国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

關于樹的biharmonic指數(shù)的研究*

2024-01-27 07:02鄭學謙喬曉云
關鍵詞:星圖韋達實數(shù)

鄭學謙,喬曉云

(山西工程科技職業(yè)大學 基礎課教學部,山西 榆次 030619)

設G是n階簡單連通圖,其頂點集為V={v1,v2,…,vn},邊集為E={e1,e2,…,em},頂點vi的度記作di(i=1,2,…,n),不妨設d1≥d2≥…≥dn,于是G的度序列可記為(d1,d2,…,dn).用A表示G的鄰接矩陣,而G的度對角矩陣表示為D=diag(d1,d2,…,dn),則G的Laplace矩陣定義為L(G)=D-A,其特征多項式|λI-L(G)|稱為G的Laplace特征多項式,其特征值稱為G的Laplace特征值(記作λi,i=1,2,…,n,并約定0=λ1≤λ2≤…≤λn).本文涉及的其他概念可見文獻[1].

1 相關引理

引理1[8]設a1,a2,…,an均為非負實數(shù),則有

其中等式成立當且僅當a1=a2=…=an.

引理2[8](Pólya-Szeg不等式) 設ai,bi(1≤i≤n)均為正實數(shù),則有

其中

M1=max{a1,…,an},M2=max{b1,…,bn},

m1=min{a1,…,an},m2=min{b1,…,bn}.

引理3[7]設Tn是n階樹,且d1+d2=n,則Tn的Laplace特征多項式為

φTn(λ)=λ(λ-1)n-4(λ3+(n+2)λ2+(n+2+d1d2)λ-n).

2 主要結果

證明由引理1得

定理2設Tn是n階樹,且有d1+d2=n,則

證明由引理3得

φTn(λ)=λ(λ-1)n-4(λ3+(n+2)λ2+(n+2+d1d2)λ-n).

f(λ)∶=λ3+(n+2)λ2+(n+2+d1d2)λ-n.

設f(λ)的三個根為x1,x2,x3,則由韋達定理得

于是有

推論1設Hn是度序列為(n-2,2,1,…,1)的n階樹,則

證明由定理2得

推論2設Sn是度序列為(n-3,3,1,…,1)的n階樹,則

證明由定理2得

設K1,s是含有s+1個頂點的星圖.

定理3設T(s,t)是用一條邊連結不相交的星圖K1,s和K1,t的中心所得到的n階樹,則

證明直接計算得φT(s,t)(λ)=λ(λ-1)n-4(λ3-(n+2)λ2+(2n+st+1)λ-n).記

f(λ)∶=λ3-(n+2)λ2+(2n+st+1)λ-n.

設f(λ)的三個根為x1,x2,x3,則由韋達定理得

從而

猜你喜歡
星圖韋達實數(shù)
“實數(shù)”實戰(zhàn)操練
星圖上非線性分數(shù)階微分方程邊值問題解的存在唯一性
方程之思——從丟番圖到韋達
圓錐曲線中“韋達結構與準韋達結構”問題探析
圓錐曲線中“韋達結構與準韋達結構”問題探析
詩意聯(lián)結 水漾星圖——上海龍湖·星圖美學展示中心
認識實數(shù)
1.1 實數(shù)
一種基于聯(lián)合變換相關的PSF估計方法*
韋達遞降(升)法及其應用