fù)相關(guān)(圖7)。

桉樹(shù)人工林株高與全氮(r=0.857)、土壤纖維素酶(r=0.755)、酸性磷酸酶(r=0.929)、蔗糖酶(r=0.714)、脲酶(r=0.833)和幾丁質(zhì)酶(r=0.833)顯著正相關(guān),與土壤pH值(r=-0.857)顯著負(fù)相關(guān);地徑與全氮(r=0.881)、土壤纖維素酶(r=0.850)、酸性磷酸酶(r=0.786)、蔗糖酶(r=0.714)和脲酶(r=0.905)顯著正相關(guān),與土壤pH值(r=-0.881)顯著負(fù)相關(guān)(圖8)。

桉樹(shù)人工林土壤細(xì)菌群落組成和土壤酶活性受土壤含水量、土壤pH值、全氮和全磷的影響最大(圖8)。在桉樹(shù)人工林土壤細(xì)菌群落門水平上,酸桿菌門與土壤pH值(r=0.762)顯著正相關(guān),而與土壤含水量(r=-0.810)顯著負(fù)相關(guān);變形菌門與土壤pH值(r=-0.762)顯著負(fù)相關(guān);綠彎菌門與土壤有機(jī)碳(r=0.786)顯著正相關(guān);放線菌門與全氮(r=0.929)顯著正相關(guān),與土壤pH值(r=-0.976)顯著負(fù)相關(guān)。

在桉樹(shù)人工林土壤酶活性水平,土壤含水量與酸性磷酸酶(r=0.739)和蔗糖酶(r=0.786)顯著正相關(guān);土壤pH值與纖維素酶(r=-0.826)、酸性磷酸酶(r=-0.738)和脲酶(r=-0.762)顯著負(fù)相關(guān);全氮與蔗糖酶(r=0.838)和脲酶(r=0.838)顯著正相關(guān)。此外,土壤細(xì)菌作為土壤酶活性的重要來(lái)源,桉樹(shù)人工林土壤纖維素酶與變形菌門(r=0.898)和放線菌門(r=0.778)顯著正相關(guān);土壤酸性磷酸酶與厚壁菌門(r=0.857)、變形菌門(r=0.714)和酸桿菌門(r=-0.976)顯著相關(guān);土壤蔗糖酶與厚壁菌門(r=0.810)和酸桿菌門( r=-0.810)顯著相關(guān);土壤脲酶與放線菌門(r=0.714)和酸桿菌門(r=-0.714)顯著相關(guān);幾丁質(zhì)酶與厚壁菌門(r=0.786)和酸桿菌門(r=-0.833)顯著相關(guān)(圖8)。

3 討論與結(jié)論

3.1 討 論

土壤纖維素酶與土壤呼吸有關(guān),能水解纖維素,促進(jìn)碳循環(huán)[25],酸性磷酸酶可以促進(jìn)土壤碳氮磷循環(huán),蔗糖酶和脲酶分別參與土壤碳氮循環(huán)[26],幾丁質(zhì)酶能夠促進(jìn)幾丁質(zhì)分解,因此土壤蔗糖酶、堿性磷酸酶和脲酶等土壤酶活性常用來(lái)反映土壤質(zhì)量[27]。本研究發(fā)現(xiàn),滴灌施肥后桉樹(shù)人工林土壤纖維素酶、酸性磷酸酶、蔗糖酶、脲酶和幾丁質(zhì)酶活性顯著增加,其變化與土壤含水量、土壤pH值和TN顯著相關(guān)。灌溉引起土壤含水量上升,可以顯著提高土壤酶活性[28]。土壤含水量和土壤pH值還會(huì)影響土壤呼吸,從而導(dǎo)致酸性磷酸酶和脲酶活性增加[28-29],但相關(guān)性分析結(jié)果表明土壤含水量與脲酶活性無(wú)顯著相關(guān)性,這與樟樹(shù)和馬尾松人工林土壤研究的結(jié)果相反[30]。氮沉降會(huì)降低土壤pH值,增強(qiáng)土壤硝化作用,施氮肥可以提高碳磷循環(huán)相關(guān)土壤酶活性[31],有研究表明脲酶、堿性磷酸酶和蔗糖酶活性與土壤全氮含量顯著正相關(guān)[32]。滴灌施肥可以提高桉樹(shù)人工林土壤酶活性,促進(jìn)土壤氮磷鉀元素循環(huán),這與楸樹(shù)林滴灌施肥的相關(guān)結(jié)果類似[18]。

本研究中,滴灌施肥顯著改變了桉樹(shù)人工林土壤細(xì)菌群落組成,這與施肥改變大豆土壤細(xì)菌群落特征[33]的研究結(jié)果相似。滴灌施肥后桉樹(shù)人工林土壤細(xì)菌多樣性顯著增加,施肥處理能提高土壤細(xì)菌豐度[9,34-35],土壤含水量增加在一定范圍內(nèi)也為微生物生長(zhǎng)提供適宜條件[34]。而部分研究表明長(zhǎng)期施肥導(dǎo)致土壤細(xì)菌群落多樣性減少[18],這可能與土壤氣候特性、不同樹(shù)種根系遺傳特性和根系分泌物差異等有關(guān)。桉樹(shù)人工林土壤細(xì)菌優(yōu)勢(shì)門為酸桿菌門、變形菌門、綠彎菌門和放線菌門,這與樟子松人工林[36]和黃壤稻田[35]相關(guān)結(jié)果類似,但在刺槐人工林[37]和三江平原散生林區(qū)[38]土壤中,變形菌門豐度遠(yuǎn)大于酸桿菌門,這可能與當(dāng)?shù)貧夂蚝蜆?shù)種有關(guān)。滴灌施肥后桉樹(shù)人工林土壤養(yǎng)分富集,酸桿菌門作為寡營(yíng)養(yǎng)細(xì)菌[39],相對(duì)豐度減少,與之相反,變形菌門作為富營(yíng)養(yǎng)細(xì)菌[39],其下多種細(xì)菌參與土壤養(yǎng)分循環(huán)。因此,滴灌施肥后桉樹(shù)人工林土壤細(xì)菌α-變形菌綱中根瘤菌目、柄桿菌目和鞘脂單胞菌目以及γ-變形菌綱中黃單胞菌目相對(duì)豐度顯著增加,四者均參與土壤中氮元素的循環(huán),并且根瘤菌目還與植物根瘤共生關(guān)系密切[40]。放線菌門參與復(fù)雜的有機(jī)質(zhì)分解,具有降解木質(zhì)素和纖維素的能力,弗蘭克氏菌能與非豆科植物共生結(jié)瘤固氮,因此通過(guò)滴灌施肥,桉樹(shù)人工林土壤養(yǎng)分增加,放線菌和弗蘭克氏菌相對(duì)豐度增加。滴灌施肥后桉樹(shù)人工林土壤細(xì)菌厚壁菌門中鹽厭氧菌目相對(duì)豐度顯著增加,這可能與其參與土壤鉀循環(huán)代謝有關(guān)[41]。此外,桉樹(shù)人工林土壤細(xì)菌功能主要涉及代謝功能的群落相對(duì)占比最高,這與楸樹(shù)林[18]、樟子松人工林[39]和茶園[41]土壤細(xì)菌功能研究結(jié)果相似,代謝是桉樹(shù)人工林土壤細(xì)菌群落的核心功能[42]。滴灌施肥后桉樹(shù)人工林土壤細(xì)菌核苷酸代謝增加,說(shuō)明細(xì)菌的自身活動(dòng)加劇,膜運(yùn)輸功能活躍有利于細(xì)菌維持正常的生理活動(dòng)。桉樹(shù)人工林經(jīng)過(guò)滴灌施肥處理后,土壤細(xì)菌可能更為活躍,但并不改變土壤細(xì)菌功能,這可能與土壤細(xì)菌功能冗余有關(guān)。說(shuō)明滴灌施肥后桉樹(shù)人工林土壤養(yǎng)分含量增多,土壤細(xì)菌更為活躍,與土壤養(yǎng)分循環(huán)相關(guān)的細(xì)菌相對(duì)豐度顯著增加。

本研究中,桉樹(shù)人工林土壤pH值和全氮是影響桉樹(shù)株高和地徑的關(guān)鍵理化因子,土壤酶活性和土壤細(xì)菌群落的變化也與桉樹(shù)株高和地徑顯著正相關(guān),這與土壤酶活性和土壤細(xì)菌群落能夠參與土壤養(yǎng)分制造和循環(huán)有關(guān)[2,11,27],因此土壤酶活性和土壤細(xì)菌群落可以在一定程度上反映土壤肥力和林地生產(chǎn)力。土壤微生物的活動(dòng)是土壤酶的重要來(lái)源[43],土壤微生物可以通過(guò)土壤呼吸和自身微生物代謝作用影響土壤酶活性[28],桉樹(shù)人工林土壤酶活性與酸桿菌門、變形菌門、放線菌門和厚壁菌門等土壤細(xì)菌顯著相關(guān)。桉樹(shù)人工林土壤細(xì)菌群落組成與土壤pH值和土壤含水量呈顯著負(fù)相關(guān)。土壤pH值顯著影響土壤細(xì)菌豐度,本研究中土壤pH值與桉樹(shù)人工林土壤酸桿菌門、變形菌門和放線菌門群落相對(duì)豐度變化顯著相關(guān),相關(guān)研究表明長(zhǎng)期施肥和灌溉均能改變土壤pH值從而對(duì)土壤細(xì)菌造成影響。土壤水分可以通過(guò)影響土壤微生物呼吸和土壤pH值等因素影響土壤微生物群落結(jié)構(gòu)[8]。氮元素直接影響土壤細(xì)菌豐富度,也通過(guò)土壤酸化和植物群落變化間接影響細(xì)菌群落[33]。在長(zhǎng)期施單一氮肥的情況下,土壤pH值降低,土壤細(xì)菌豐度減少[6,33],而長(zhǎng)期施用復(fù)合肥能改善施氮肥造成的土壤細(xì)菌多樣性下降[6],顯著增加土壤細(xì)菌豐度[6]。

滴灌施肥比常規(guī)施肥灌溉更能節(jié)水節(jié)肥[10],但由于同時(shí)改變了土壤的多項(xiàng)指標(biāo),本研究并未設(shè)置施肥和灌溉對(duì)照組,并未能清楚地分析滴灌施肥是如何具體影響桉樹(shù)人工林土壤的。同時(shí)本研究是基于短期滴灌施肥處理下桉樹(shù)人工林土壤細(xì)菌和酶活性的變化,對(duì)于長(zhǎng)期滴灌施肥處理對(duì)桉樹(shù)人工林土壤細(xì)菌和酶活性的影響不甚了解。因此,下一步將設(shè)置施肥和灌溉兩個(gè)處理,并通過(guò)長(zhǎng)期滴灌施肥對(duì)桉樹(shù)人工林土壤的影響展開(kāi),進(jìn)一步揭示桉樹(shù)人工林水肥高效利用的部分機(jī)理。

3.2 結(jié) 論

滴灌施肥處理后桉樹(shù)人工林土壤細(xì)菌共有26門,63綱,127目,208科,298屬,555種,主要優(yōu)勢(shì)菌門為酸桿菌門、變形菌門、綠彎菌門和放線菌門。與不施肥處理相比,滴灌施肥處理顯著增加了土壤細(xì)菌群落多樣性,細(xì)菌代謝功能極為活躍。滴灌施肥通過(guò)提高土壤纖維素酶、酸性磷酸酶、蔗糖酶、脲酶和幾丁質(zhì)酶活性,增加根瘤菌、柄桿菌和弗蘭克氏菌等與土壤氮和鉀相關(guān)細(xì)菌的群落豐度,促進(jìn)土壤養(yǎng)分循環(huán)和改善土壤質(zhì)量以提高桉樹(shù)生產(chǎn)力。因此,對(duì)桉樹(shù)人工林進(jìn)行滴灌施肥處理可以提高桉樹(shù)人工林土壤酶活性,增加細(xì)菌群落多樣性,改變桉樹(shù)人工林細(xì)菌群落組成,富集土壤氮和鉀養(yǎng)分循環(huán)相關(guān)細(xì)菌,有效改善土壤狀況,促進(jìn)土壤養(yǎng)分循環(huán)以促進(jìn)桉樹(shù)生長(zhǎng)。

參考文獻(xiàn):

[1] BARDGETT R D, van der PUTTEN W H. Belowground biodiversity and ecosystem functioning[J]. Nature,2014, 515(7528):505-511.

[2] KELLY S R, CHRISTOPHE G K, de HOLLANDER M, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils[J]. Nature Microbiology, 2018,3(2):189-196.

[3] STEVEN D A, JENNIFERE B H M. Colloquium paper: resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(Suppl.1):11512-11519.

[4] FRENK S, HADAR Y, MINZ D. Quality of irrigation water affects soil functionality and bacterial community stability in response to heat disturbance[J]. Applied and Environmental Microbiology, 2018,84(4):e02087-17.

[5] BEDADA W, LEMENIH M, KARLTUN E. Soil nutrient buildup, input interaction effects and plot level N and P balances under long-term addition of compost and NP fertilizer[J]. Agriculture, Ecosystems and Environment,2016,218:220-231.

[6] DAI Z M, SU W Q, CHEN H H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe[J]. Global Change Biology,2018,24(8):3452-3461.

[7] 楊亞?wèn)|,王志敏,曾昭海.長(zhǎng)期施肥和灌溉對(duì)土壤細(xì)菌數(shù)量、多樣性和群落結(jié)構(gòu)的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2018,51(2): 290-301. YANG Y D, WANG Z M, ZENG Z H. Effects of long-term different fertilization and irrigation managements on soil bacterial abundance, diversity and composition[J]. Scientia Agricultura Sinica, 2018,51(2):290-301.

[8] 朱義族,李雅穎,韓繼剛,等.水分條件變化對(duì)土壤微生物的影響及其響應(yīng)機(jī)制研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2019,30(12): 4323-4332. ZHU Y Z, LI Y Y, HAN J G, et al. Effects of changes in water status on soil microbes and their response mechanism: a review[J]. Chinese Journal of Applied Ecology,2019,30(12): 4323-4332.

[9] 聶園園,周貴堯,邵鈞炯,等.模擬干旱對(duì)亞熱帶森林土壤微生物生物量及群落結(jié)構(gòu)的影響[J].復(fù)旦學(xué)報(bào)(自然科學(xué)版), 2017,56(1):97-105. NIE Y Y, ZHOU G Y, SHAO J T, et al. Effects of simulating drought on soil microbial biomass and community structure in subtropical forest[J]. Journal of Fudan University (Natural Science), 2017,56(1):97-105.

[10] 張銀榮,蘭再平,秘洪雷,等.滴灌施肥條件下氮磷鉀對(duì)‘龍腦香樟’幼苗生長(zhǎng)及光合特性的影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,43(6):39-45. ZHANG Y R, LAN Z P, MI H L, et al. The growth and photosynthetic characteristics of Cinnamomum longepaniculatum‘Longnao Xiangzhang’ steckling under different N, P and K level by drip fertilization[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2019,43(6):39-45.

[11] 秘洪雷,蘭再平,彭晶晶,等.滴灌施肥條件下楊樹(shù)生長(zhǎng)及細(xì)根特性研究[J].灌溉排水學(xué)報(bào),2021,40(增刊1):77-82. MI H L, LAN Z P, PENG J J, et al. Growth and fine root characteristics of poplar under drip fertilization[J]. Journal of Irrigation and Drainage,2021,40(Suppl.1):77-82.

[12] 張守仕,謝克英,常介田,等.滴灌施肥對(duì)桃樹(shù)細(xì)根生長(zhǎng)及氮素吸收的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2022,28(11):2097-2105. ZHANG S S, XIE K Y, CHANG J T, et al. Effects of drip fertigation on fine root growth and nitrogen absorption of peach tree[J]. Journal of Plant Nutrition and Fertilizers,2022,28(11): 2097-2105.

[13] 劉子君,葉赟,王麗,等.滴噴灌施肥方式對(duì)土壤養(yǎng)分空間分異及茶苗根系生長(zhǎng)的影響[J].水土保持學(xué)報(bào),2022,36(6): 330-339. LIU Z J, YE Z, WANG L, et al. Effects of drip irrigation and spray irrigation fertilization on spatial differentiation of soil nutrients and root growth of tea seedlings[J]. Journal of Soil and Water Conservation,2022,36(6):330-339.

[14] 李前,秦裕波,尹彩俠,等.滴灌施肥模式對(duì)玉米產(chǎn)量、養(yǎng)分吸收及經(jīng)濟(jì)效益的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2022,55(8):1604-1616. LI Q, QIN Y B, YIN C X, et al. Effect of drip fertigation mode on maize yield, nutrient uptake and economic benefit[J]. Scientia Agricultura Sinica,2022,55(8):1604-1616.

[15] 溫明霞,奚輝,吳韶輝,等.滴灌施肥對(duì)山地柑橘園生產(chǎn)效應(yīng)的影響[J].浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2022,48(5): 566-572. WEN M X, XI H, WU S H, et al. Effects of drip fertigation on production effect of mountain citrus orchard[J]. Journal of Zhejiang University (Agriculture Life Sciences),2022,48(5): 566-572.

[16] GUAN Z Z, LIN D Y, CHEN D, et al. Soil microbial communities response to different fertilization regimes in young Catalpa bungei plantation[J]. Frontiers in Microbiology,2022,13:948875.

[17] 李慧永,劉小剛,張文慧,等.遮陰下滴灌施肥對(duì)小粒種咖啡土壤質(zhì)量和水分利用的影響[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2022, 43(2):57-67. LI H Y, LIU X G, ZHANG W H, et al. Effects of drip fertigation under shade on soil quality and water use of Coffea arabica[J]. Journal of South China Agricultural University,2022,43(2):57-67.

[18] FIERER N, WOOD S A, MESQUITA C P B. How microbes can, and cannot, be used to assess soil health[J]. Soil Biology and Biochemistry,2021,153:108111.

[19] 羅蓉,楊苗,余旋,等.沙棘人工林土壤微生物群落結(jié)構(gòu)及酶活性的季節(jié)變化[J].應(yīng)用生態(tài)學(xué)報(bào),2018,29(4):1163-1169. LUO R, YANG M, YU X, et al. Seasonal dynamics of soil microbial community and enzyme activities in Hippophae rhamnoides plantation[J]. Chinese Journal of Applied Ecology, 2018,29(4):1163-1169.

[20] STAPE J L, BINKLEY D, RYAN M G, et al. The Brazil eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production[J]. Forest Ecology and Management,2010,259(9):1684-1694.

[21] HUA L, YU F, QIU Q, et al. Dry-season irrigation further promotes the growth of Eucalyptus urophylla×E. grandis plantations under the conventional fertilization[J]. New Forests, 2022,54(6):1-18.

[22] HUA L, YU F, QIU Q, et al. Relationships between diurnal and seasonal variation of photosynthetic characteristics of Eucalyptus plantation and environmental factors under dry-season irrigation with fertilization[J]. Agricultural Water Management,2021,248: 106737.

[23] 鮑士旦.土壤農(nóng)化分析[M].北京:中國(guó)農(nóng)業(yè)出版社,2000. BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: Chinese Agriculture Press,2000.

[24] 關(guān)松蔭.土壤酶及其研究法[M].北京:農(nóng)業(yè)出版社,1986. GUAN S Y. Soil enzymes and their research methods[M]. Beijing: Agricultural Press,1986.

[25] 黃玉梓,樊后保,李燕燕,等.氮沉降對(duì)杉木人工林土壤呼吸與土壤纖維素酶活性的影響[J].福建林學(xué)院學(xué)報(bào),2009,29(2): 120-124. HUANG Y Z, FAN H B, LI Y Y, et al. Impacts of nitrogen deposition on the soil respiration rate and soil cellulose enzyme activity in Chinese fir plantation[J]. Journal of Fujian College of Forestry,2009,29(2):120-124.

[26] 靳玉婷,李先藩,蔡影,等.秸稈還田配施化肥對(duì)稻-油輪作土壤酶活性及微生物群落結(jié)構(gòu)的影響[J].環(huán)境科學(xué),2021,42(8): 3985-3996. JIN Y T, LI Y P, CAI Y, et al. Effects of straw returning with chemical fertilizer on soil enzyme activities and microbial community structure in rice-rape rotation[J]. Environmental Science,2021,42(8): 3985-3996.

[27] 周永學(xué),陳靜,李遠(yuǎn),等.棉稈還田對(duì)咸水滴灌棉田土壤酶活性和細(xì)菌群落結(jié)構(gòu)多樣性的影響[J].環(huán)境科學(xué),2022,43(4): 2192-2203. ZHOU Y X, CHEN J, LI Y, et al. Effects of cotton returning on soil enzyme activity and bacterial community structure diversity in cotton field with long-term saline water irrigation[J]. Environmental Science,2022,43(4):2192-2203.

[28] 董齊琪,王海燕,杜雪,等.東北低山區(qū)典型林分類型土壤脲酶活性特征[J].應(yīng)用與環(huán)境生物學(xué)報(bào),2023,29(3):690-695. DONG Q Q, WANG H Y, DU X, et al. Characteristics of soil urease activity in typical stand types in low mountainous area of northeast China[J]. Chinese Journal of Applied Environmental Biology, 2023,29(3):690-695.

[29] 隋鵬祥,羅洋,李瑞平,等.長(zhǎng)期耕作對(duì)農(nóng)田黑土幾丁質(zhì)降解菌群及酶活性的影響[J].土壤學(xué)報(bào),2023,60(6):1799-1809. SUI P X, LUO Y, LI R P, et al. Effects of long-term different tillage practices on chitin degrading microbial communities and chitinase activity in farmland black soil[J]. Acta Pedologica Sinica, 2023,60(6):1799-1809.

[30] 陳湘淋,沈燕,黃怡,等.樟樹(shù)和馬尾松人工林土壤酶活性和微生物群落對(duì)干季和濕季的響應(yīng)[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2022,42(7):114-126. CHEN X L, SHEN Y, HUANG Y, et al. Responses of soil enzyme activities and microbial communities to dry and wet seasons in Cinnamomum camphora and Pinus massoniana plantations[J]. Journal of Central South University of Forestry Technology,2022,42(7): 114-126.

[31] 馬鵬宇,張紅光,昝鵬,等.長(zhǎng)期氮添加對(duì)東北地區(qū)興安落葉松人工林土壤酶的影響[J].植物研究,2019,39(4):598-603. MA P Y, ZHANG H G, ZAN P, et al. Effects of long-term nitrogen addition on soil enzymes in Larix gmelinii plantation in northeast China[J]. Bulletin of Botanical Research,2019,39(4): 598-603.

[32] 何群輝,孫亞麗,管仁水,等.不同蓼草根際土壤酸性磷酸酶活性及其影響因素[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào),2023, 46(5):116-123. HE Q H, SUN Y L, GUAN R S, et al. Acid phosphatase activity and its influencing factors in rhizosphere soils of different polygonum plants[J]. Journal of Natural Science of Hunan Normal University,2023,46(5):116-123.

[33] 馬濤,邢寶龍,鄭敏娜.不同施肥方式對(duì)大豆根際土壤細(xì)菌群落多樣性的影響[J].作物雜志,2023(6):167-173. MA T, XING B L, ZHENG M N. Effects of different fertilization methods on soil bacterial community diversity in soybean rhizosphere[J]. Crops,2023(6):167-173.

[34] ZENG J, LIU X J, SONG L, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 2016,92:41-49.

[35] 楊葉華,黃興成,朱華清,等.長(zhǎng)期有機(jī)與無(wú)機(jī)肥配施的黃壤稻田土壤細(xì)菌群落結(jié)構(gòu)特征[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2022, 28(6):984-992. YANG Y H, HUANG X C, ZHU H Q, et al. Bacterial community structure and composition under long-term combined application of organic and inorganic fertilizers in a yellow paddy soil[J]. Journal of Plant Nutrition and Fertilizers,2022,28(6):984-992.

[36] 丁鈺珮,杜宇佳,高廣磊,等.呼倫貝爾沙地樟子松人工林土壤細(xì)菌群落結(jié)構(gòu)與功能預(yù)測(cè)[J].生態(tài)學(xué)報(bào),2021,41(10):4131-4139. DING Y P, DU J Y, GAO G L, et al. Soil bacterial community structure and functional prediction of Pinus syvestris var. Mongolica plantations in the Hulun Buir sandy land[J]. Acta Ecologica Sinica,2021,41(10):4131-4139.

[37] 莊靜靜,劉壯壯,黃艷麗,等.高通量測(cè)序分析刺槐人工林土壤微生物群落特征[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(4): 92-100. ZHUANG J J, LIU Z Z, HUANG Y L, et al. Community characteristics of soil bacteria and fungi in Robinia pseudoacacia plantations based on high-throughput sequencing[J]. Journal of Central South University of Forestry Technology,2023,43(4): 92-100.

[38] 黃艷,叢日征,張吉利,等.三江平原典型森林類型土壤微生物群落結(jié)構(gòu)與影響因子[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023, 43(7):129-140. HUANG Y, CONG R Z, ZHANG J L, et al. Soil microbial community structure and influencing factors of typical forest types in Sanjiang Plain[J]. Journal of Central South University of Forestry Technology,2023,43(7):129-140.

[39] 熊涵,劉彥伶,李渝,等.長(zhǎng)期不同施肥模式對(duì)黃壤旱地土壤細(xì)菌群落結(jié)構(gòu)和土壤養(yǎng)分的影響[J].應(yīng)用生態(tài)學(xué)報(bào), 2023,39(7):1949-1956. XIONG H, LIU Y L, LI Y, et al. Effects of long-term fertilization patterns on bacterial community structure and soil nutrients in dryland of yellow soil[J]. Chinese Journal of Applied Ecology, 2023,39(7):1949-1956.

[40] WANG J Q, SHI X Z, ZHENG C Y, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest[J]. Science of the Total Environment, 2021,755(1):142449.

[41] ZHONG Y J, LIANG L N, XU R N, et al. Intercropping tea plantations with soybean and rapeseed enhances nitrogen fixation through shifts in soil microbial communities[J]. Frontiers of Agricultural Science and Engineering,2022,9(3):344-355.

[42] LIN Y B, KONG J J, YANG L, et al. Soil bacterial and fungal community responses to through fall reduction in a Eucalyptus plantation in southern China[J]. Forests,2022,13(1):37.

[43] 于淑慧,朱國(guó)梁,董浩,等.綠肥間作和滴灌對(duì)蘋果園土壤肥力和果實(shí)品質(zhì)的影響[J].土壤通報(bào),2022,53(3):640-647. YU S H, ZHU G L, DONG H, et al. Effects of intercropping green manure and drip irrigation on soil fertility and apple fruit quality in apple orchards[J]. Chinese Journal of Soil Science,2022,53(3): 640-647.

[本文編校:吳 彬]

猜你喜歡
土壤酶活性土壤養(yǎng)分桉樹(shù)
為什么考拉只愛(ài)吃桉樹(shù)葉?
桉樹(shù)茶飲
海岸帶森林生態(tài)系統(tǒng)中土壤酶活性研究進(jìn)展
不同施肥模式對(duì)油茶植株?duì)I養(yǎng)生長(zhǎng)和土壤養(yǎng)分的影響
廣靈縣平川區(qū)土壤養(yǎng)分變化及施肥建議
鋁脅迫下不同桉樹(shù)無(wú)性系葉差異蛋白表達(dá)分析
3個(gè)桉樹(shù)品種對(duì)桉樹(shù)枝癭姬小蜂抗性研究
稻蟹共作模式下稻蟹產(chǎn)出與土壤理化性質(zhì)的研究
重金屬污染對(duì)土壤微生物及土壤酶活性影響的研究進(jìn)展
精河沙區(qū)土壤酶分布特征及其對(duì)土壤理化性狀的響應(yīng)
武鸣县| 武邑县| 福安市| 荔浦县| 庆元县| 托克托县| 内丘县| 德保县| 无为县| 永德县| 柳林县| 荥经县| 嘉峪关市| 二连浩特市| 博湖县| 治多县| 天祝| 西吉县| 盐边县| 德保县| 新建县| 东乌珠穆沁旗| 翼城县| 武清区| 盈江县| 进贤县| 酉阳| 儋州市| 乌兰浩特市| 措勤县| 望城县| 邯郸市| 天峨县| 温州市| 永德县| 台湾省| 天长市| 仪征市| 正蓝旗| 阜城县| 右玉县|