摘"要:【目的】""分析不同干旱脅迫處理下,野生山杏和人工栽培山杏品種根莖葉解剖結(jié)構(gòu)的變化,為篩選出耐旱性強(qiáng)的優(yōu)良杏品種提供依據(jù)。
【方法】""以1年生人工栽培山杏與野生山杏實(shí)生苗為材料,采用聚乙二醇(PEG-6000)人工模擬干旱,并用光學(xué)顯微鏡觀察其根莖葉的解剖結(jié)構(gòu)。
【結(jié)果】""隨著干旱脅迫的增加,野生山杏和人工栽培杏莖髓直徑均呈下降趨勢(shì),且結(jié)構(gòu)緊密、發(fā)達(dá),而木質(zhì)部厚度則呈上升趨勢(shì)。其中,野生山杏品種莖的木質(zhì)部厚度大于人工栽培山杏品種,髓直徑小于人工栽培山杏品種,野生山杏髓發(fā)達(dá)程度高于人工栽培山杏品種。隨著干旱脅迫的增強(qiáng),葉片上表皮、下表皮、柵欄組織、海綿組織厚度顯著減小,角質(zhì)層厚度顯著增加。其中,野生山杏品種角質(zhì)層、柵欄組織、海綿組織厚度大于人工栽培山杏,葉片上表皮、下表皮小于人工栽培山杏品種。野生山杏品種的對(duì)干旱脅迫的適應(yīng)能力綜合得分高于人工栽培山杏。
【結(jié)論】""杏根莖葉結(jié)構(gòu)適應(yīng)特征的變化均與干旱脅迫相關(guān),植株根據(jù)水分虧缺程度調(diào)整根莖葉結(jié)構(gòu)以維持生存和生長(zhǎng),干旱脅迫下野生山杏品種較人工栽培山杏具有較強(qiáng)的適應(yīng)性。
關(guān)鍵詞:""野生山杏;人工栽培山杏;干旱脅迫;根;莖;葉;解剖結(jié)構(gòu)
中圖分類號(hào):"S662.2""""文獻(xiàn)標(biāo)志碼:"A""""文章編號(hào):"1001-4330(2024)11-2684-09
0"引 言
【研究意義】我國(guó)西北地區(qū)是典型的大陸性氣候,雨量少,日照時(shí)間長(zhǎng)。杏(Prunus armeniaca L.)為被子植物,杏屬,具有較高的經(jīng)濟(jì)價(jià)值、功效功能和綠色生態(tài)利用價(jià)值。目前新疆杏林面積75×104 hm2,其中純天然杏林總面積59.5×104 hm2,占79.3%[1]。野生山杏品種具有極強(qiáng)的耐旱性、耐鹽性和抗寒性,篩選出耐旱性強(qiáng)的杏品種對(duì)新疆改善生態(tài)環(huán)境保護(hù)具有重要意義。【前人研究進(jìn)展】園藝植物的抗旱性與其營(yíng)養(yǎng)器官解剖結(jié)構(gòu)密切相關(guān)[2-3]。劉玉冰[4]、杜華棟[5]、馬亞麗[6]和卓仁英[7]等研究干旱半干旱地區(qū)園藝植物根、莖、葉解剖形態(tài)特征發(fā)現(xiàn),園藝植物在長(zhǎng)期進(jìn)化過程中,可根據(jù)自身解剖形態(tài)的變化適應(yīng)新的環(huán)境和結(jié)構(gòu)。干旱脅迫下園藝植物營(yíng)養(yǎng)器官解剖結(jié)構(gòu)則會(huì)產(chǎn)生多種變化[8-12]。【本研究切入點(diǎn)】葉片的上表皮細(xì)胞、下表皮細(xì)胞、柵欄組織、角質(zhì)層以及莖的髓、韌皮部等在干旱脅迫下均會(huì)發(fā)生相應(yīng)的變化[13-18],因此解剖結(jié)構(gòu)變化可以作為選擇抗旱物種的指標(biāo)值[19-23]。需研究分析
不同程度干旱脅迫下野生山杏品種和人工栽培山杏品種的莖葉解剖結(jié)構(gòu)。【擬解決的關(guān)鍵問題】觀察2種杏品種的解剖結(jié)構(gòu)在不同干旱脅迫下的變化,探究不同程度干旱脅迫下2個(gè)杏品種根莖葉的解剖結(jié)構(gòu),為耐旱性杏品種篩選提供參考。
1"材料與方法
1.1"材 料
選用生長(zhǎng)優(yōu)良、無病蟲害的新疆野生山杏(Y)和人工栽培山杏(R)為材料,均為同年生主莖,試驗(yàn)在塔里木大學(xué)園藝花卉試驗(yàn)站智能溫室(景鵬溫室)進(jìn)行。 2018年3月提前將2個(gè)杏品種移栽至土壤中,盆栽。
1.2"方 法
選擇不同濃度的聚乙二醇(PEG6000)模擬不同程度的干旱脅迫,設(shè)置3種干旱脅迫處理:處理1:5%輕度脅迫、處理2:10%輕度至中度脅迫、處理3:15%中度重度脅迫,純水為對(duì)照(CK),每個(gè)溶液設(shè)置30盆,每盆栽種1株。
2018年6月16日至7月5日,不同杏品種幼苗每7 d進(jìn)行1次干旱脅迫處理。
杏葉收集頂芽下第3完全展開的葉片,莖段選取頂芽下第5~6葉中部,根段取距主根2~4 cm處。將根、莖、葉和根分別切成0.3 cm的小塊,包埋于FAA水溶液(70%酒精、醋酸、室內(nèi)甲醛按18∶"1∶"1的體積比混合)中。莖、葉各取5組試樣重復(fù)。選擇基本石蠟切片,切成厚度為10μm的切片。制備樣品,用奧林巴斯高倍顯微鏡切片,精確測(cè)量拍照,每個(gè)處理取6個(gè)重復(fù),每個(gè)重復(fù)選擇10個(gè)視野,每個(gè)特征指標(biāo)測(cè)量采集50條數(shù)據(jù)信息。
1.3"數(shù)據(jù)處理
數(shù)據(jù)應(yīng)用Excel與DPS對(duì)測(cè)量根莖葉解剖結(jié)構(gòu)的數(shù)據(jù)并統(tǒng)計(jì)分析,采用SPSS26軟件分析2個(gè)杏品種的解剖結(jié)構(gòu)主成分,并在主成分分析的基礎(chǔ)上用Origin 2018 64Bit軟件繪圖。
2"結(jié)果與分析
2.1"干旱脅迫對(duì)2個(gè)杏品種莖解剖結(jié)構(gòu)影響
研究表明,2個(gè)杏品種間髓直徑存在顯著差異。其中,人工栽培山杏的髓直徑大于野生山杏品種。在干旱脅迫條件下,隨著干旱脅迫強(qiáng)度的增加2個(gè)杏品種髓直徑均呈下降趨勢(shì)。在低度脅迫狀態(tài)下,人工栽培山杏同比下降2.78%,野生山杏同比下降3.91%;中度脅迫狀態(tài)下,人工栽培山杏同比下降3.41%,野生山杏同比下降5.54%;重度脅迫狀態(tài)下,人工栽培山杏同比下降12.82%,野生山杏同比下降17.49%。圖1
2個(gè)杏品種間木質(zhì)部厚度存在顯著差異,其中,人工栽培山杏的木質(zhì)部厚度小于野生山杏,在干旱脅迫條件下,隨著干旱脅迫程度的增強(qiáng)2個(gè)杏品種木質(zhì)部厚度均呈上升趨勢(shì)。在低度脅迫狀態(tài)下,人工栽培山杏同比增加2.78%,野生山杏同比增加3.91%;中度脅迫狀態(tài)下,人工栽培山杏同比增加3.41%,野生山杏同比增加5.54%;重度脅迫狀態(tài)下,人工栽培山杏同比增加12.82%,野生山杏同比增加17.49%。圖2
2個(gè)杏品種間韌皮部厚度無顯著差異。其中,在干旱脅迫條件下,隨著干旱脅迫的增強(qiáng)2個(gè)杏品種韌皮部厚度均無明顯變化。圖3
2.2"干旱脅迫對(duì)2個(gè)杏品種葉解剖結(jié)構(gòu)影響
研究表明,在正常生長(zhǎng)狀況下,2個(gè)杏品種葉片的角質(zhì)層厚度差異顯著,野生山杏大于人工栽培山杏品種。在干旱脅迫下,2個(gè)杏品種葉片上角質(zhì)層厚度在整體上表現(xiàn)為增加,并且隨著干旱脅迫程度的增加,上角質(zhì)層增加幅度逐漸增加,野生山杏增加程度大于人工栽培山杏。在重度脅迫下,6月22日人工栽培山杏和野生山杏分別為6.33、7.93 μm,7月2日人工栽培山杏和野生山杏分別為8.00、9.10 μm,2個(gè)杏品種同比增長(zhǎng)26.38%、14.75%。圖4
在正常生長(zhǎng)狀況下,2個(gè)杏品種葉片的上表皮厚度、下表皮厚度差異顯著,野生山杏小于人工栽培山杏品種,且上表皮厚度大于下表皮厚度。隨著干旱脅迫程度的增強(qiáng),2個(gè)杏品種葉片上表皮厚度、下表皮厚度均呈下降的趨勢(shì),重度干旱脅迫處理的野生山杏及人工栽培山杏葉片上表皮厚度、下表皮厚度均最小,人工栽培山杏平均分別達(dá)到27.50、18.73 μm,野生山杏平均分別達(dá)到23.43、24.13 μm;CK處理的葉片上表皮厚度和下表皮厚度最大,人工栽培山杏平均分別達(dá)到45.07、27.57 μm,野生山杏平均分別達(dá)到35.13、23.90 μm;且與對(duì)照相比,重度干旱脅迫處理的葉片上表皮厚度、下表皮厚度均差異顯著。圖5、圖6
在正常生長(zhǎng)狀況下,2個(gè)杏品種葉片的柵欄組織和海綿組織存在顯著差異,野生山杏的柵欄組織和海綿組織的厚度均大于人工栽培山杏。隨著干旱脅迫的加強(qiáng),2個(gè)杏品種的柵欄組織厚度逐漸減少,CK處理的均最大,人工栽培山杏和野生山杏分別為40.87、49.53 μm,重度脅迫處理的均最小,分別為33.90、42.63 μm,野生山杏在中度脅迫、重度脅迫的處理下的柵欄組織厚度顯著低于CK;海綿組織的厚度也隨著干旱脅迫的加強(qiáng)而減少,并且野生山杏海綿組織的厚度減少幅度遠(yuǎn)大于人工栽培山杏,在15%的干旱脅迫下7月2日野生山杏品種的厚度低于人工栽培山杏品種。2個(gè)杏品種的柵欄組織與海綿組織厚度的比值隨著干旱脅迫的增加而增加,在中度脅迫以及重度脅迫野生山杏?xùn)艡诮M織與海綿組織厚度的比值大于人工栽培山杏。圖7
不同程度干旱脅迫與2個(gè)杏品種葉片結(jié)構(gòu)的變化顯著相關(guān),尤其是在中度干旱脅迫和重度干旱脅迫下,2個(gè)杏品種葉片結(jié)構(gòu)顯著變化。圖8"
2.3"干旱脅迫下根莖葉解剖結(jié)構(gòu)的變化
研究表明,干旱脅迫下,2個(gè)杏品種的莖的髓直徑與正常生長(zhǎng)的相比均顯著下降,木質(zhì)部厚度與正常生長(zhǎng)的相比均顯著上升。野生山杏的髓直徑雖然小于人工栽培山杏,但其擁有更加發(fā)達(dá)的髓部。相比于正常狀態(tài)下,干旱脅迫下2個(gè)杏品種具有更發(fā)達(dá)的髓部、木質(zhì)部和韌皮部,同時(shí)野生山杏的發(fā)達(dá)程度優(yōu)于人工栽培山杏品種。圖9
2個(gè)杏品種葉肉組織具有柵欄組織和海綿組織的分化,柵欄組織和海綿組織分布于上、下表皮之間,野生山杏相較于人工栽培山杏,其柵欄組織排列更加致密。在干旱脅迫下,2個(gè)品種的柵欄組織排列均更加致密,野生山杏更加顯著。圖10
干旱脅迫明顯促進(jìn)了2個(gè)杏品種根系輸導(dǎo)組織的發(fā)育。在重度脅迫下,和對(duì)照相比,2個(gè)杏品種的維管束面積增大,且野生山杏維管束面積增大的面積大于人工栽培山杏;2個(gè)杏品種的木質(zhì)部導(dǎo)管數(shù)目增多,排布較為密集,且在重度脅迫下,野生山杏根系內(nèi)的導(dǎo)管較人工栽培山杏排布得更為密集。圖11"
2.4"主成分分析
研究表明,通過主成分分析法對(duì)2個(gè)杏品種中解剖結(jié)構(gòu)成分進(jìn)行綜合評(píng)價(jià),利用降維的原理,將原來較多的評(píng)價(jià)指標(biāo)用幾個(gè)較少的綜合指標(biāo)進(jìn)行替代,可保留原來的絕大多數(shù)信息,并把問題簡(jiǎn)單化。圖12、表1
根據(jù)同一方向維向量之間夾角小的特征,在鑒別種質(zhì)與抗旱性方面具有較高的相關(guān)性。根據(jù)特征值大于1,累計(jì)貢獻(xiàn)率大于80%的原則,提取3個(gè)主要成分,第一主成分的方差貢獻(xiàn)率為67.16%,第二主成分的方差貢獻(xiàn)率為15.33%,第三主成分的方差貢獻(xiàn)率為13.12%,3個(gè)主成分累積貢獻(xiàn)率為95.61%,該數(shù)據(jù)的變化趨勢(shì)。髓、木質(zhì)部、上表皮、下表皮、角質(zhì)層、柵欄組織、海綿組織具有較高矩陣(|載荷|gt;0.9),綜合得分越高,其耐旱性越強(qiáng)。同等水平脅迫下,野生山杏的綜合得分均大于人工栽培山杏品種,即野生山杏對(duì)干旱脅迫的適應(yīng)能力綜合得分高于人工栽培山杏。
3"討 論
在干旱脅迫下,杏可以通過改變根莖葉的解剖結(jié)構(gòu)適應(yīng)新的環(huán)境變化。研究中,干旱脅迫明顯促進(jìn)了根系輸導(dǎo)組織的發(fā)育,野生山杏和人工栽培山杏的維管束面積增大、木質(zhì)部導(dǎo)管數(shù)目增多,排布更為密集;在干旱脅迫下2個(gè)杏品種莖的髓直徑減少且結(jié)構(gòu)更加緊密,木質(zhì)部厚度增加,前人對(duì)干旱脅迫下桑樹和草地早熟禾解剖結(jié)構(gòu)的研究中也得出過相似的結(jié)論[24-25];2個(gè)杏品種在不同程度的干旱脅迫下,其葉片解剖結(jié)構(gòu)存在顯著差異,抗旱能力也不同,隨著干旱脅迫程度的提高,2個(gè)杏品種的葉片結(jié)構(gòu)特征呈現(xiàn)出典型的資源節(jié)約型干旱整合,主要表現(xiàn)是柵欄組織變厚,海綿組織變緊,上下皮變薄,降低其松緊度,角質(zhì)層厚度增加,與張敏娟等[24]對(duì)8個(gè)桑樹(Morus L.)品種莖葉解剖結(jié)構(gòu)與耐旱性關(guān)聯(lián)的研究結(jié)論一致,這些組織結(jié)構(gòu)的特征性變化是植物具有較強(qiáng)脅迫耐受能力的標(biāo)志,相比于其它組織結(jié)構(gòu),其中葉的柵欄組織響應(yīng)干旱脅迫速度最快,葉肉細(xì)胞中發(fā)達(dá)的柵欄組織可提高葉片光合效率、水分運(yùn)輸速率,避免強(qiáng)光灼傷[25],其厚度與抗旱性呈顯著相關(guān)性。
杏可以通過改變其根莖葉的解剖結(jié)構(gòu)來適應(yīng)干旱脅迫。野生山杏適應(yīng)干旱脅迫的能力高于人工栽培山杏,尤其是在中度至重度干旱脅迫,即在干旱環(huán)境下,野生山杏的生存能力高于人工栽培山杏,野生山杏更適宜作為南疆栽培杏的嫁接砧木在干旱地區(qū)推廣。
4"結(jié) 論
杏根莖葉的解剖結(jié)構(gòu)變化因干旱脅迫的程度和時(shí)間而變化。野生山杏和人工栽培的山杏均可通過改變莖(髓部、木質(zhì)部)、葉(角質(zhì)層、上表皮、下表皮、柵欄組織、海綿組織)的解剖結(jié)構(gòu)適應(yīng)不同程度的干旱脅迫,同時(shí),野生山杏對(duì)干旱脅迫的適應(yīng)能力強(qiáng)于人工栽培山杏,尤其是在中度干旱脅迫和重度干旱脅脅迫下,其解剖結(jié)構(gòu)的變化與人工栽培山杏之間差異顯著。杏的解剖結(jié)構(gòu)可以為區(qū)分杏的種源抗旱性,但杏對(duì)干旱的適應(yīng)性表現(xiàn)在各個(gè)方面,解剖結(jié)構(gòu)只是其中的一個(gè)表現(xiàn)。利用主成分進(jìn)行綜合分析,結(jié)合莖、葉、根結(jié)構(gòu)分析,進(jìn)行綜合排名,野生山杏干旱脅迫下綜合得分最高,為5.23,野生山杏耐旱性更強(qiáng),可通過調(diào)節(jié)根、莖和葉的結(jié)構(gòu)特征,從而提高人工栽培山杏的抗旱能力。
參考文獻(xiàn)"(References)
[1]"譚占明, 張朋朋, 吳翠云, 等.干旱脅迫對(duì)兩個(gè)杏品種的生長(zhǎng)和生理指標(biāo)的影響[J].北方園藝, 2020,(8): 50-54.
TAN Zhanming, ZHANG Pengpeng, WU Cuiyun, et al.Effects of drought stress on growth and physiological indicators of two apricot varieties[J].Northern Horticulture, 2020,(8): 50-54.
[2] 丁龍, 趙慧敏, 曾文靜, 等.五種西北旱區(qū)植物對(duì)干旱脅迫的生理響應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào), 2017, 28(5): 1455-1463.
DING Long, ZHAO Huimin, ZENG Wenjing, et al.Physiological responses of five plants in Northwest China arid area under drought stress[J].Chinese Journal of Applied Ecology, 2017, 28(5): 1455-1463.
[3] Borrell A K, Mullet J E, George-Jaeggli B, et al.Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake[J].Journal of Experimental Botany, 2014, 65(21): 6251-6263.
[4] 劉玉冰, 李新榮, 李蒙蒙, 等.中國(guó)干旱半干旱區(qū)荒漠植物葉片(或同化枝)表皮微形態(tài)特征[J].植物生態(tài)學(xué)報(bào), 2016, 40(11): 1189-1207.
LIU Yubing, LI Xinrong, LI Mengmeng, et al.Leaf(or assimilation branch) epidermal micromorphology of desert plant in arid and semiarid areas of China[J].Chinese Journal of Plant Ecology, 2016, 40(11): 1189-1207.
[5] 杜華棟, 焦菊英, 寇萌, 等.黃土高原先鋒種豬毛蒿葉片形態(tài)解剖與生理特征對(duì)立地的適應(yīng)性[J].生態(tài)學(xué)報(bào), 2016, 36(10): 2914-2925.
DU Huadong, JIAO Juying, KOU Meng, et al.Adaptability of foliar morphological, anatomical, and physiological characteristics of the pioneer species Artemisia scoparia growing in a hilly-gully Loess Region at different slope sites[J].Acta Ecologica Sinica, 2016, 36(10): 2914-2925.
[6] 馬亞麗, 王璐, 劉艷霞, 等.荒漠植物幾種主要附屬結(jié)構(gòu)的抗逆功能及其協(xié)同調(diào)控的研究進(jìn)展[J].植物生理學(xué)報(bào), 2015, 51(11): 1821-1836.
MA Yali, WANG Lu, LIU Yanxia, et al.Uptates on stress tolerance of main accessory structures and their synergetic interaction in desert plants[J].Plant Physiology Journal, 2015, 51(11): 1821-1836.
[7] 卓仁英, 陳益泰.木本植物抗?jié)承匝芯窟M(jìn)展[J].林業(yè)科學(xué)研究, 2001,14(2): 215-222.
ZHUO Renying, CHEN Yitai.Advances in waterlogging-resistance of woody plants[J].Forest Research, 2001,14(2): 215-222.
[8] 楊趙平, 賈露.塔里木盆地堿蓬屬6種植物葉的解剖學(xué)研究[J].西部林業(yè)科學(xué), 2011, 40(2): 36-39.
YANG Zhaoping, JIA Lu.Anatomy of leaves from 6 types of Suaeda in Tarim Basin[J].Journal of West China Forestry Science, 2011, 40(2): 36-39.
[9] 趙金花, 李青豐.內(nèi)蒙古荒漠草原三種野生蔥屬植物解剖結(jié)構(gòu)的抗旱性分析[J].內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 41(2): 201-205, 241-242.
ZHAO Jinhua, LI Qingfeng.Drought resistance analysis based on anatomical structures of three Wild Allium in Inner Mongolia arid grassland[J].Journal of Inner Mongolia University, 2010, 41(2): 201-205, 241-242.
[10] 任尚福.南疆蒺藜科三種植物葉解剖結(jié)構(gòu)及生態(tài)適應(yīng)性[J].喀什師范學(xué)院學(xué)報(bào), 2010, 31(3): 52-55.
REN Shangfu.Study on anatomical structure of leaf o three zygophyllaceaes of South Xinjiang and ecology adaptability[J].Journal of Kashgar Teachers College, 2010, 31(3): 52-55.
[11] 杜華棟, 徐翠紅, 劉萍, 等.陜北黃土高原優(yōu)勢(shì)植物葉片解剖結(jié)構(gòu)的生態(tài)適應(yīng)性[J].西北植物學(xué)報(bào), 2010, 30(2): 293-300.
DU Huadong, XU Cuihong, LIU Ping, et al.Foliar anatomical structures and ecological adaptabilities of dominant plants in the North Shaanxi Loess Plateau[J].Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(2): 293-300.
[12] 廖聲熙, 劉娟, 和菊, 等.印楝葉解剖結(jié)構(gòu)與抗旱性關(guān)系初步研究[J].林業(yè)科學(xué)研究, 2001,14(4): 435-440.
LIAO Shengxi, LIU Juan, HE Ju, et al.A study on the relationship between anatomical structure of leaves and resistance drought of neem (Azadirachta indica)[J].Forest Research, 2001,14(4): 435-440.
[13] 楊趙平, 劉琴, 李志軍.胡楊雌雄株葉片的比較解剖學(xué)研究[J].西北植物學(xué)報(bào), 2011, 31(1): 79-83.
YANG Zhaoping, LIU Qin, LI Zhijun.Leaf blade comparative anatomy between the female and the male of Populus euphratica oliv[J].Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(1): 79-83.
[14] 白重炎, 高巨營(yíng), 張朝.13種核桃莖的解剖結(jié)構(gòu)與其抗寒抗旱性研究[J].安徽農(nóng)業(yè)科學(xué), 2011, 39(27): 16496-16498,16502.
BAI Zhongyan, GAO Juying, ZHANG Zhao.Study on the anatomical structure and cold and drought resistance of 13 varieties of walnut caudices[J].Journal of Anhui Agricultural Sciences, 2011, 39(27): 16496-16498, 16502.
[15] 丁菲, 楊帆, 李德龍, 等.構(gòu)樹解剖結(jié)構(gòu)特征與抗旱性研究[J].安徽農(nóng)業(yè)科學(xué), 2010, 38(36): 20949-20952.
DING Fei, YANG Fan, LI Delong, et al.Studies on the anatomical structure characteristics and drought resistance of Broussonetia papyrifera[J].Journal of Anhui Agricultural Sciences, 2010, 38(36): 20949-20952.
[16] 孟慶輝, 潘青華, 魯韌強(qiáng), 等.4個(gè)品種扶芳藤莖葉解剖結(jié)構(gòu)及其與抗旱性的關(guān)系[J].中國(guó)農(nóng)學(xué)通報(bào), 2006,22(4): 138-142.
MENG Qinghui, PAN Qinghua, LU Renqiang, et al.The study on anatomical structure and drought-resistant of stem and leaves of four Euonymus fortunei[J].Chinese Agricultural Science Bulletin, 2006,22(4): 138-142.
[17] 胡云, 燕玲, 李紅.14種荒漠植物莖的解剖結(jié)構(gòu)特征分析[J].干旱區(qū)資源與環(huán)境, 2006,20(1): 202-208.
HU Yun, YAN Ling, LI Hong.Studies on the anatomical characteristics of the stems of 14 desert plants[J].Journal of Arid Land Resources and Environment, 2006,20(1): 202-208.
[18] Kulkarni M, Deshpande U.Comparative studies in stem anatomy and morphology in relation to drought resistance in tomato (Lycopersicon esculentum)[J].American Journal of Plant Physiology, 2005, 1(1): 82-88.
[19] 任媛媛, 劉艷萍, 王念, 等.9種屋頂綠化闊葉植物葉片解剖結(jié)構(gòu)與抗旱性的關(guān)系[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 38(4): 64-68.
REN Yuanyuan, LIU Yanping, WANG Nian, et al.The relationship between leaf anatomic structure and drought resistance of nine broadleaf plants[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4): 64-68.
[20] 陳燕, 劉鍇棟, 黎海利, 等.5種紅樹植物的葉片結(jié)構(gòu)及其抗逆性比較[J].東北林業(yè)大學(xué)學(xué)報(bào), 2014, 42(7): 27-31, 68.
CHEN Yan, LIU Kaidong, LI Haili, et al.Leaf stuctures and stress resistance in five mangrove species[J].Journal of Northeast Forestry University, 2014, 42(7): 27-31, 68.
[21] 胡亦民, 胡奕文, 宋朝輝, 等.太行山區(qū)常見綠化樹種葉片柵欄組織與植物耐旱性的相關(guān)性分析[J].北方園藝, 2012,(14): 68-69.
HU Yimin, HU Yiwen, SONG Zhaohui, et al.Correlation analysis between the palisade tissue of common greening species leaves in Taihang moutain and the drought tolerance of plants[J].Northern Horticulture, 2012,(14): 68-69.
[22] 潘存娥, 田麗萍, 李貞貞, 等.5種楊樹無性系葉片解剖結(jié)構(gòu)的抗旱性研究[J].中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(2): 21-25.
PAN Cune, TIAN Liping, LI Zhenzhen, et al.Studies on drought resistance on anatomical structure of leaves of 5 poplar clones[J].Chinese Agricultural Science Bulletin, 2011, 27(2): 21-25.
[23] 王貝貝, 孫虹豆, 江文, 等.兩種地被植物生長(zhǎng)、葉片解剖結(jié)構(gòu)及光合特性對(duì)干旱脅迫的響應(yīng)[J].天津農(nóng)業(yè)科學(xué), 2017, 23(3): 1-5.
WANG Beibei, SUN Hongdou, JIANG Wen, et al.Responses of growth, leaf anatomical structure and photosynthetic characteristics of two ground cover plants to drought stress[J].Tianjin Agricultural Sciences, 2017, 23(3): 1-5.
[24] 張敏娟, 李昭良, 焦鋒, 等.8個(gè)桑品種的植株莖葉解剖結(jié)構(gòu)及與耐旱性的關(guān)聯(lián)分析[J].蠶業(yè)科學(xué), 2018, 44(4): 516-522.
ZHANG Minjuan, LI Zhaoliang, JIAO Feng, et al.Anatomical structures of stem and leaf from eight mulberry varieties and their correlationship with drought tolerance[J].Science of Sericulture, 2018, 44(4): 516-522.
[25] 繆麗華, 王瑩瑩, 喬?hào)|東, 等.香菇草匍匐莖及葉結(jié)構(gòu)對(duì)不同水濕生境的生態(tài)適應(yīng)性[J].濕地科學(xué)與管理, 2018, 14(3): 45-49.
MIAO Lihua, WANG Yingying, QIAO Dongdong, et al.Ecological adaptability of stolon and leaf anatomical structure of Hydrocotyle vulgaris to various water conditions[J].Wetland Science amp; Management, 2018, 14(3): 45-49.
Effects of different drought stresses on anatomical ""structure of roots, stems and leaves of two apricot varieties
CHENG Yunxia1, TAN Zhanming1, GUO Ling1, LI Wenwen2, DU Jiageng1
(1. Collage of Horticulture and Forestry, Tarim University/South Xinjiang Facility Agriculture Brigade Key Laboratory, Aral Xinjiang 843300,China; 2. Collage of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China)
Abstract:【Objective】 ""To treat the wild apricot varieties and cultivated varieties by simulating different degrees of drought stress, in order to provide a basis for screening out the excellent varieties with strong drought tolerance.
【Methods】 """One-year-old artificially cultivated apricot seedlings and wild cultivated apricot seedlings in southern Xinjiang were used as materials, and polyethylene glycol (PEG-6000) was used to artificially simulate drought, and the anatomical structures of roots, stems and leaves were observed by optical microscope.
【Results】 """The results showed that with the increase of drought stress, the diameter of stem pith of wild apricot and cultivated apricot showed a decreasing trend, and the structure was compact and developed, while the thickness of xylem showed an increasing trend. Among them, the thickness of the xylem of the stem of the wild variety was larger than that of the cultivated variety, and the diameter of the pith was smaller than that of the cultivated variety. With the increase of drought stress, the thickness of leaf upper epidermis, lower epidermis, palisade tissue and spongy tissue decreased significantly, and the thickness of cuticle increased significantly. Among them, the thickness of cuticle, palisade tissue and spongy tissue of wild varieties were larger than those of cultivated varieties, and the upper and lower epidermis of leaves were smaller than those of cultivated varieties. And through the principal component analysis, it was concluded that the comprehensive score of the wild variety's adaptability to drought stress was higher than that of the artificial cultivated variety.
【Conclusion】 """The changes of apricot root, stem and leaf structure are the adaptive characteristics of apricot to cope with drought stress. The plant adjusts the root, stem and leaf structure according to the degrees of water deficit to maintain survival and growth. The wild varieties have strong adaptability to drought stress than the cultivated varieties
Key words:""wild apricot;artificial cultivation of mountain apricots;drought stress; root;stem; leaf; anatomical structure
Fund projects:""Project of National Natural Science Foundation of China \"Mechanism of Adaptive Variation of S-RNase and SFB genes in the Pamir Plateau of Xinjiang(32160694);National Key R amp; D Sub-Project \"Study on the Genetic Diversity and the Origin and Evolution of Xinjiang Apricot Germplasm Based on DNA-Barcode and RAD-Seq/SNP\" (2019YFD1000602-2); Open-up Project Funding Project of the Key Laboratory of Tarim Basin Biological Resources Protection and Utilization of XPCC(BRYB1704);Xinjiang vegetable industry technical system(XJARS-07)
Correspondence author:""TAN Zhanming(1991-), male, from Hulunbeier, Inner Mongolia,associate professor,Mater's supervisor,research direction: facility horticulture plant cultivation and stress resistance physiology,(E-mail)tlmdxtzm@taru.edu.cn.
收稿日期(Received):
2024-05-15
基金項(xiàng)目:
國(guó)家自然科學(xué)基金項(xiàng)目“新疆帕米爾高原杏自交不親和S-RNase和SFB基因適應(yīng)性變異機(jī)制研究”(32160694);國(guó)家重點(diǎn)研發(fā)計(jì)劃子課題“基于DNA條形碼和RAD-Seq/SNP的新疆杏種質(zhì)的遺傳多樣性及其起源演化研究”(2019YFD1000602-2);新疆生產(chǎn)建設(shè)兵團(tuán)塔里木盆地生物資源保護(hù)與利用重點(diǎn)實(shí)驗(yàn)室開放課題資助項(xiàng)目(BRYB1704);新疆蔬菜產(chǎn)業(yè)技術(shù)體系(XJARS-07)
作者簡(jiǎn)介:
程云霞(1996-),女,新疆石河子人,講師,研究方向?yàn)樵O(shè)施園藝植物栽培與生理生態(tài),(E-mail)chengyunxia2018@163.com
通訊作者:
譚占明(1991-),男,內(nèi)蒙古呼倫貝爾人,副教授,碩士生導(dǎo)師,研究方向?yàn)樵O(shè)施園藝植物栽培與抗逆生理,(E-mail)tlmdxtzm@taru.edu.cn