国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

加工需求驅(qū)動(dòng)下詞匯閱讀神經(jīng)通路的動(dòng)態(tài)協(xié)作機(jī)制

2024-01-09 01:22:11黨敏蔡文琦陳發(fā)坤王小娟楊劍峰
心理科學(xué)進(jìn)展 2024年1期
關(guān)鍵詞:通路模型

黨敏 蔡文琦 陳發(fā)坤 王小娟 楊劍峰

摘 ?要??建構(gòu)統(tǒng)一的認(rèn)知和神經(jīng)生理模型是詞匯閱讀認(rèn)知神經(jīng)科學(xué)研究面臨的核心問題。閱讀的認(rèn)知理論模型一致認(rèn)為閱讀是語音和語義加工通路分工協(xié)作的結(jié)果, 認(rèn)知神經(jīng)科學(xué)研究也表明詞匯閱讀是背側(cè)和腹側(cè)神經(jīng)通路動(dòng)態(tài)協(xié)作的結(jié)果。為了系統(tǒng)地闡述閱讀網(wǎng)絡(luò)的這種動(dòng)態(tài)協(xié)作機(jī)制, 結(jié)合神經(jīng)功能和生理基礎(chǔ)兩個(gè)層面, 從以下三個(gè)方面對(duì)最新研究進(jìn)展進(jìn)行系統(tǒng)疏理:首先, 指出潛在的加工需求是背/腹側(cè)神經(jīng)通路動(dòng)態(tài)協(xié)作的實(shí)質(zhì); 然后進(jìn)一步闡明潛在加工需求驅(qū)動(dòng)了不同正字法深度下背/腹側(cè)神經(jīng)通路的分工合作模式; 最后, 深入剖析了潛在加工如何通過語言經(jīng)驗(yàn)塑造了神經(jīng)通路間的動(dòng)態(tài)協(xié)作。從而揭示出閱讀神經(jīng)通路動(dòng)態(tài)協(xié)作的實(shí)質(zhì)可能是特定任務(wù)下加工需求驅(qū)動(dòng)的結(jié)果, 這種動(dòng)態(tài)協(xié)作可能成為跨語言普遍的詞匯閱讀理論模型。

關(guān)鍵詞??詞匯閱讀, 模型, 通路, 動(dòng)態(tài)協(xié)作

分類號(hào)??B842

1??引言

隨著認(rèn)知神經(jīng)科學(xué)的迅速發(fā)展, 詞匯閱讀的腦機(jī)制研究取得了豐富的成果。基于對(duì)詞匯閱讀加工成分(如字形、語音和語義)相關(guān)功能腦區(qū)的識(shí)別, 研究者嘗試建立與認(rèn)知理論模型相統(tǒng)一的神經(jīng)生理模型(Smith et al., 2021)。詞匯閱讀的兩大認(rèn)知理論模型(雙通路理論, Coltheart et al., 2001; 聯(lián)結(jié)主義三角模型, Seidenberg, 2011)雖然在模型結(jié)構(gòu)、算法實(shí)現(xiàn)和內(nèi)在加工機(jī)制上都存在差異, 但它們一致認(rèn)為詞匯閱讀需要依賴于語音、語義兩條加工通路的相互協(xié)作。相應(yīng)地, 研究者指出, 閱讀的神經(jīng)生理模型存在背側(cè)和腹側(cè)兩條分工不同的神經(jīng)通路。背側(cè)通路主要是經(jīng)由視覺分析之后通達(dá)左側(cè)顳頂皮層和額下回島蓋部; 而腹側(cè)通路是經(jīng)由腹側(cè)枕顳皮層通達(dá)顳中回和額下回眶額部及三角部(Carreiras et al., 2014; Taylor et al., 2013)?;诎踪|(zhì)纖維束的研究也為這兩條神經(jīng)通路提供了生理解剖基礎(chǔ)(Saur et al., 2008; Wandell & Le, 2017)。

對(duì)詞匯閱讀中背/腹側(cè)神經(jīng)通路的功能探討一度成為研究者廣泛關(guān)注和爭論的問題。近年來, 基于神經(jīng)網(wǎng)絡(luò)思想的研究發(fā)現(xiàn)閱讀的神經(jīng)生理模型并不能簡單地分離為不同功能的神經(jīng)通路。一方面, 研究者發(fā)現(xiàn)即使是加工與視覺詞匯相似的刺激材料, 都需要廣泛的閱讀相關(guān)腦區(qū)的參與激活, 不存在刺激類型特異或加工成分特異的閱讀相關(guān)腦區(qū), 詞匯閱讀是由相關(guān)腦區(qū)組成的神經(jīng)網(wǎng)絡(luò)活動(dòng)的結(jié)果(Wang et al., 2011)。另一方面, 大量研究發(fā)現(xiàn)的詞匯閱讀的腦機(jī)制是在特定實(shí)驗(yàn)條件下背側(cè)和腹側(cè)通路動(dòng)態(tài)協(xié)作的結(jié)果(Dickens et al., 2019; Hoffman et al., 2015; Oliver et al., 2017)。

從而, 詞匯閱讀的背側(cè)和腹側(cè)神經(jīng)通路的動(dòng)態(tài)協(xié)作可能在認(rèn)知和神經(jīng)層面達(dá)成統(tǒng)一, 成為普遍的閱讀理論模型。本文基于神經(jīng)網(wǎng)絡(luò)的最新取向從以下方面對(duì)此展開論述:首先, 闡明背/腹側(cè)通路在刺激屬性和任務(wù)需求驅(qū)動(dòng)下表現(xiàn)出動(dòng)態(tài)協(xié)作的實(shí)質(zhì); 其次, 揭示不同正字法深度下背/腹側(cè)通路分工合作模式的跨語言差異; 最后, 深入剖析這兩條神經(jīng)通路的動(dòng)態(tài)協(xié)作是如何在語言經(jīng)驗(yàn)塑造作用下發(fā)展起來的。從而指明閱讀網(wǎng)絡(luò)內(nèi)神經(jīng)通路間的動(dòng)態(tài)協(xié)作可能成為跨語言普遍的閱讀神經(jīng)機(jī)制。

2??閱讀背/腹側(cè)神經(jīng)通路的分工協(xié)作

長期以來, 研究者通過對(duì)比不同的詞匯類型或者對(duì)比不同閱讀任務(wù)的加工區(qū)別, 揭示出閱讀涉及的字形、語音和語義加工相關(guān)的功能腦區(qū)。越來越多的研究表明, 閱讀相關(guān)腦區(qū)的激活具有動(dòng)態(tài)變化的特點(diǎn)。這些腦區(qū)的激活不僅受到自下而上刺激屬性的影響(Guo et al., 2022b; Taylor et?al., 2019), 還受到了自上而下任務(wù)需求的調(diào)節(jié)(Ludersdorfer et al., 2019; Mattheiss et al., 2018)。此外, 有研究結(jié)果顯示閱讀相關(guān)腦區(qū)的激活同時(shí)受到了刺激屬性和任務(wù)需求交互作用的調(diào)節(jié)(Pattamadilok et al., 2017; Yang et al., 2012)。下面詳細(xì)分析閱讀神經(jīng)網(wǎng)絡(luò)是如何在刺激和任務(wù)的調(diào)節(jié)下, 通過腦區(qū)間的動(dòng)態(tài)協(xié)作來完成詞匯閱讀過程的。

2.1 ?刺激類型特異的閱讀神經(jīng)通路

基于功能定位的思想, 研究者提出閱讀加工的雙通路模型(Dual Route Cascaded Model, DRC), 并認(rèn)為不同的詞匯類型依賴于不同的加工通路(Coltheart et al., 2001)。一條是存儲(chǔ)著形素?音素轉(zhuǎn)換規(guī)則的亞詞典通路, 主要負(fù)責(zé)形?音規(guī)則的低頻詞和可發(fā)音假詞的閱讀; 還有一條是通過查字典的方式提取相應(yīng)語音信息的詞典通路, 主要負(fù)責(zé)形?音不規(guī)則的低頻例外詞的閱讀, 高頻真詞也通過詞典通路完成閱讀。

通過不同類型詞匯閱讀的腦機(jī)制對(duì)比, 研究者嘗試揭示詞匯閱讀的大腦神經(jīng)通路。真詞和假詞閱讀的對(duì)比研究發(fā)現(xiàn), 假詞更多地激活了背側(cè)頂葉皮層, 如左側(cè)頂下小葉和緣上回并延伸至中央前回, 而真詞更多地激活了左側(cè)顳中回以及額下回的腹側(cè)腦區(qū)(Dickens et al., 2019; Woolnough et al., 2022)。采用參數(shù)相關(guān)的方法(Protopapas et?al., 2016)以及元分析結(jié)果(Taylor et al., 2013)都得到了類似的發(fā)現(xiàn)。對(duì)比規(guī)則詞和例外詞閱讀的研究也發(fā)現(xiàn), 兩種詞匯閱讀對(duì)背側(cè)和腹側(cè)神經(jīng)通路具有不同程度的依賴(Price, 2012; Taylor et al., 2014)。例如, 有研究表明, 規(guī)則詞更多激活了背側(cè)通路的左側(cè)頂下小葉與中央前回, 而例外詞閱讀更多激活了腹側(cè)通路的左側(cè)顳下回, 顳中回和顳上回(Cummine et al., 2013)。

基于有效連接分析的fMRI研究發(fā)現(xiàn), 不同類型的詞匯閱讀不僅存在功能腦區(qū)的激活差異, 還存在著腦區(qū)間的連接差異。例如, Levy等人(2009)通過建構(gòu)結(jié)構(gòu)方程模型, 發(fā)現(xiàn)假詞使左側(cè)枕顳交接區(qū)到頂葉皮層的背側(cè)通路腦區(qū)間的有效連接增強(qiáng), 而真詞使左側(cè)枕顳交接區(qū)到額下回(BA 45)的腹側(cè)通路腦區(qū)間有效連接增強(qiáng)。建構(gòu)詞匯閱讀的動(dòng)態(tài)因果模型也得到了類似的結(jié)果。例如, 有研究發(fā)現(xiàn)假詞使左側(cè)緣上回與額下回島蓋部等背側(cè)腦區(qū)的功能連接增強(qiáng)(Barton? et al., 2023; Junker et al., 2023), 而真詞則使左側(cè)梭狀回前部與顳中回、腹側(cè)額下回等腦區(qū)的功能連接增強(qiáng)(Mechelli et al., 2005; Woollams et al., 2018)。此外, 對(duì)比規(guī)則詞與例外詞的研究發(fā)現(xiàn), 規(guī)則詞的閱讀更多依賴從腹側(cè)枕顳皮層到背側(cè)通路(左側(cè)中央前回)的連接, 而例外詞的閱讀則更加依賴從腹側(cè)枕顳皮層到腹側(cè)通路(左側(cè)顳前葉)的連接(Hoffman et al., 2015)。

2.2閱讀神經(jīng)通路間的動(dòng)態(tài)協(xié)作

基于神經(jīng)網(wǎng)絡(luò)的思想, 研究者提出了閱讀的聯(lián)結(jié)主義模型, 認(rèn)為閱讀需要字形、語音和語義系統(tǒng)之間的相互作用(又稱三角模型, 詳見綜述: Seidenberg, 2011; 楊劍峰?等, 2018)。該理論指出, 詞匯閱讀需要語音和語義加工的共同作用, 在神經(jīng)生理層面則體現(xiàn)為閱讀神經(jīng)網(wǎng)絡(luò)內(nèi)不同腦區(qū)以及神經(jīng)通路動(dòng)態(tài)協(xié)作的結(jié)果。從而, 研究者認(rèn)為不存在對(duì)特定詞匯類型敏感的閱讀功能腦區(qū)或神經(jīng)通路(Wang et al., 2011), 閱讀不同類型詞匯或跨語言的閱讀機(jī)制, 則是不同認(rèn)知加工/神經(jīng)通路間動(dòng)態(tài)協(xié)作的結(jié)果。

閱讀不同類型的詞匯需要背側(cè)、腹側(cè)神經(jīng)通路的分工協(xié)作, 具體表現(xiàn)為詞匯閱讀中語音與語義加工腦區(qū)分工合作的模式差異。隨著詞匯中涉及的語音信息增多, 語音加工腦區(qū)(左側(cè)額下回)的激活增強(qiáng); 隨著詞匯中語義信息的增多, 對(duì)應(yīng)的語義加工腦區(qū)(左側(cè)顳中回和角回)激活增強(qiáng)(Frost et al., 2005)。參數(shù)相關(guān)的fMRI研究也發(fā)現(xiàn), 隨著詞匯拼讀一致性降低, 負(fù)責(zé)語義到語音編碼的左側(cè)顳中回和顳下溝表現(xiàn)出激活增強(qiáng); 而隨著詞匯頻率和語義可表象性的增加, 負(fù)責(zé)字形到語義編碼的雙側(cè)角回和左側(cè)楔前葉表現(xiàn)出激活增強(qiáng)(Graves et al., 2010)。Boukrina和Graves(2013)則使用有效連接的搜索算法探討了隨語義信息的變化, 語音和語義腦區(qū)之間連接模式的變化趨勢(shì)。結(jié)果發(fā)現(xiàn), 加工語義高表象詞匯時(shí)閱讀網(wǎng)絡(luò)會(huì)表現(xiàn)出語義加工腦區(qū)(顳下溝)促進(jìn)語音加工腦區(qū)(顳上回后部)的激活優(yōu)勢(shì); 與之相反, 加工語義低表象詞匯時(shí)表現(xiàn)為語音加工腦區(qū)促進(jìn)語義加工腦區(qū)的激活優(yōu)勢(shì)。除了對(duì)真詞的考察, Wang等人(2016)對(duì)不同假字類型誘發(fā)的腦激活進(jìn)行考察, 同樣發(fā)現(xiàn)了閱讀網(wǎng)絡(luò)中語音(左側(cè)額下回和腦島)和語義加工腦區(qū)(左側(cè)顳中回后部和角回)的分工協(xié)作。

2.3潛在加工需求可能是閱讀神經(jīng)通路動(dòng)態(tài)協(xié)作的實(shí)質(zhì)

為了闡明閱讀加工成分對(duì)應(yīng)的大腦神經(jīng)機(jī)制, 研究者普遍的做法是對(duì)比不同閱讀任務(wù)的腦機(jī)制差異。研究表明, 相同的任務(wù)需求下, 即使是不同的語言體系也會(huì)表現(xiàn)出類似的神經(jīng)激活(Krafnick et al., 2016; Rueckl et al., 2015), 從而通過任務(wù)對(duì)比就可以識(shí)別閱讀相關(guān)的加工成分。比如, 正字法任務(wù)更多地激活與字形加工相關(guān)的梭狀回(Guo & Burgund, 2010; Welcome & Joanisse, 2012); 語音任務(wù)更多地激活負(fù)責(zé)形?音轉(zhuǎn)換加工的左側(cè)顳頂皮層(D?bska et al., 2019; Qu et al., 2022); 而語義加工任務(wù)則需要與語義表征和計(jì)算相關(guān)的顳中回后部和腹側(cè)額下回等腦區(qū)的參與(Hodgson et al., 2021; Zhang et al., 2019)。

任務(wù)對(duì)比差異不僅體現(xiàn)在個(gè)別腦區(qū)的激活差異, 還體現(xiàn)在腦區(qū)間的功能連接差異。例如, 研究者要求被試完成三種不同類型的閱讀任務(wù):出聲閱讀、動(dòng)嘴默讀與不動(dòng)嘴默讀。結(jié)果發(fā)現(xiàn), 雖然這三種任務(wù)都表現(xiàn)出從左側(cè)額下回到頂下小葉以及顳上回的功能連接, 但隨著任務(wù)對(duì)發(fā)音動(dòng)作需求的減弱, 閱讀相關(guān)腦區(qū)之間不僅表現(xiàn)出功能連接數(shù)量的增多, 而且還伴隨著從運(yùn)動(dòng)皮層(左側(cè)輔助運(yùn)動(dòng)區(qū))到閱讀相關(guān)腦區(qū)功能連接數(shù)量的減少(Wan et al., 2018)。另一項(xiàng)研究通過聽覺和閱讀任務(wù)的比較發(fā)現(xiàn), 雖然這兩種任務(wù)都引起左側(cè)枕顳溝中部腦區(qū)與左側(cè)額頂控制網(wǎng)絡(luò)(額下聯(lián)合區(qū))的功能連接, 但與此同時(shí), 聽覺比閱讀任務(wù)表現(xiàn)出左側(cè)枕顳溝中部與背側(cè)注意網(wǎng)絡(luò)(頂下溝后部)更強(qiáng)的功能連接(Qin et al., 2021)。這說明, 任務(wù)需求差異反映了潛在的認(rèn)知加工不同, 并體現(xiàn)在了腦區(qū)間的連接模式上。

研究者通過操縱語音和語義任務(wù)來探討閱讀的背側(cè)和腹側(cè)神經(jīng)通路。相關(guān)研究發(fā)現(xiàn), 語音任務(wù)使背側(cè)通路相關(guān)腦區(qū)之間的功能連接得到增強(qiáng)。例如, 在押韻判斷任務(wù)下, 隨著語音加工需求的增加, 從左側(cè)頂下小葉到左側(cè)額下回的功能連接顯著增強(qiáng)(Zhu et al., 2016)。相應(yīng)地, 語義任務(wù)使腹側(cè)通路相關(guān)腦區(qū)的功能連接得到增強(qiáng)。例如, Jackson等(2016)的研究發(fā)現(xiàn)被試在完成語義判斷任務(wù)時(shí)激活了核心的語義網(wǎng)絡(luò), 且隨著加工需求的增加, 左側(cè)背外側(cè)顳前葉與左側(cè)角回、額下回、前額葉皮層中部以及枕葉的功能連接也隨之增強(qiáng)。Zhang等(2019)不僅在語義判斷任務(wù)中發(fā)現(xiàn)左側(cè)額下回和顳中回之間較強(qiáng)的功能連接, 還發(fā)現(xiàn)這些腦區(qū)的功能連接越強(qiáng), 被試的行為表現(xiàn)越好。同時(shí)考察語音和語義任務(wù)的研究發(fā)現(xiàn), 同音判斷任務(wù)使中央前回與背外側(cè)額葉皮層(BA 9/46)和背側(cè)額下回的功能連接增強(qiáng), 而語義判斷任務(wù)使左側(cè)顳中回與背外側(cè)額葉皮層(BA 46)和腹側(cè)額下回之間的功能連接增強(qiáng)(Liu et al., 2022)。根據(jù)以往研究, 閱讀網(wǎng)絡(luò)會(huì)在語音或語義加工需求的調(diào)節(jié)下, 表現(xiàn)出背側(cè)和腹側(cè)神經(jīng)通路動(dòng)態(tài)的分工協(xié)作。

潛在的認(rèn)知加工可能是閱讀神經(jīng)通路動(dòng)態(tài)協(xié)作的根本原因。表現(xiàn)為閱讀相關(guān)腦區(qū)同時(shí)受到刺激類型和任務(wù)需求交互作用的影響(Pattamadilok et al., 2017; Yang et al., 2012)。對(duì)漢字閱讀fMRI研究的元分析結(jié)果也顯示, 刺激對(duì)比和任務(wù)對(duì)比共享了相同的閱讀腦網(wǎng)絡(luò), 并且, 刺激對(duì)比發(fā)現(xiàn)的腦區(qū)激活都可以被任務(wù)對(duì)比所解釋(Zhao et al., 2017)。因此, 潛在的認(rèn)知加工可能決定了閱讀相關(guān)腦區(qū)的參與激活。比如, 認(rèn)為存在漢字特異激活的左側(cè)額中回(Tan et al., 2005), 在加工法語詞匯時(shí)同樣得到了激活(Feng et al., 2020)??梢?, 跨語言普遍性以及語言特異性的問題歸根結(jié)底可能是任務(wù)需求的問題。

3??閱讀背/腹側(cè)通路分工協(xié)作跨語言差異的實(shí)質(zhì)

詞匯閱讀是否具有跨語言普遍的認(rèn)知和神經(jīng)機(jī)制, 是研究者長期關(guān)注的問題。跨語言比較的研究認(rèn)為正字法深度是影響詞匯閱讀網(wǎng)絡(luò)的一個(gè)重要因素(Paulesu et al., 2000)。通過對(duì)深層和淺層正字法條件下發(fā)展性閱讀障礙者與正常讀者的對(duì)比, Richlan?(2014)也指出, 正字法深度差異是預(yù)測發(fā)展性閱讀障礙行為表現(xiàn)與腦損傷的一個(gè)重要參考。

基于神經(jīng)網(wǎng)絡(luò)的思想, 越來越多的研究者認(rèn)為跨語言的詞匯閱讀具有普遍的認(rèn)知加工機(jī)制(見綜述:?Smith et al., 2021), 并激活了普遍的大腦神經(jīng)網(wǎng)絡(luò)(Nakamura et al., 2012; Rueckl et al., 2015)。而前人發(fā)現(xiàn)的跨語言特異腦區(qū), 如左側(cè)顳頂皮層或額中回的激活只是特定實(shí)驗(yàn)室條件下發(fā)現(xiàn)的結(jié)果(Murphy et al., 2019; Wang et al., 2015)。因此, 跨語言差異主要是受語料屬性及其對(duì)應(yīng)加工策略的影響, 從而在神經(jīng)層面表現(xiàn)出閱讀功能腦區(qū)間的協(xié)作模式差異。下面從閱讀腦機(jī)制的跨語言比較和二語腦機(jī)制研究兩個(gè)層面對(duì)此進(jìn)行詳細(xì)闡述。

3.1??閱讀神經(jīng)通路的跨語言比較

早期的跨語言比較研究發(fā)現(xiàn), 不同正字法深度下的詞匯閱讀需要依賴不同的功能腦區(qū)激活。對(duì)比不同正字法深度的詞匯閱讀, 研究者發(fā)現(xiàn)形?音對(duì)應(yīng)規(guī)則(透明文字)的意大利語要更多激活左側(cè)顳頂皮層, 而形?音對(duì)應(yīng)相對(duì)不規(guī)則(不透明文字)的英語詞匯閱讀需要更多激活腹側(cè)枕顳皮層和左側(cè)額葉腦區(qū)(Paulesu et al., 2000)。Tan等人(2005)對(duì)比漢語和英語詞匯閱讀的元分析發(fā)現(xiàn), 相較于不透明的漢語, 形音對(duì)應(yīng)規(guī)則的英語閱讀更多激活了負(fù)責(zé)形?音轉(zhuǎn)換加工的左側(cè)顳頂皮層后部, 而漢字閱讀更多激活了負(fù)責(zé)尋址語音加工的左側(cè)額中回??缯Z言比較的結(jié)果表明, 閱讀形?音對(duì)應(yīng)相對(duì)規(guī)則的透明文字, 需要更多負(fù)責(zé)形?音轉(zhuǎn)換加工的顳頂皮層參與, 而閱讀不透明的文字需要更多腹側(cè)通路, 如腹側(cè)枕顳區(qū)和額葉的參與。

閱讀的跨語言差異還表現(xiàn)為閱讀腦區(qū)間的連接模式差異。例如, 對(duì)比日語漢字(Kanji)和平假名(Hiragana)在詞匯判斷任務(wù)中腦區(qū)間有效連接的差異。結(jié)果發(fā)現(xiàn), 不透明的日語漢字使左側(cè)視覺皮層到腹側(cè)枕顳皮層的雙向連接增強(qiáng), 而透明的平假名使背側(cè)通路, 從左側(cè)視覺皮層到緣上回及布洛卡區(qū)之間的雙向連接增強(qiáng)(Duncan et al., 2014)。采用多變量模式分析技術(shù), Li等人(2022)將閱讀任務(wù)的神經(jīng)激活模式與漢字的語音特征相關(guān)聯(lián), 發(fā)現(xiàn)腹側(cè)通路的相關(guān)腦區(qū), 如左側(cè)額下回、顳下回、顳中回和雙側(cè)梭狀回與漢字的語音信息具有顯著相關(guān)。而拼音文字的相關(guān)研究則發(fā)現(xiàn)背側(cè)通路腦區(qū), 如左側(cè)顳上回(Wang et al., 2023)和緣上回(Graves et al., 2023)對(duì)英語語音信息的激活模式更敏感。

而且, 腦區(qū)激活的跨語言差異具有神經(jīng)解剖的生理基礎(chǔ)。采用彌散張量成像技術(shù)(Diffusion Tensor Imaging, DTI), 研究者發(fā)現(xiàn)不透明的烏爾都語使腹側(cè)白質(zhì)纖維束, 連接枕葉與眶額皮層的下額枕束的部分各向異性值(Fractional Anisotropy, FA的大小反映纖維束的髓鞘化程度)顯著大于透明正字法的印地語, 表明腹側(cè)通路對(duì)不透明語言的加工更加有利(Kumar & Padakanaya, 2019)。對(duì)比漢語與英語被試的大腦結(jié)構(gòu)連接, 研究者發(fā)現(xiàn)透明正字法的英語使背側(cè)白質(zhì)纖維束, 連接頂下小葉與額葉皮層的上縱束的FA值顯著高于漢語, 表明背側(cè)通路對(duì)透明語言的加工更重要(Zhang et al., 2014)。而漢語被試則表現(xiàn)出對(duì)腹側(cè)白質(zhì)纖維束的獨(dú)特依賴。例如, 來自漢語閱讀障礙兒童的DTI研究發(fā)現(xiàn), 除了表現(xiàn)出與字母語言相似的背側(cè)白質(zhì)纖維束損傷外, 漢語閱讀障礙兒童還表現(xiàn)出腹側(cè)白質(zhì)纖維束, 連接視覺皮層到視覺詞形區(qū)(Visual Word Form Area, VWFA)下縱束的損傷(Su, Zhao, et al., 2018)。最新的綜述研究也表明, 連接詞匯閱讀相關(guān)腦區(qū)的背側(cè)弓狀束和腹側(cè)下額枕束與下縱束分別構(gòu)成了漢字閱讀的背側(cè)與腹側(cè)結(jié)構(gòu)通路(Guo et al., 2022a)。

跨語言的腦機(jī)制差異, 主要還是潛在加工需求的差異。在相同的任務(wù)下, 即使是不同的語言體系也會(huì)表現(xiàn)出類似的神經(jīng)激活。例如, 一項(xiàng)4種語言的對(duì)比研究發(fā)現(xiàn), 成人被試在完成相同的語義分類任務(wù)時(shí), 西班牙語、英語、希伯來語和漢語讀者腦機(jī)制的語言變異性有限。即4種語言共同誘發(fā)了普遍性的閱讀腦網(wǎng)絡(luò), 包括與語音和語義加工相關(guān)的雙側(cè)額下回、顳中回到顳上回, 左側(cè)頂下小葉以及皮層下的雙側(cè)腦島、殼核與丘腦(Rueckl et al., 2015)。兒童研究也得到了類似的發(fā)現(xiàn)。如, 采用字詞識(shí)別任務(wù)分別對(duì)漢語和法語兒童進(jìn)行考察, 發(fā)現(xiàn)這兩種語言在左側(cè)梭狀回、顳上回、中央前回和額中回具有普遍性激活(Feng et al., 2020)。

隨著閱讀單位由詞匯向更加自然的語料(如段落、語篇)過渡, 閱讀者更注重對(duì)大單元語義和語法進(jìn)行整合加工, 詞匯等小單元的字形、語音和語義通達(dá)等細(xì)節(jié)分析則會(huì)更加自動(dòng)化, 從而跨語言的差異變?。╓ang et al., 2015)。Dehghani等人(2017)考察了母語為英語、漢語以及波斯語三類被試對(duì)篇章語義的神經(jīng)表征解碼。結(jié)果發(fā)現(xiàn), 三種語言的篇章解碼表現(xiàn)出相似的神經(jīng)激活模式, 這些腦區(qū)包括后內(nèi)側(cè)皮質(zhì), 內(nèi)側(cè)前額葉以及外側(cè)頂葉皮層。最近, Malik-Moraleda等(2022)對(duì)12個(gè)語系中45種語言誘發(fā)的激活模式進(jìn)行考察并發(fā)現(xiàn), 額?顳?頂語言網(wǎng)絡(luò)的左偏側(cè)化以及關(guān)鍵腦區(qū)的語言功能具有跨語言的普遍性。

因此, 不同正字法深度導(dǎo)致的閱讀腦機(jī)制差異主要表現(xiàn)為對(duì)背側(cè)和腹側(cè)神經(jīng)通路的不同依賴程度。形?音對(duì)應(yīng)規(guī)則的透明正字法語言更多激活了背側(cè)神經(jīng)通路, 而依賴語音詞典或語義提取的不透明正字法語言更多地激活了腹側(cè)神經(jīng)通路。

3.2雙語研究的證據(jù)

探討雙語者在兩種語言下的詞匯閱讀腦機(jī)制, 為閱讀背側(cè)/腹側(cè)神經(jīng)通路的分工合作提供豐富的證據(jù)。

首先, 雙語者在閱讀兩種不同正字法深度的詞匯時(shí), 會(huì)根據(jù)輸入語言選擇性地依賴背側(cè)或腹側(cè)神經(jīng)通路。相對(duì)而言, 形?音對(duì)應(yīng)透明的文字在閱讀時(shí)需要更多使用形?音轉(zhuǎn)換規(guī)則, 從而更依賴背側(cè)通路中左側(cè)枕顳皮層和顳上回的激活, 而形?音對(duì)應(yīng)不透明的文字在閱讀時(shí)更多依賴于腹側(cè)通路, 如腹側(cè)枕顳皮層的激活(Cao et al., 2017; Das et al., 2011; Jamal et al., 2012)。來自印地語?英語雙語兒童的研究也支持了背/腹側(cè)通路的跨語言差異(Cherodath & Singh, 2015)。此外, 漢?英雙語者的研究得到了類似的發(fā)現(xiàn)。即閱讀漢字更依賴于腹側(cè)通路的梭狀回和顳中回后部腦區(qū), 而閱讀英語更依賴于背側(cè)通路的左側(cè)顳頂皮層(Sun et al., 2011; Tan et al., 2003)。對(duì)漢?英雙語者的神經(jīng)因果研究發(fā)現(xiàn), 經(jīng)顱直流電刺激(tDCS)抑制雙語者的腹側(cè)通路腦區(qū)只選擇性地干擾了漢字閱讀, 而抑制雙語者的背側(cè)腦區(qū)則對(duì)英語和漢字閱讀都產(chǎn)生了干擾。該研究從神經(jīng)因果的角度表明雙語者在閱讀不同語言詞匯時(shí)會(huì)選擇性地依賴閱讀的神經(jīng)通路(Bhattacharjee et al., 2020)。

其次, 閱讀相關(guān)腦區(qū)的功能連接分析也發(fā)現(xiàn), 雙語者加工不同語言的詞匯時(shí), 腦區(qū)間的功能連接會(huì)根據(jù)輸入語料的不同表現(xiàn)出動(dòng)態(tài)變化的連接模式。對(duì)比母語相同的兩類雙語者, 西班牙?巴斯克雙語者在加工正字法透明度較高的巴斯克語時(shí)會(huì)誘發(fā)腹側(cè)枕顳區(qū)與背側(cè)通路, 如左側(cè)顳頂皮層和額下回島蓋部更強(qiáng)的功能連接; 而西班牙?英語雙語者在加工正字法相對(duì)不透明的英語時(shí), 雙語者的腹側(cè)枕顳區(qū)與腹側(cè)通路, 如額下回三角部有更強(qiáng)的功能連接(Oliver et al., 2017)。英語?威爾士語雙語者的研究發(fā)現(xiàn)在語義分類任務(wù)中, 正字法不透明的英語比威爾士語在左側(cè)視覺詞形區(qū)后部與腹側(cè)通路腦區(qū), 如顳下回、顳中回以及梭狀回具有更強(qiáng)的功能連接(Tainturier et al., 2019)。此外, 漢?英雙語者的研究也發(fā)現(xiàn), 被試在閱讀漢字時(shí)表現(xiàn)出腹側(cè)通路梭狀回前部與顳前葉和額下回更強(qiáng)的連接, 而閱讀英語時(shí)則表現(xiàn)出背側(cè)通路腦區(qū)顳頂皮層與額下回更強(qiáng)的連接(Dong et al., 2020)。

最后, 語言間正字法透明度的相似性(正字法距離)會(huì)影響到閱讀腦區(qū)的動(dòng)態(tài)激活。比如, 研究者以韓?漢?英三語者為被試, 使用韻律判斷任務(wù)來檢驗(yàn)三種語言的激活腦區(qū)。通過計(jì)算這些語言的激活相似程度, 結(jié)果發(fā)現(xiàn), 相比于韓語和漢語之間較低的正字法透明度相似性, 韓語和英語之間較為相似的正字法透明度誘發(fā)了大腦更高的激活相似性(Kim et al., 2016)。另外一項(xiàng)維吾爾?漢?英三語者的研究成果也表明, 正字法透明度的相似性影響語言間跨語言模式的相似性。與漢語相比, 維吾爾語和英語詞匯閱讀在語音加工的大腦區(qū)域, 如左側(cè)顳上回后部、緣上回、角回和中央前回表現(xiàn)出更大的跨語言模式相似性。研究者認(rèn)為這可能是由于維吾爾語和英語詞匯閱讀都更加需要從正字法到語音映射的背側(cè)通路的參與(Dong et?al., 2021)。Shen和Tufo(2022)探討了語言間正字法距離對(duì)閱讀相關(guān)腦區(qū)靜息態(tài)連接的影響。結(jié)果發(fā)現(xiàn), 語言間的正字法透明度越不相似(正字法距離越大), 左側(cè)緣上回和右側(cè)緣上回、額中回、額下回和腦島之間, 梭狀回與左側(cè)楔前葉之間的功能連接越強(qiáng)??梢?, 語言間正字法透明度的相似性也會(huì)影響到母語和二語的大腦激活, 進(jìn)而對(duì)閱讀的背側(cè)和腹側(cè)通路產(chǎn)生影響。

4??閱讀經(jīng)驗(yàn)對(duì)背側(cè)和腹側(cè)通路動(dòng)態(tài)協(xié)作的塑造作用

成人閱讀的認(rèn)知和神經(jīng)機(jī)制是長期閱讀經(jīng)驗(yàn)積累的結(jié)果?;谙嗤拈喿x計(jì)算機(jī)制, 不同正字法深度的書寫系統(tǒng)具有不同的輸入語料特性, 閱讀者根據(jù)輸入語料的特性發(fā)展出與之相適

閱讀經(jīng)驗(yàn)?zāi)軌虼龠M(jìn)VWFA與閱讀相關(guān)的語音和語義加工腦區(qū)的功能連接增強(qiáng)。對(duì)比兒童與成人的靜息態(tài)功能連接, 研究發(fā)現(xiàn)成人比兒童在VWFA與左側(cè)緣上回以及VWFA與左側(cè)額下回的功能連接更強(qiáng)(Li et al., 2017)。任務(wù)態(tài)功能連接的研究得到了類似的發(fā)現(xiàn)。如, 在語音判斷任務(wù)中, 正常成人比兒童表現(xiàn)出從VWFA到左側(cè)頂下小葉以及從VWFA到左側(cè)額中回更強(qiáng)的有效連接(Siok et al., 2020)。這一現(xiàn)象也在不同群體的兒童腦激活上有所體現(xiàn)。比如, 最新的研究發(fā)現(xiàn), 隨著兒童閱讀技能的提高, 有閱讀經(jīng)驗(yàn)的兒童比初學(xué)兒童表現(xiàn)出從VWFA到閱讀相關(guān)腦區(qū)(左側(cè)頂下小葉、中央前回與額下回)有效連接的增強(qiáng)(di Pietro et al., 2023)。而與正常發(fā)展兒童相比, 閱讀障礙兒童往往表現(xiàn)出VWFA與額下回等閱讀相關(guān)腦區(qū)的功能連接異常。研究者發(fā)現(xiàn)無論是在閱讀任務(wù)(Morken et al., 2017; Wang et al., 2020)還是靜息狀態(tài)下(Koyama et al., 2013; Schurz et al., 2015), 閱讀障礙兒童的VWFA與左側(cè)化閱讀相關(guān)腦區(qū)之間往往表現(xiàn)出減弱的功能連接。

閱讀經(jīng)驗(yàn)還塑造了功能腦區(qū)皮層下白質(zhì)連接的神經(jīng)基礎(chǔ)。對(duì)兒童閱讀習(xí)得的大腦結(jié)構(gòu)發(fā)育進(jìn)行考察發(fā)現(xiàn), 隨著閱讀技能的獲得, 學(xué)齡兒童(9~10歲)比學(xué)前兒童(5~6歲)表現(xiàn)出VWFA和左側(cè)化閱讀網(wǎng)絡(luò), 如左側(cè)頂下小葉、顳中回、輔助運(yùn)動(dòng)皮層與中央前回更多的結(jié)構(gòu)連接(Simon et al., 2013)。來自追蹤研究的證據(jù)也顯示, 學(xué)前兒童(5.5~6.5歲)在接受一年的詞匯學(xué)習(xí)后, VWFA和左側(cè)顳頂皮層的結(jié)構(gòu)連接表現(xiàn)出徑向擴(kuò)散率(radial diffusivity, RD)的顯著降低, 表明詞匯學(xué)習(xí)可以促進(jìn)白質(zhì)纖維束髓鞘化的成熟(Moulton et al., 2019)。閱讀強(qiáng)化訓(xùn)練也能在一定程度上增強(qiáng)VWFA和其它閱讀腦區(qū)間的結(jié)構(gòu)連接。例如, 在一項(xiàng)縱向干預(yù)研究中, 實(shí)驗(yàn)組(7~12歲)兒童接受為期8周的語音和正字法強(qiáng)化訓(xùn)練, 而控制組參加正常的學(xué)校學(xué)習(xí)。結(jié)果發(fā)現(xiàn), 隨著干預(yù)時(shí)間和閱讀技能的增長, 實(shí)驗(yàn)組兒童弓狀束和下縱束的FA值快速增加, 表明與控制組相比, 實(shí)驗(yàn)組兒童這兩條神經(jīng)纖維的髓鞘化程度更高(Huber et al., 2018)。更多的研究發(fā)現(xiàn), 經(jīng)VWFA連接額?顳?枕葉的下額枕束與學(xué)前兒童(5~6歲)的字母和語音意識(shí)相關(guān), 而與早期學(xué)齡兒童(7~8歲)的正字法加工有更強(qiáng)的相關(guān), 表明閱讀經(jīng)驗(yàn)影響了下額枕束在閱讀中的功能(Vanderauwera et al., 2018)。

4.2閱讀經(jīng)驗(yàn)增強(qiáng)了形?音加工區(qū)與其它閱讀功能腦區(qū)的連接

研究顯示左側(cè)顳頂皮層(Temporal Parietal Cortex, TPC)隨著兒童語音加工能力的成熟, 詞匯閱讀過程中會(huì)誘發(fā)左側(cè)TPC更強(qiáng)的激活(Cao et?al., 2015; Moulton et al., 2019)。而存在詞匯閱讀障礙的群體往往表現(xiàn)出左側(cè)TPC腦區(qū)的激活不足(Braid & Richlan, 2022; Richlan & Wimmer, 2011)。

閱讀經(jīng)驗(yàn)改變了左側(cè)TPC與閱讀網(wǎng)絡(luò)中其它腦區(qū)之間的功能連接, 也成為拼音文字系統(tǒng)閱讀能力發(fā)展的重要生理指標(biāo)。采用縱向追蹤的研究發(fā)現(xiàn), 兒童語音加工能力與左側(cè)TPC到梭狀回和額下回腦區(qū)連接強(qiáng)度的變化存在顯著相關(guān)(Yu et?al., 2018)。與兒童初學(xué)者相比, 有一定閱讀經(jīng)驗(yàn)的兒童從梭狀回到TPC的有效連接更強(qiáng); 而閱讀障礙兒童比正常組兒童表現(xiàn)出從TPC到梭狀回更強(qiáng)的有效連接(di Pietro et al., 2023)。漢語發(fā)展性閱讀障礙研究也發(fā)現(xiàn), 閱讀障礙兒童存在梭狀回與TPC的連接異常(Cao et al., 2008)。

相應(yīng)地, 閱讀經(jīng)驗(yàn)增強(qiáng)了TPC與其它閱讀功能腦區(qū)的神經(jīng)生理連接。TPC腦區(qū)主要通過背側(cè)弓狀束將腹側(cè)枕顳皮層與額下回相連, 在詞匯閱讀的語音加工中起著重要作用(Lerma-Usabiaga et?al., 2018)。隨著閱讀能力的獲得, 連接左側(cè)TPC與腹側(cè)枕顳皮層的弓狀束后部的FA值變大, 反映了閱讀經(jīng)驗(yàn)對(duì)背側(cè)語音通路的塑造作用(de Schotten et al., 2014)。研究發(fā)現(xiàn), 弓狀束的FA值與兒童的語音意識(shí)(Zuk et al., 2021)以及語音編碼能力(Cross et al., 2023)顯著相關(guān)。而且, 兒童(7~12歲)的閱讀能力與弓狀束的發(fā)育模式顯著相關(guān)。具體的, 閱讀能力高于平均水平的兒童隨著年齡增長, 左側(cè)弓狀束的FA值逐漸變大; 而閱讀能力低于平均水平的兒童, 左側(cè)弓狀束的FA值隨時(shí)間推移逐漸下降(Yeatman et al., 2012)。閱讀障礙兒童的研究也發(fā)現(xiàn), 與正常組兒童相比, 這些兒童往往表現(xiàn)出左側(cè)弓狀束更小的FA值(van der Auwera et al., 2021; Su, de Schotten, et al., 2018)。

4.3閱讀經(jīng)驗(yàn)塑造了背、腹側(cè)通路的分工合作

正常閱讀者的背側(cè)通路和腹側(cè)通路具有不同的發(fā)展軌跡。在詞匯學(xué)習(xí)初期, 兒童主要依靠形素到音素的轉(zhuǎn)化規(guī)則進(jìn)行發(fā)音, 背側(cè)通路在閱讀中發(fā)揮著重要作用。隨著年齡和閱讀能力的增長, 兒童越來越依賴腹側(cè)通路并能夠快速地識(shí)別整詞, 而不需要進(jìn)行形?音轉(zhuǎn)換的加工(Pugh et al., 2001)。一項(xiàng)對(duì)兒童和成人腦激活對(duì)比的元分析研究也發(fā)現(xiàn), 兒童的詞匯閱讀更依賴于形?音轉(zhuǎn)換加工的背側(cè)腦區(qū), 隨著閱讀能力的增長, 成人讀者表現(xiàn)出對(duì)腹側(cè)通路的依賴增強(qiáng)(Martin et al., 2015)。

隨著兒童閱讀經(jīng)驗(yàn)的增長, 對(duì)兩條神經(jīng)通路依賴性的動(dòng)態(tài)變化反映了閱讀能力的發(fā)展。例如, Younger等人(2017)發(fā)現(xiàn)高、低閱讀能力組兒童(8~14歲)表現(xiàn)出閱讀神經(jīng)通路不同的發(fā)展趨勢(shì)。其中, 高閱讀能力組隨時(shí)間表現(xiàn)出背側(cè)通路由強(qiáng)變?nèi)跻约案箓?cè)通路的穩(wěn)定增強(qiáng); 而低閱讀能力組的背側(cè)通路隨時(shí)間幾乎沒有連接差異, 且腹側(cè)通路隨時(shí)間表現(xiàn)出逐漸減弱的趨勢(shì)。Caffarra等人(2021)綜述前人的研究指出, 隨著詞匯習(xí)得以及閱讀熟練度的提高, 正常兒童的腹側(cè)枕顳皮層后部及其通過垂直枕束與頂葉皮層相連(背側(cè)通路)的結(jié)構(gòu)連接強(qiáng)度逐漸減弱, 而腹側(cè)枕顳皮層前部及其通過弓狀束與顳葉與額葉相連(腹側(cè)通路)的結(jié)構(gòu)連接逐漸增加; 然而, 對(duì)于閱讀障礙兒童, 這一轉(zhuǎn)變過程可能會(huì)延遲或受損。

而且, 隨著兒童年齡和閱讀經(jīng)驗(yàn)的增長, 閱讀腦網(wǎng)絡(luò)的背側(cè)語音和腹側(cè)語義腦區(qū)之間相互作用逐漸增強(qiáng)。比如, 兒童在兩個(gè)不同年齡段(T1, T2)完成語義判斷任務(wù), 結(jié)果發(fā)現(xiàn)與T1?(M= 10.1歲)的腦激活相比, 兒童在T2?(M= 12.0歲)時(shí)表現(xiàn)出左側(cè)顳中回后部對(duì)弱關(guān)聯(lián)詞匯更強(qiáng)的激活及其與頂下小葉更強(qiáng)的功能連接, 研究者認(rèn)為這一現(xiàn)象主要反映了語音加工對(duì)早期語義表征的促進(jìn)(Lee et al., 2016)。

綜上所述, 語言經(jīng)驗(yàn)對(duì)VWFA和TPC兩個(gè)閱讀重要腦區(qū)及其與其它腦區(qū)的連接機(jī)制具有重要的塑造作用。也正是隨著語言經(jīng)驗(yàn)的不斷豐富和發(fā)展, 閱讀背/腹側(cè)神經(jīng)通路的分工協(xié)作機(jī)制也逐漸形成, 從而表現(xiàn)出在特定刺激和任務(wù)條件下閱讀神經(jīng)網(wǎng)絡(luò)的激活差異。

5??總結(jié)與展望

本文涉及的重要理論問題是認(rèn)知和神經(jīng)生理統(tǒng)一的閱讀理論模型。研究者基于不同的認(rèn)知模型嘗試建立認(rèn)知加工與大腦功能的對(duì)應(yīng)關(guān)系。基于視覺加工的背/腹側(cè)神經(jīng)通路, 研究者提出了詞匯閱讀的背/腹側(cè)神經(jīng)通路(Pugh et al., 2000); 基于雙通路理論, 研究者對(duì)比不同類型詞匯閱讀的腦區(qū)激活差異, 在腦機(jī)制上提出了雙通路神經(jīng)生理模型(Jobard et al., 2003); 隨后更多的研究者嘗試在不同的加工任務(wù)下識(shí)別詞匯閱讀的神經(jīng)通路(Levy et al., 2009; Richardson et al., 2011)。而在聯(lián)結(jié)主義閱讀理論取向下, 研究者在識(shí)別詞匯閱讀的語音/語義加工通路的同時(shí), 還考察了加工通路在刺激屬性和加工任務(wù)雙重驅(qū)動(dòng)下的動(dòng)態(tài)協(xié)作機(jī)制(Carreiras et al., 2014; Price, 2012)。如圖1所示, 研究者嘗試建立認(rèn)知與神經(jīng)統(tǒng)一的理論模型, 但是還有很多問題亟待解決, 如語義加工涉及了眾多腦區(qū)的參與, 未來還需要厘清語義加工神經(jīng)通路的具體機(jī)制。

在神經(jīng)網(wǎng)絡(luò)的研究取向下, 探討詞匯閱讀中神經(jīng)通路間的動(dòng)態(tài)協(xié)作機(jī)制是研究者關(guān)注的熱點(diǎn)和焦點(diǎn)問題, 目前的研究可以得出以下結(jié)論:1)?特定實(shí)驗(yàn)條件下發(fā)現(xiàn)的閱讀腦區(qū)激活由潛在的加工需求決定, 并表現(xiàn)出閱讀背/腹側(cè)神經(jīng)通路的動(dòng)態(tài)協(xié)作; 2) 背/腹側(cè)神經(jīng)通路的動(dòng)態(tài)協(xié)作是跨語言普遍的閱讀腦機(jī)制; 3) 閱讀經(jīng)驗(yàn)對(duì)背/腹神經(jīng)通路動(dòng)態(tài)協(xié)作機(jī)制的形成起著至關(guān)重要的作用。

本文嘗試將閱讀的認(rèn)知和神經(jīng)模型統(tǒng)一為潛在加工需求下閱讀神經(jīng)通路的動(dòng)態(tài)協(xié)作機(jī)制, 但是, 對(duì)一些基本問題還需要進(jìn)一步厘清:首先, 需要深入闡明潛在加工需求的實(shí)質(zhì)。這里的潛在加工需求是指特定實(shí)驗(yàn)任務(wù)下涉及的具體加工, 不同的任務(wù)需求對(duì)閱讀中的正字法、語音和語義加工具有不同的依賴。而特定任務(wù)下不同的閱讀加工成分是否具有實(shí)質(zhì)相同的加工需求, 如加工負(fù)荷(Taylor et al., 2013), 或者在多大程度上不同的閱讀加工成分能夠統(tǒng)一為基本的認(rèn)知加工, 這些問題都還需要深入細(xì)致地探討。

其次, 需要闡明動(dòng)態(tài)性的具體體現(xiàn)。一方面, 本文提出的動(dòng)態(tài)性體現(xiàn)在受到實(shí)驗(yàn)任務(wù)和實(shí)驗(yàn)材料(詞匯屬性、語言特性)的影響時(shí), 背/腹側(cè)閱讀通路表現(xiàn)出腦區(qū)激活或功能連接在空間拓?fù)渖系淖兓?。另一方面?從閱讀經(jīng)驗(yàn)對(duì)背側(cè)和腹側(cè)通路動(dòng)態(tài)協(xié)作的塑造作用, 嘗試從發(fā)展的角度論述閱讀通路協(xié)作模式的動(dòng)態(tài)性變化。具體表現(xiàn)為隨著兒童學(xué)習(xí)經(jīng)驗(yàn)的積累, 腦區(qū)的參與程度(激活強(qiáng)度和白質(zhì)密度等)、以及體現(xiàn)在閱讀的背側(cè)和腹側(cè)通路的連接效率呈現(xiàn)出不同的趨勢(shì)。但是, 在“時(shí)間”維度上, 文中關(guān)于兒童閱讀發(fā)展的大尺度研究與其略有相關(guān), 對(duì)于更加精細(xì)的加工進(jìn)程層面, 本文沒有提及。如果能從加工進(jìn)程的“時(shí)間”維度闡明閱讀神經(jīng)通路間的動(dòng)態(tài)協(xié)作, 無疑將有利于揭示閱讀網(wǎng)絡(luò)動(dòng)態(tài)性的時(shí)空特征。

同時(shí), 未來的研究還需要對(duì)詞匯閱讀的神經(jīng)網(wǎng)絡(luò)展開深入探討:1) 閱讀相關(guān)腦區(qū)的功能認(rèn)識(shí)還存在爭論, 很大程度上可能是特定刺激或任務(wù)對(duì)比導(dǎo)致的潛在加工需求不同并導(dǎo)致了特定的實(shí)驗(yàn)結(jié)果。這就需要透過實(shí)驗(yàn)任務(wù)或刺激條件的表象, 從潛在加工本質(zhì)的角度來考察閱讀相關(guān)腦區(qū)的功能。2) 從神經(jīng)網(wǎng)絡(luò)的角度探討閱讀的腦機(jī)制, 不僅需要考察腦區(qū)/神經(jīng)通路間的動(dòng)態(tài)協(xié)作機(jī)制, 還需要考察特定腦區(qū)作為跨認(rèn)知功能網(wǎng)絡(luò)的一部分, 在不同認(rèn)知加工需求下表現(xiàn)出來的動(dòng)態(tài)激活特性。同時(shí), 詞匯閱讀與視覺客體加工神經(jīng)網(wǎng)絡(luò)的普遍性與特異性問題還需要深入探討。閱讀神經(jīng)網(wǎng)絡(luò)在多大程度上是語言特異性或領(lǐng)域一般性的, 是未來研究需要解決的重要理論問題。3) 當(dāng)前詞匯閱讀的認(rèn)知和神經(jīng)生理模型還不統(tǒng)一, 未來研究需要進(jìn)一步構(gòu)建并完善詞匯閱讀的理論模型。

參考文獻(xiàn)

楊劍峰, 黨敏, 張瑞, 王小娟. (2018). 漢字閱讀的語義神經(jīng)回路及其與語音回路的協(xié)作機(jī)制. 心理科學(xué)進(jìn)展, 26(3), 381?390.

Barton?, M., Rapcsak, S. Z., Zvon?ák, V., Mare?ek, R., Cvr?ek, V., & Rektorová, I. (2023). Functional neuroanatomy of reading in Czech: Evidence of a dual-route processing architecture in a shallow orthography. Frontiers in Psychology, 13, 1037365.

Bhattacharjee, S., Kashyap, R., O'Brien, B. A., McCloskey, M., Oishi, K., Desmond, J. E., ... Chen, S. H. A. (2020). Reading proficiency influences the effects of transcranial direct current stimulation: Evidence from selective modulation of dorsal and ventral pathways of reading in bilinguals. Brain and Language, 210, 104850.

Bouhali, F., de Schotten, M. T., Pinel, P., Poupon, C., Mangin, J. F., Dehaene, S., & Cohen, L. (2014). Anatomical connections of the visual word form area. Journal of Neuroscience, 34(46), 15402?15414.

Boukrina, O., & Graves, W. W. (2013). Neural networks underlying contributions from semantics in reading aloud. Frontiers in Human Neuroscience, 7, 518.

Braid, J., & Richlan, F. (2022). The functional neuroanatomy of reading intervention. Frontiers in Neuroscience, 16, 921931.

Caffarra, S., Karipidis, I. I., Yablonski, M., & Yeatman, J. D. (2021). Anatomy and physiology of word-selective visual cortex: From visual features to lexical processing. Brain Structure & Function, 226(9), 3051?3065.

Cao, F., Bitan, T., & Booth, J. R. (2008). Effective brain connectivity in children with reading difficulties during phonological processing. Brain and Language, 107(2), 91?101.

Cao, F., Brennan, C., & Booth, J. R. (2015). The brain adapts to orthography with experience: Evidence from English and Chinese. Developmental Science, 18(5), 785?798.

Cao, F., Sussman, B. L., Rios, V., Yan, X., Wang, Z., Spray, G. J., & Mack, R. M. (2017). Different mechanisms in learning different second languages: Evidence from English speakers learning Chinese and Spanish. Neuroimage, 148, 284?295.

Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what, when, where, and how of visual word recognition. Trends in Cognitive Sciences, 18(2), 90?98.

Chen, Y., Huang, L., Chen, K., Ding, J., Zhang, Y., Yang, Q., ... Guo, Q. (2020). White matter basis for the hub-and-spoke semantic representation: Evidence from semantic dementia. Brain, 143(4), 1206?1219.

Cherodath, S., & Singh, N. C. (2015). The influence of orthographic depth on reading networks in simultaneous biliterate children. Brain and Language, 143, 42?51.

Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2008). A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18(9), 2054?2065.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204?256.

Cross, A. M., Lammert, J. M., Perters, L., Frijters, J. C., Ansari, D., Steinbach, K. A., … Joanisse, M. F. (2023). White matter correlates of reading subskills in children with and without reading disability. Brain and Language, 241, 105270.

Cummine, J., Gould, L., Zhou, C., Hrybouski, S., Siddiqi, Z., Chouinard, B., & Borowsky, R. (2013). Manipulating instructions strategically affects reliance on the ventral-lexical reading stream: Converging evidence from neuroimaging and reaction time. Brain and Language, 125(2), 203?214.

Das, T., Padakannaya, P., Pugh, K. R., & Singh, N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. Neuroimage, 54(2), 1476?1487.

D?bska, A., Chyl, K., Dzi?giel, G., Kacprzak, A., ?uniewska, M., Plewko, J., ... Jednoróg, K. (2019). Reading and spelling skills are differentially related to phonological processing: Behavioral and fMRI study. Developmental Cognitive Neuroscience, 39, 100683.

Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254?262.

Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234?244.

Dehghani, M., Boghrati, R., Man, K., Hoover, J., Gimbel, S. I., Vaswani, A., ... Kaplan, J. T. (2017). Decoding the neural representation of story meanings across languages. Human Brain Mapping, 38(12), 6096?6106.

di Pietro, S. V., Willinger, D., Frei, N., Lutz, C., Coraj, S., Schneider, C., ... Brem, S. (2023). Disentangling influences of dyslexia, development, and reading experience on effective brain connectivity in children. Neuroimage, 268, 119869.

Dickens, J. V., Fama, M. E., deMarco, A. T., Lacey, E. H., Friedman, R. B., & Turkeltaub, P. E. (2019). Localization of phonological and semantic contributions to reading. The Journal of Neuroscience, 39(27), 5361?5368.

Dong, J., Li, A., Chen, C., Qu, J., Jiang, N., Sun, Y., ... Mei, L. (2021). Language distance in orthographic transparency affects cross-language pattern similarity between native and non-native languages. Human Brain Mapping, 42(4), 893?907.

Dong, J., Lu, C., Chen, C., Li, H., Liu, X., & Mei, L. (2020). Functional dissociations of the left anterior and posterior occipitotemporal cortex for semantic and non-semantic phonological access. Neuroscience, 430, 94?104.

Duncan, K. J. K., Twomey, T., Jones, O. P., Seghier, M. L., Haji, T., Sakai, K., ... Devlin, J. T. (2014). Inter- and intrahemispheric connectivity differences when reading Japanese Kanji and Hiragana. Cerebral Cortex, 24(6), 1601?1608.

Feng, X., Altarelli, I., Monzalvo, K., Ding, G., Ramus, F., Shu, H., ... Dehaene-Lambertz, G. (2020). A universal reading network and its modulation by writing system and reading ability in French and Chinese children. Elife Sciences, 9, e54591.

Frost, S. J., Mencl, W. E., Sandak, R., Moore, D. L., Rueckl, J. G., Katz, L., ... Pugh, K. R. (2005). A functional magnetic resonance imaging study of the trade-off between semantics and phonology in reading aloud. Neuroreport, 16(6), 621?624.

Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural systems for reading aloud: A multiparametric approach. Cerebral Cortex, 20(8), 1799?1815.

Graves, W. W., Purcell, J., Rothlein, D., Bolger, D. J., Rosenberg-Lee, M., & Staples, R. (2023). Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Structure and Function, 228(1), 255?271.

Guo, W., Geng, S., Cao, M., & Feng, J. (2022a). The brain connectome for Chinese reading. Neuroscience Bulletin, 38(9), 1097?1113.

Guo, W., Geng, S., Cao, M., & Feng, J. (2022b). Functional gradient of the fusiform cortex for Chinese character recognition. eNeuro, 9(3), 1?12.

Guo, Y., & Burgund, E. D. (2010). Task effects in the mid-fusiform gyrus: A comparison of orthographic, phonological, and semantic processing of Chinese characters. Brain and Language, 115(2), 113?120.

Hodgson, V. J., Lambon Ralph, M. A., & Jackson, R. L. (2021). Multiple dimensions underlying the functional organization of the language network. Neuroimage, 241, 118444.

Hoffman, P., Lambon Ralph, M. A., & Woollams, A. M. (2015). Triangulation of the neurocomputational architecture?underpinning reading aloud. Proceedings of the National Academy of Sciences, 112(28), E3719? E3728.

Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13(6), 876?885.

Huber, E., Donnelly, P. M., Rokem, A., & Yeatman, J. D. (2018). Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications, 9(1), 2260.

Jackson, R. L., Hoffman, P., Pobric, G., & Lambon Ralph, M. A. (2016). The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions. Journal of Neuroscience, 36(5), 1490?1501.

Jamal, N. I., Piche, A. W., Napoliello, E. M., Perfetti, C. A., & Eden, G. F. (2012). Neural basis of single-word reading in Spanish-English bilinguals. Human Brain Mapping, 33(1), 235?245.

Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage, 20(2), 693?712.

Junker, F. B., Schlaffke, L., Lange, J., & Schmidt-Wilcke, T. (2023). The angular gyrus serves as an interface between the non-lexical reading network and the semantic system: Evidence from dynamic causal modeling. Brain Structure Function, Advance online publication. https://doi.org/10. 1007/s00429-023-02624-z

Kim, S. Y., Qi, T., Feng, X., Ding, G., Liu, L., & Cao, F. (2016). How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean-Chinese-English trilinguals. Neuroimage, 129, 25?39.

Koyama, M. S., Martino, A. D., Kelly, C., Jutagir, D. R., Sunshine, J., Schwartz, S. J., ... Milham, M. P. (2013). Cortical signatures of dyslexia and remediation: An intrinsic functional connectivity approach. Plos One, 8(2), e55454.

Krafnick, A. J., Tan, L. H., Flowers, D. L., Luetje, M. M., Napoliello, E. M., Siok, W. T., ... Eden, G. F. (2016). Chinese character and English word processing in children's ventral occipitotemporal cortex: FMRI evidence for script invariance. Neuroimage, 133, 302?312.

Kumar, U., & Padakannaya, P. (2019). The effect of written scripts dissimilarity over ventral and dorsal reading pathway: Combined fMRI & DTI study. Reading and Writing, 32(9), 2311?2325.

Lee, S. H., Booth, J. R., & Chou, T. L. (2016). Temporo- parietal connectivity uniquely predicts reading change from childhood to adolescence. Neuroimage, 142, 126? 134.

Lerma-Usabiaga, G., Carreiras, M., & Paz-Alonso, P. M. (2018). Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proceedings of the National Academy of Sciences, 115(42), E9981?E9990.

Levy, J., Pernet, C., Treserras, S., Boulanouar, K., Aubry, F., Démonet, J. F., & Celsis, P. (2009). Testing for the dual-route cascade reading model in the brain: An fMRI effective connectivity account of an efficient reading style. Plos One, 4(8), e6675.

Li, A., Yang, R., Qu, J., Dong, J., Gu, L., & Mei, L. (2022). Neural representation of phonological information during Chinese character reading. Human Brain Mapping, 43(13), 4013?4029.

Li, Y., Zhang, L., Xia, Z., Yang, J., Shu, H., & Li, P. (2017). The relationship between intrinsic couplings of the visual word form area with spoken language network and reading ability in children and adults. Frontiers in Human Neuroscience, 11, 327.

Liu, C. Y., Tao, R., Qin, L., Matthews, S., & Siok, W. T. (2022). Functional connectivity during orthographic, phonological, and semantic processing of Chinese characters?identifies distinct visuospatial and phonosemantic networks. Human Brain Mapping, 43(16), 5066?5080.

Lopez-Barroso, D., de Schotten, M. T., Morais, J., Kolinsky, R., Braga, L. W., Guerreiro-Tauil, A., ... Cohen, L. (2020). Impact of literacy on the functional connectivity of vision and language related networks. Neuroimage, 213, 116722.

Ludersdorfer, P., Price, C. J., Kawabata Duncan, K. J., deDuck, K., Neufeld, N. H., & Seghier, M. L. (2019). Dissociating the functions of superior and inferior parts of the left ventral occipito-temporal cortex during visual word and object processing. Neuroimage, 199, 325?335.

Malik-Moraleda, S., Ayyash, D., Galle?e, J., Affourtit, J., Hoffman, M., Mineroff, Z., ... Fedorenko, E. (2022). An investigation across 45 languages and 12 language families reveals a universal language network. Nature Neuroscience, 25, 1014?1019.

Martin, A., Schurz, M., Kronbichler, M., & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36(5), 1963? 1981.

Mattheiss, S. R., Levinson, H., & Graves, W. W. (2018). Duality of function: Activation for meaningless nonwords and semantic codes in the same brain areas. Cerebral Cortex, 28(7), 2516?2524.

Mechelli, A., Crinion, J. T., Long, S., Friston, K., Lambon Ralph, M. A., Patterson, K., ... Price, A. R. (2005). Dissociating reading processes on the basis of neuronal interactions. Journal of Cognitive Neuroscience, 17(11), 1753?1765.

Morken, F., Helland, T., Hugdahl, K., & Specht, K. (2017). Reading in dyslexia across literacy development: A longitudinal study of effective connectivity. Neuroimage, 144(Pt A), 92?100.

Moulton, E., Bouhali, F., Monzalvo, K., Poupon, C., Zhang, H., Dehaene, S., ... Dubois, J. (2019). Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: A longitudinal MRI study in children. Brain Structure and Function, 224(4), 1519?1536.

Murphy, K., Jogia, J., & Talcott, J. (2019). On the neural basis of word reading: A meta-analysis of fMRI evidence using activation likelihood estimation. Journal of Neurolinguistics, 49, 71?83.

Nakamura, K., Kuo, W. J., Pegado, F., Cohen, L., Tzeng, O. J., & Dehaene, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences, 109(50), 20762?20767.

Oliver, M., Carreiras, M., & Paz-Alonso, P. M. (2017). Functional dynamics of dorsal and ventral reading networks in bilinguals. Cerebral Cortex, 27(12), 5431? 5443.

Pattamadilok, C., Chanoine, V., Pallier, C., Anton, J. L., Nazarian, B., Belin, P., & Ziegler, J. C. (2017). Automaticity of phonological and semantic processing during visual word recognition. Neuroimage, 149, 244? 255.

Paulesu, E., McCrory, E., Fazio, F., Menoncello, L., Brunswick, N., Cappa, S. F., ... Frith, U. (2000). A cultural effect on brain function. Nature Neuroscience, 3(1), 91?96.

Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816?847.

Protopapas, A., Orfanidou, E., Taylor, J. S. H., Karavasilis, E., Kapnoula, E. C., Panagiotaropoulou, G., ... Kelekis, D. (2016). Evaluating cognitive models of visual word recognition using fMRI: Effects of lexical and sublexical variables. Neuroimage, 128, 328?341.

Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., ... Shaywitz, B. A. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities, 6(3), 207?213.

Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., ... Shaywitz, B. A. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 34(6), 479?492.

Qin, L., Lyu, B., Shu, S., Yin, Y., Wang, X., Ge, J., ... Gao, J. H. (2021). A heteromodal word-meaning binding site in the visual word form area under top-down frontoparietal control. Journal of Neuroscience, 41(17), 3854?3869.

Qu, J., Pang, Y., Liu, X., Cao, Y., Huang, C., & Mei, L. (2022). Task modulates the orthographic and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain Imaging and Behavior, 16(4), 1695?1707.

Richardson, F. M., Seghier, M. L., Leff, A. P., Thomas, M. S., & Price, C. J. (2011). Multiple routes from occipital to temporal cortices during reading. The Journal of Neuroscience, 31(22), 8239?8247.

Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: The role of orthographic depth. Frontiers in Human Neuroscience, 8, 347.

Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage, 56(3), 1735?1742.

Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J., Kuo, W. J., Bick, A., Frost, S. J., ... Frost, R. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112(50), 15510?15515.

Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M. S., ... Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences, 105(46), 18035?18040.

de Schotten, M. T., Cohen, L., Amemiya, E., Braga, L. W., & Dehaene, S. (2014). Learning to read improves the structure of the arcuate fasciculus. Cerebral Cortex, 24(4), 989?995.

Schurz, M., Wimmer, H., Richlan, F., Ludersdorfer, P., Klackl, J., & Kronbichler, M. (2015). Resting-state and task-based functional brain connectivity in developmental dyslexia. Cerebral Cortex, 25(10), 3502?3514.

Seidenberg, M. S. (2011). Reading in different writing systems: One architecture, multiple solutions. In P. McCardle, J. Ren, & O. Tzeng (Eds.), Dyslexia across language: Orthography and the gene-brain-behavior link?(pp. 151?174). Baltimore, MD: Paul Brooke Publishing.

Shen, Y., & Tufo, S. N. D. (2022). The influence of orthographic depth on multilinguals neural networks. Neuropsychologia, 164, 108095.

Simon, G., Lano?, C., Poirel, N., Rossi, S., Lubin, A., Pineau, A., & Houdé, O. (2013). Dynamics of the anatomical changes that occur in the brains of schoolchildren as they learn to read. Plos One, 8(12), e81789.

Siok, W. T., Jia, F., Liu, C. Y., Perfetti, C. A., & Tan, L. H. (2020). A lifespan fMRI study of neurodevelopment associated with reading Chinese. Cerebral Cortex, 30(7), 4140?4157.

Smith, A. C., Monaghan, P., & Huettig, F. (2021). The effect of orthographic systems on the developing reading system: Typological and computational analyses. Psychological Review, 128(1), 125?159.

Stevens, W. D., Kravitz, D. J., Peng, C. S., Tessler, M. H., & Martin, A. (2017). Privileged functional connectivity between the visual word form area and the language system. Journal of Neuroscience, 37(21), 5288?5297.

Su, M., de Schotten, M. T., Zhao, J., Song, S., Zhou, W., Gong, G., ... Shu, H. (2018). Vocabulary growth rate from preschool to school-age years is reflected in the connectivity of the arcuate fasciculus in 14-year-old children. Developmental Science, 21(5), e12647.

Su, M., Zhao, J., de Schotten, M. T., Zhou, W., Gong, G., Ramus, F., & Shu, H. (2018). Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Developmental Cognitive Neuroscience, 31, 11?19.

Sun, Y., Yang, Y., Desroches, A. S., Liu, L., & Peng, D. (2011). The role of the ventral and dorsal pathways in reading Chinese characters and English words. Brain and Language, 119(2), 80?88.

Szwed, M., Dehaene, S., Kleinschmidt, A., Eger, E., Valabregue, R., Amadon, A., & Cohen, L. (2011). Specialization for written words over objects in the visual cortex. Neuroimage, 56(1), 330?344.

Tainturier, M., Sorvisto, P., & Mullins, P. G. (2019, October). Effects of orthographic depth on functional connectivity within reading pathways in proficient bilinguals. Academy of Aphasia 57th Annual Meeting. Macau, Macao, SAR China.

Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83?91.

Tan, L. H., Spinks, J. A., Feng, C. M., Siok, W. T., Perfetti, C. A., Xiong, J., ... Gao, J. H. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18(3), 158?166.

Taylor, J. S., Rastle, K., & Davis, M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychological Bulletin, 139(4), 766?791.

Taylor, J. S., Rastle, K., & Davis, M. H. (2014). Interpreting response time effects in functional imaging studies. Neuroimage, 99, 419?433.

Taylor, J. S. H., Davis, M. H., & Rastle, K. (2019). Mapping visual symbols onto spoken language along the ventral visual stream. Proceedings of the National Academy of Sciences, 116(36), 17723?17728.

Vanderauwera, J., de Vos, A., Forkel, S. J., Catani, M., Wouters, J., Vandermosten, M., & Ghesquière, P. (2018). Neural organization of ventral white matter tracts parallels the initial steps of reading development: A DTI tractography study. Brain and Language, 183, 32?40.

van der Auwera, S., Vandermosten, M., Wouters, J., Ghesquiére, P., & Vanderauwera, J. (2021). A three-time point longitudinal investigation of the arcuate fasciculus throughout reading acquisition in children developing dyslexia. Neuroimage, 237, 118087.

Wan, N., Hancock, A. S., Moon, T. K., & Gillam, R. B. (2018). A functional near‐infrared spectroscopic investigation of speech production during reading. Human Brain Mapping, 39(3), 1428?1437.

Wandell, B. A., & Le, R. K. (2017). Diagnosing the neural circuitry of reading. Neuron, 96(2), 298?311.

Wang, F., Karipidis, I. I., Pleisch, G., Fraga-Gonzalez, G., & Brem, S. (2020). Development of print-speech integration in the brain of beginning readers with varying reading skills. Frontiers in Human Neuroscience, 14, 289.

Wang, J., Tong, F., Joanisse, M. F., & Booth, J. R. (2023). A sculpting effect of reading on later representational quality of phonology revealed by multi-voxel pattern analysis in young children. Brain and Language, 239, 105252.

Wang, X., Yang, J., Shu, H., & Zevin, J. D. (2011). Left fusiform BOLD responses are inversely related to word-likeness in a one-back task. Neuroimage, 55(3), 1346?1356.

Wang, X., Yang, J., Yang, J., Mencl, W. E., Shu, H., & Zevin, J. D. (2015). Language differences in the brain network for reading in naturalistic story reading and lexical decision. Plos One, 10(5), e0124388.

Wang, X., Zhao, R., Zevin, J. D., & Yang, J. (2016). The Neural correlates of the interaction between semantic and phonological processing for Chinese character reading. Frontiers in Psychology, 7, 947.

Welcome, S. E., & Joanisse, M. F. (2012). Individual differences in skilled adult readers reveal dissociable patterns of neural activity associated with component processes of reading. Brain and Language, 120(3), 360?371.

Woollams, A. M., Halai, A., & Lambon Ralph, M. A. (2018). Mapping the intersection of language and reading: The neural bases of the primary systems hypothesis. Brain Structure Function, 223(8), 3769?3786.

Woolnough, O., Donos, C., Curtis, A., Rollo, P. S., Roccaforte, Z. J., Dehaene, S., ... Tandon, N. (2022). A spatiotemporal map of reading aloud. The Journal of Neuroscience, 42(27), 5438?5450.

Woolnough, O., Donos, C., Rollo, P. S., Forseth, K. J., Lakretz, Y., Crone, N. E., ... Tandon, N. (2021). Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nature Human Behaviour, 5(3), 389?398.

Yang, J., Shu, H., McCandliss, B. D., & Zevin, J. D. (2013). Orthographic influences on division of labor in learning to read Chinese and English: Insights from computational modeling. Bilingualism: Language and Cognition, 16(2), 354?366.

Yang, J., Wang, X., Shu, H., & Zevin, J. D. (2012). Task by stimulus interactions in brain responses during Chinese character processing. Neuroimage, 60(2), 979?990.

Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012). Development of white matter and reading skills. Proceedings of the National Academy of Sciences, 109(44), E3045?E3053.

Younger, J. W., Tucker-Drob, E., & Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neuroimage, 158, 90?98.

Yu, X., Raney, T., Perdue, M. V., Zuk, J., Ozernov-Palchik, O., Becker, B. L. C., ... Gaab, N. (2018). Emergence of the neural network underlying phonological processing from the prereading to the emergent reading stage: A longitudinal study. Human Brain Mapping, 39(5), 2047? 2063.

Zhang, M., Chen, C., Xue, G., Lu, Z., Mei, L., Xue, H., ... Dong, Q. (2014). Language-general and -specific white matter microstructural bases for reading. Neuroimage, 98, 435?441.

Zhang, Q., Wang, H., Luo, C., Zhang, J., Jin, Z., & Li, L. (2019). The neural basis of semantic cognition in Mandarin Chinese: A combined fMRI and TMS study. Human Brain Mapping, 40(18), 5412?5423.

Zhao, R., Fan, R., Liu, M., Wang, X., & Yang, J. (2017). Rethinking the function of brain regions for reading Chinese characters in a meta-analysis of fMRI studies. Journal of Neurolinguistics, 44, 120?133.

Zhu, L., Nie, Y., Chang, C., Gao, J. H., & Niu, Z. (2014). Different patterns and development characteristics of processing written logographic characters and alphabetic words: An ALE meta-analysis. Human Brain Mapping, 35(6), 2607?2618.

Zhu, L., Niu, Z., Nie, Y., Yang, Y., Li, K., Jin, Z., & Wei, J. (2016). The brain effective connectivity of Chinese during rhyming task. Plos One, 11(9), e0162158.

Ziegler, J. C., Bertrand, D., Toth, D., Csepe, V., Reis, A., Faisca, L., ... Blomert, L. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science, 21(4), 551?559.

Zuk, J., Yu, X., Sanfilippo, J., Figuccio, M. J., Dunstan, J., Carruthers, C., ... Gaab, N. (2021). White matter in infancy is prospectively associated with language outcomes in kindergarten. Developmental Cognitive Neuroscience, 50, 100973.

Dynamic collaboration of reading neural pathways driven by the processing demands

DANG Min, CAI Wenqi, CHEN Fakun, WANG Xiaojuan, YANG Jianfeng

School of Psychology, Shaanxi Normal University, Xian 710062, China

Abstract: Constructing unified cognitive and neurophysiological models is the central problem in the cognitive neuroscience of word reading. The cognitive models agree that reading is the collaborative outcome of phonological and semantic processing pathways, and studies of cognitive neuroscience have also shown that reading results from a dynamic collaboration between dorsal and ventral neural pathways. In order to systematically elaborate this dynamic collaboration mechanism of the reading network, the latest research progress is systematically disentangled from the following three aspects by combining the two levels of neural function and physiological basis. Firstly, it points out that the underlying processing demand is the essence of the dynamic collaboration between dorsal and ventral neural pathways. Secondly, it further elucidates how underlying processing demand drives the division of labor and collaborative patterns between the dorsal and ventral neural pathways under different levels of orthographic depths. Finally, it profoundly analyzes how latent processing shapes the dynamic collaboration between neural pathways through the language experience. In conclusion, the essence of the division and collaboration between neural pathways might be driven by processing demand under the specific task. It might become a universal cross-language word reading model.

Keywords:?word reading, model, pathway, dynamics of collaboration

猜你喜歡
通路模型
一半模型
p150Glued在帕金森病模型中的表達(dá)及分布
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
3D打印中的模型分割與打包
Kisspeptin/GPR54信號(hào)通路促使性早熟形成的作用觀察
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
褪黑素通過抑制p38通路減少腹腔巨噬細(xì)胞NO和ROS的產(chǎn)生
proBDNF-p75NTR通路抑制C6細(xì)胞增殖
HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
麻栗坡县| 宜兰县| 滁州市| 海阳市| 如皋市| 西充县| 徐汇区| 阳原县| 南岸区| 育儿| 永福县| 皮山县| 赣榆县| 胶州市| 彭州市| 东源县| 雷州市| 长垣县| 邵阳县| 个旧市| 久治县| 呈贡县| 清新县| 普陀区| 宁河县| 府谷县| 南宁市| 闽侯县| 新宾| 兴国县| 册亨县| 鄂伦春自治旗| 奇台县| 岱山县| 南昌县| 孝昌县| 唐海县| 镇平县| 苏州市| 垦利县| 汾西县|