張偉 楊國慧 于輝
doi:10.6048/j.issn.1001-4330.2024.03.011
摘? 要:【目的】研究外源2,4-表油菜素內(nèi)酯(2,4-epibrassinolide,EBR)對干旱脅迫條件下西瓜幼苗生長以及相關(guān)基因表達的影響,為西瓜抗旱研究提供理論基礎(chǔ)。
【方法】以西瓜品種齊紅1號為材料,利用15%聚乙二醇(PEG6000)模擬干旱脅迫,設(shè)置3個處理CK(清水)、PEG和PEG+EBR,其中EBR的濃度為0.01 mg/L。檢測不同處理后西瓜幼苗的生物量、光合作用指標(biāo)、葉綠素含量、抗氧化酶活性以及相關(guān)基因的表達量。
【結(jié)果】噴施外源EBR可以緩解干旱脅迫對西瓜幼苗生長發(fā)育的抑制和損害程度,還可以通過增加應(yīng)答基因的表達量,激活EBR信號轉(zhuǎn)導(dǎo)途徑,提高西瓜幼苗的耐旱性。噴施外源EBR西瓜幼苗株高、根長、地上鮮重、地下鮮重較PEG脅迫分別增加了2.41%、36.76%、1.88%和3.42%;而且也增強光合作用各項指標(biāo),抗氧化酶(POD和SOD)活性。油菜素內(nèi)酯(BRs)信號轉(zhuǎn)導(dǎo)途徑關(guān)鍵應(yīng)答基因BRI1、BIN2 、BES1 和DWF4的表達量也呈現(xiàn)不同程度變化,抗旱相關(guān)基因CDSP32和MYB101的表達量也有顯著變化。
【結(jié)論】外源EBR能夠有效緩解干旱脅迫對西瓜幼苗造成的損害,從而提高西瓜幼苗的抗旱性。
關(guān)鍵詞:西瓜幼苗;2,4-表油菜素內(nèi)酯;干旱脅迫;生長指標(biāo);基因表達
中圖分類號:S182;S651??? 文獻標(biāo)志碼:A??? 文章編號:1001-4330(2024)03-0615-08
收稿日期(Received):
2023-07-19
基金項目:
內(nèi)蒙古自治區(qū)教育廳項目“鄂爾多斯地區(qū)西瓜自交系種質(zhì)資源庫和性狀數(shù)據(jù)庫的初步建立”(NJZY19376)
作者簡介:
張偉(1984- ),男,內(nèi)蒙古包頭人,講師,碩士,研究方向園藝植物遺傳育種,(E-mail)weizhang880310@126.com
通信作者:
于輝(1976- ),男,黑龍江齊齊哈爾人,副教授,碩士,西瓜種植資源及育種,(E-mail)yh1166@sina.com
0? 引 言
【研究意義】我國內(nèi)蒙古光照充足,晝夜溫差大,有利于西瓜營養(yǎng)物質(zhì)的積累。但干旱已成為影響作物正常生長發(fā)育的危害因子之一[1]。西瓜生育期需水量大,苗期發(fā)育過程若受到干旱脅迫,將影響株高、鮮/干物質(zhì)積累以及抗氧化酶活性[2]、氨基酸類代謝物含量[3],最終影響西瓜的產(chǎn)量和品質(zhì)。因此需提高西瓜抗旱能力。油菜素內(nèi)酯(Brassinosteroids,BRs)是20世紀(jì)70年代從甘藍型油菜花粉中提取的一種植物生長素[4],其在植物生長發(fā)育、新陳代謝和逆境脅迫中起到關(guān)鍵作用[5-6]。研究外源2,4-表油菜素內(nèi)酯(2,4-epibrassinolide,EBR)對干旱脅迫條件下西瓜幼苗生長以及相關(guān)基因表達的影響,對西瓜抗旱研究有重要意義?!厩叭搜芯窟M展】2,4-表油菜素內(nèi)酯(EBR)和2,8-高油菜素內(nèi)酯(HBR)是具有高活性的兩種化合物[7],已應(yīng)用于BR功能和相關(guān)轉(zhuǎn)導(dǎo)研究。EBR存在于植物生長發(fā)育整個周期,主要作用是促進植物營養(yǎng)生長和生殖生長。EBR能提高毛竹實生苗光合能力從而促進其營養(yǎng)生長[8],也能通過促進羊草的株高、地上部分干重、纖維和蛋白的含量,從而增加羊草產(chǎn)量并提高品質(zhì)[9]。EBR也能增強植物的抗逆性,噴施外源EBR 能夠緩解煙草幼苗遭受干旱脅迫[10],可以提升辣椒的耐鎘能力等[11]。外源EBR能夠提高植物生理指標(biāo),如通過增強光合作用、增強抗氧化酶活性等有效緩解植物所受到的非生物脅迫[12-13]。冷害脅迫下西瓜幼苗經(jīng)EBR處理后顯著提高了保護物質(zhì)的含量和抗氧化酶活性[14]。與EBR合成相關(guān)基因也有報道,如BRI1是油菜素內(nèi)酯的受體蛋白,與植物株高和形態(tài)建成密切相關(guān),水稻[15]、大麥[16]、玉米[17]、番茄[18]等作物BRI1基因的表達量均對植株株高的影響較大,其次是葉型等性狀。植株受到非生物脅迫后,如低溫[19]、高溫[20]、鹽脅迫[21]等,BRI1基因呈現(xiàn)上調(diào)趨勢,從而協(xié)調(diào)植物內(nèi)相關(guān)蛋白抵御逆境。BIN2 在BR信號傳導(dǎo)過程中起到關(guān)鍵的作用,BRI1的下游調(diào)控蛋白,BRI1作為受體蛋白首先接收BR信號,再通過信號轉(zhuǎn)導(dǎo)傳遞到BIN2等轉(zhuǎn)錄因子[22]。BES1是BR信號途中一個重要的轉(zhuǎn)錄因子,作用于細胞核內(nèi),正向調(diào)控BR的生物合成,從而促進植物生長以及防御反應(yīng)[23-24]。外源EBR可以調(diào)節(jié)DWF4基因表達量下降,DWF4是維持BR平衡的關(guān)鍵基因[25]。CDSP32是一種類硫氧還蛋白,參與植物逆境調(diào)控途徑,如干旱脅迫[26]、氧化脅迫[27]、鎘脅迫[28]等,CDSP32蛋白均能正向應(yīng)答非生物逆境。MYB101通過調(diào)節(jié)植物葉片形態(tài)來抵御干旱脅迫[29]。干旱脅迫會導(dǎo)致植物葉片發(fā)生卷曲, MYB101 基因在模式植物擬南芥中過量表達的會導(dǎo)致葉片向上卷曲?!颈狙芯壳腥朦c】目前研究從生理生化和基因表達等方面揭示EBR可以有效調(diào)控植物的非逆境和逆境中的生長發(fā)育,但是關(guān)于EBR對干旱脅迫下西瓜幼苗的影響研究鮮見報道。需研究外源2,4-表油菜素內(nèi)酯(2,4-epibrassinolide,EBR)對干旱脅迫條件下西瓜幼苗生長以及相關(guān)基因表達的影響?!緮M解決的關(guān)鍵問題】利用聚乙二醇(PEG6000)模擬干旱脅迫,分析外源噴施10%濃度的EBR 對干旱脅迫后西瓜幼苗生長發(fā)育和生理特性的影響,為西瓜抗旱研究奠定理論基礎(chǔ)。
1? 材料與方法
1.1? 材 料
供試西瓜品種為齊紅1號,由東北農(nóng)業(yè)大學(xué)園林園藝學(xué)院提供。
1.2? 方 法
1.2.1? 試驗設(shè)計
選取籽粒飽滿、大小一致的齊紅1號種子約200粒,將其浸泡在1%的次氯酸鈉溶液中消毒10 min,用滅菌蒸餾水沖洗3~4次,最后在濾紙上吸干多余的水分。將準(zhǔn)備好的西瓜種子平鋪在水培器中,置于發(fā)芽生長間25℃黑暗條件下催芽,待西瓜種子發(fā)芽后,挑選生長一致的置于網(wǎng)格盤進行水培,營養(yǎng)液為Hoagland,每2 d更換1次營養(yǎng)液,置于生長培養(yǎng)箱,16 h光照/8 h黑暗,溫度為25℃/20℃,濕度為60%。待幼苗長至 2~4 片真葉時試驗。設(shè)計3個處理(CK,PEG和PEG+EBR),每個處理選擇生長一致的單株,首先將PEG+EBR組按文獻的EBR濃度(0.01 mg/L)[30],于每天上午噴施1次EBR,CK組和PEG噴施清水,噴施方法為葉片雙面均勻噴施直至形成均勻的水滴,連續(xù)噴施3 d,再進行干旱脅迫,采用聚乙二醇(PEG6000)15%(m/V)的比例與Hoagland營養(yǎng)液配置,將以上的PEG和PEG+EBR 2組干旱脅迫48 h。
1.2.2? 測定及檢測
(1)生物量:每個處理挑選9株幼苗,用清水沖洗根部,然后測量株高、根長,地上鮮重和地下鮮重,然后105℃殺青20 min,再在烘箱里60烘干至恒重,稱量地上干重和地下干重,每個處理3次重復(fù)。
(2)光合指標(biāo):采用SPAD-502 Plus葉綠素儀檢測每個處理后西瓜幼苗葉片的葉綠素相對含量。利用LI-6400便攜式光合儀測定不同處理后西瓜幼苗葉片的光合作用指標(biāo)。
(3)抗氧化酶活性:采用北京索萊寶科技有限公司出廠的超氧化物歧化酶(SOD) 活性和過氧化物酶(POD) 活性的測定試劑盒檢測,每個處理測3次重復(fù)。
(4)RNA提取和qRT-PCR試驗:篩選在擬南芥發(fā)表的與EBR抗旱相關(guān)基因,在西瓜數(shù)據(jù)庫(http://cucurbitgenomics.org/organism/21)獲得同源基因序列并設(shè)計引物,通過qRT-PCR檢測基因表達量。表1
1.3? 數(shù)據(jù)處理
數(shù)據(jù)利用Excle2010整理并分析。方差分析采用SAS V8,并利用Duncan 法在5%的水平上比較不同處理間差異的顯著性。
2? 結(jié)果與分析
2.1? EBR對干旱脅迫下西瓜幼苗生物量的影響
研究表明,PEG干旱脅迫后西瓜幼苗的株高、根長、地上鮮重、地下鮮重,地上干重、地下干重和根冠比均比CK顯著降低,干旱脅迫對西瓜幼苗可以造成顯著的傷害。噴施EBR后對西瓜幼苗的株高、根長比PEG干旱脅迫后有顯著的增加,株高增加2.41%,根長增加36.76%。地上鮮重、地下鮮重、地上干重、地下干重和根冠比增加不顯著,但是也有不同程度的增加,如地上鮮重增加1.88%,地下鮮重增加3.42%。噴施外源EBR可以通過促進根長的生長等,從而緩解干旱脅迫對西瓜幼苗造成的傷害。表2
2.2? EBR對干旱脅迫下西瓜幼苗光合作用指標(biāo)的影響
研究表明,西瓜幼苗的凈光合作用速率降低37.34%,氣孔導(dǎo)度降低56.44%,蒸騰速率降低24.70%,胞間CO2濃度提高10.04%,葉綠素含量提高17.89%。比PEG脅迫相比,噴施EBR后對西瓜幼苗的光合作用指標(biāo)有明顯增加,如凈光合作用速率、氣孔導(dǎo)度和蒸騰速率分別增加了31.04%、21.77%和1.95%,胞間CO2濃度和葉綠素含量也均顯著降低,分別為3.70%和4.26%。噴施外源EBR可以顯著緩解干旱脅迫對西瓜幼苗光合作用造成的影響。表3
2.3? EBR對干旱脅迫下西瓜幼苗抗氧化酶活性的影響
研究表明,PEG干旱脅迫西瓜幼苗后顯著增加了超氧化物歧化酶(SOD)和過氧化物酶(POD)活性,與CK相比,分別增加18.56%和54.28%。與PEG干旱脅迫相比,噴施外源EBR后顯著地增加了SOD和POD的活性,分別增加28.43%和38.16%。干旱脅迫下可以促進西瓜幼苗抗氧化酶的活性。圖1
2.4? EBR對干旱脅迫下西瓜幼苗基因表達量的影響
研究表明,PEG干旱脅迫和PEG干旱脅迫后噴施外源EBR均對抗旱脅迫相關(guān)基因的表達量有一定影響。BRI1、BIN2 、BES1 和DWF4是與油菜素內(nèi)酯合成相關(guān)基因,BRI1、BES1、和BES1的表達量與CK相比均有顯著降低,而DWF4 表達量在西瓜幼苗受到干旱脅迫后與CK相比顯著下降。然而當(dāng)噴施外源EBR后,BRI1、BIN2、BES1 和DWF4基因的表達量與PEG干旱脅迫相比均有顯著變化。當(dāng)噴施外源EBR后,BRI1的表達量較PEG干旱脅迫增加5.2倍,BIN2的表達量增加2.4倍,BES1的表達量增加1.3倍,DWF4的表達量下降4.0倍。干旱脅迫西瓜幼苗可以抑制與油菜素內(nèi)酯合成相關(guān)基因的表達,當(dāng)噴施外源EBR可以促進油菜素內(nèi)酯合成相關(guān)基因的表達。表1
PEG干旱脅迫后CDSP32的表達量與CK相比增加0.8倍,噴施外源EBR后較PEG干旱脅迫增加1.3倍。西瓜幼苗受到干旱脅迫后通過調(diào)節(jié)抗氧化酶相關(guān)基因的表達來抵御脅迫,外源EBR也可以增強抗氧化酶相關(guān)基因的表達。PEG干旱脅迫后MYB101的表達量與CK相比顯著增加,但是噴施外源EBR后較PEG干旱脅迫顯著降低1.4倍,外源EBR可以通過調(diào)節(jié)相關(guān)基因的表達改變西瓜幼苗的葉型卷曲程度。圖2
3? 討 論
3.1
CDSP32主要作用于植物葉綠體結(jié)構(gòu)[29-31]。MYB101通過調(diào)節(jié)植物葉片形態(tài)來抵御干旱[29],
干旱是影響西瓜品質(zhì)和產(chǎn)量的主要環(huán)境因素之一[32]。干旱可降低西瓜植株的株高、鮮重和根冠比等[2],研究結(jié)果與以上結(jié)果一致,干旱脅迫會抑制西瓜幼苗的生長,不同部位反應(yīng)不同,地上部分受害程度一般比地下部分更為嚴(yán)重。這樣植物就會有效減少地上部分的水分蒸騰,保證根部的存活期限[33]。然而噴施EBR后能顯著增加西瓜的株高、根長、地上和地下生物量,與丁丹陽等[10]研究噴施外源EBR可以顯著提高煙草幼苗根系發(fā)育、生物量積累的結(jié)果一致。植物的光合作用也是感受干旱脅迫的一個重要指標(biāo),干旱脅迫后植物的光合速率普遍會下降,主要由于干旱脅迫下氣孔感應(yīng)后會應(yīng)急關(guān)閉,從而盡量減少水分散失,由此可造成凈光合速率下降、氣孔導(dǎo)度下降以及蒸騰速率下降,最終形成胞間CO2濃度增加。研究西瓜幼苗在受到干旱脅迫后同樣出現(xiàn)類似現(xiàn)象,但是當(dāng)噴施外源EBR后,以上現(xiàn)象出現(xiàn)緩解狀態(tài),與趙小強等[34]和丁丹陽等[10]對玉米幼苗和煙草幼苗干旱脅迫后噴施EBR對光合作用各項指標(biāo)顯著提高的結(jié)果相似。EBR在增加植物地上部分的株高、調(diào)控植物根系發(fā)育方面具有決定性作用[35],干旱脅迫后外源噴施EBR能夠增加植物凈光合速率從而緩解逆境脅迫,但是作用機制尚未明確,有可能是EBR參與光合作用中的碳固定,從而克服氣孔關(guān)閉的限制因素并提高光合作用[36]。
3.2
植物在受到逆境脅迫后產(chǎn)生大量的活性氧(Reactive Oxygen Species,ROS),而植物本身會有自我保護系統(tǒng),清除多余的活性氧避免對植物造成損害,而這些清除劑大多數(shù)是抗氧化酶。研究西瓜幼苗受干旱脅迫后,SOD和POD的活性與CK相比顯著增加,應(yīng)急抵御水分缺失。當(dāng)噴施EBR后,SOD和POD的活性急劇上升,EBR可以提高抗氧化酶的活性從而加速清除過量的ROS,達到緩解干旱脅迫的效果。以上結(jié)果與許金亮等[37]研究煙草對噴施EBR抵抗低溫脅迫過程中,抗氧化酶活性顯著增加一致。EBR對提高干旱脅迫下抗氧化酶活性來增強植物細胞膜的穩(wěn)定性,最終提高植物抗旱能力[38]。
3.3
目前對BRs的信號通路的研究已經(jīng)構(gòu)建詳細的信號傳導(dǎo)模型[35]。研究選擇在信號傳導(dǎo)模型中關(guān)鍵的4個基因進行分析,其中BRI1是BRs的受體蛋白、BIN2 和BES1是通路中2個關(guān)鍵的調(diào)控因子,DWF4在調(diào)節(jié)BRs的平衡中起關(guān)鍵作用。研究結(jié)果與各個基因在信號通路中的作用關(guān)系一致,如BRI1、BIN2 和BES1基因的表達量在西瓜幼苗受到干旱脅迫后均呈現(xiàn)上升趨勢,噴施EBR后基因的表達量顯著增加,以上3個關(guān)鍵基因均在正向調(diào)控植物抵御逆境,與前人研究結(jié)果相似[39-41]。而DWF4基因的表達量呈現(xiàn)的是負向調(diào)控,與蘭彩耘等[42] 研究結(jié)果一致。研究顯示與抗旱相關(guān)的2個基因CDSP32和MYB101的表達量在西瓜幼苗受到干旱脅迫后也受到不同程度的影響,噴施外源EBR后兩個基因的表達量也發(fā)生了一定變化。西瓜幼苗的抗旱過程也通過調(diào)控相關(guān)基因的表達,從而達到緩解干旱脅迫的影響。
4? 結(jié) 論
西瓜幼苗干旱脅迫后其生長發(fā)育受到嚴(yán)重影響,而噴施外源EBR后可以通過增加西瓜幼苗的生物量、光合作用強度、抗氧化酶活性等緩解干旱脅迫造成的損害,從而提高西瓜幼苗的抗旱性。同時噴施外源EBR后,可以促進內(nèi)源BR信號轉(zhuǎn)導(dǎo)相關(guān)基因和抗旱相關(guān)基因的表達。噴施外源EBR西瓜幼苗株高、根長、地上鮮重、地下鮮重較PEG脅迫分別增加了2.41%、36.76%、1.88%和3.42%。
參考文獻(References)
[1]
Chandra P,Wunnava A,Verma P,et al.Strategies to mitigate the adverse effect of drought stress on crop plants—influences of soil bacteria: a Review [J].Pedosphere, 2021,31(3): 496-509.
[2] 何亞萍,王春霞,閆星,等.9份西瓜種質(zhì)苗期抗旱性鑒定[J].中國瓜菜,2020,33(12): 14-21.
HE Yaping,WANG Chunxia,YAN Xing,et al.Screening of drought resistance of nine watermelon germplasm at seedling stage[J].China Cucurbits and Vegetables,2020,33(12): 14-21.
[3] 賈斌,高龍飛,張衛(wèi)華,等.西瓜苗期干旱脅迫下的代謝組學(xué)分析[J].分子植物育種,2023,21(21):7161-7170.
JIA Bing,GAO Longfei,ZHANG Weihua,et al.Metabolomics analysis of watermelon seedlings under drought stress [J].Molecular Plant Breeding,2023,21(21):7161-7170.
[4] Grove M D ,Spencer G F,Rohwedder W K,et al.Brassinolide,a plant growth-promoting steroid isolated from Brassica napus pollen[J].Nature,1979,281(5728): 216-217.
[5] Sreeramulu S,Mostizky Y,Sunitha S,et al.BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis.[J].Plant Journal for Cell & Molecular Biology,2013,74(6): 905-919.
[6] Sharma I,Bhardwaj R,Pati P K.Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety pusa basmati-1[J].Journal of Plant Growth Regulation,2015,34(3): 509-518.
[7] Li J,Yang P,Kang J G,et al.Transcriptome analysis of pepper (capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling [J].Frontiers in Plant Science,2016,29(7):1281.
[8] 李啟程,余學(xué)軍.外源油菜素內(nèi)酯對毛竹實生苗生理特性的影響[J].浙江農(nóng)林大學(xué)學(xué)報,2021,38(1): 120-127.
LI Qicheng,YU Xuejun.Effects of exogenous BR on physiological characteristics of phyllostachys edulis seedlings [J].Journal of Zhejiang A&F University,2021,38(1): 120-127.
[9] 胡勇軍,韓德復(fù),郭繼勛.油菜素內(nèi)酯對羊草人工草地產(chǎn)量及其品質(zhì)的影響[J].長春師范學(xué)院學(xué)報,2007,26(4): 61-64.
HU Yongjun,HAN Defu,GUO Jixun.Effect of Brassinolide (BR) on the quality and the yield of leymus chinensis growing in the sown grassland [J].Journal of Changchun Normal University,2007,26(4): 61-64.
[10] 丁丹陽,張璐翔,朱智威,等.葉面噴施2,4-表油菜素內(nèi)酯對煙草抗旱性的影響[J].中國煙草科學(xué),2018,39(4): 50-57.
DING Danyang,ZHANG Luxiang,ZHU Zhiwei,et al.Effect of leaf spray 2,4-epibrassinolide on drought resistance of tobacco[J].Chinese Tobacco Science,2018,39(4): 50-57.
[11] 雷陽,喬寧,白揚,等.表油菜素內(nèi)酯對重度鎘脅迫下辣椒幼苗生理特性及抗逆基因的影響[J].華北農(nóng)學(xué)報,2021,36(5): 99-106.
LEI Yang,QIAO Ning,BAI Yang,et al.Effects of Epibrassinolide on Physiological Characteristics and Resistance Genes of Pepper Seedlings under Severe Cadmium Stress [J].Acta Agriculturae Boreali-Sinica,2021,36(5): 99-106.
[12] Xia X J,Wang Y J,Zhou Y H,et al.Reactive Oxygen Species Are Involved in Brassinosteroid-induced Stress Tolerance in Cucumber [J].Plant Physiology,2009,150(2): 801-814.
[13] Bajguz A,Hayat S.Effects of brassinosteroids on the plant responses to environmental stresses [J].Plant Physiology and Biochemistry,2009,47(1): 1-8.
[14] 范小玉,張顯.油菜素內(nèi)酯對低溫弱光脅迫下西瓜幼苗耐冷性的影響[J].北方園藝,2012,(7): 5-8.
FAN Xiaoyu,ZHANG Xian.The effect of brassinolide on chilling resistance of watermelon seedlings under low temperature and poor light stress [J]. Northern Horticulture,2012,(7): 5-8.
[15] Sakamoto T,Morinaka Y,Ohnishi T,et al.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice [J].Nature Biotechnology,2006,24(1): 105-109.
[16] Chono M,Honda I,Zeniya H,et al.A semi dwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteriod receptor.[J].Plant Physiology,2003,133(3):1209-1219.
[17] Kir G,Ye H X,Nelissen H,et al.RNA interference knockdown of brassinosteroid insensitive1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture [J].Plant Physiology, 2015,169(1):826-839.
[18] Montoya T,Nomura T,F(xiàn)arrar K,et al.Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase Tbri1/sr160 in plant steroid hormone and peptide hormone signaling[J].Plant Cell,2002,14(12): 3163-3176.
[19] Kim S Y,Kim B H,Lim C J,et al.Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold[J].Physiologia Plantarum,2010,138(2): 191-204.
[20] Martins S,Dohmann E M N,Cayrel A,et al.Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination [J].Nature Communications,2015,6: 6151.
[21] Goddard R,Peraldi A,Ridout C,et al.Enhanced disease resistance caused by bri1 mutation is conserved between brachypodium distachyon and barley (hordeum Vulgare).[J].Molecular Plant Microbe Interactions: MPMI,2014,27(10):1095-1106.
[22] 王斐,何偉,閆海芳.油菜素甾醇信號轉(zhuǎn)導(dǎo)的調(diào)控機制[J].植物生理學(xué)報,2013,49(12): 1309-1318.
WANG Fei,HE Wei,YAN Haifang.Regulation mechanism of brassinosteroids signal transduction [J].Plant Physiology Journal, 2013,49(12): 1309-1318.
[23] Yang J N,Thames S,Best N B,et al.Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in setaria viridis [J].Plant Cell, 2018,30(1):48-66.
[24] Yin Y H,Wang Z Y,Mora-Garcia S,et al.BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation [J].Cell,2002,109(2):181-191.
[25] Banco瘙塂 S Nomura T,Sato T,et al.Regulation of transcript levels of the arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis [J].Plant Physiology,2002,130(1): 504-513.
[26] Eymery F,Rey P.Immunocytolocalization of CDSP 32 and CDSP 34,two chloroplastic drought-induced stress proteins in solanum tuberosum plants [J].Plant Physiology and Biochemistry,1999,37(4): 305-312.
[27] Broin M,Cuiné S,Eymery F,et al.The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage [J].The Plant Cell,2002,14(6): 1417-1432.
[28] Zhang F G,Xiao X,Yan G X,et al.Association mapping of cadmium-tolerant QTLs in Brassica Napus L.and insight into their contributions to phytoremediation[J].Environmental and Experimental Botany,2018,155: 420-428.
[29] An R,Liu X Y,Wang R,et al.The over-expression of two transcription factors,ABS5/BHLH30 and ABS7/MYB101,leads to upwardly curly leaves [J].Plos One, 2014,9(9):e107637.
[30] Gong H J,Zhu X Y,Chen K M,et al.Silicon alleviates oxidative damage of wheat plants in pots under drought [J].Plant Science,2005,169(2):313-321.
[31] Broin M,Rey P.Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress [J].Plant Physiology,2003,132(3):1335-1343.
[32] Guo S G,Shu H G,Zhang H Y,et al.Comparative transcriptome analysis of cultivated and wild watermelon during fruit development [J].Plos One,2015,10(6):e0130267.
[33] 樊正球.干旱環(huán)境脅迫下的植物分子適應(yīng)機理及其應(yīng)用研究[D].上海:復(fù)旦大學(xué),2004.
FAN Zhengqiu.Study on plant molecular adaptation to drought stress and its application [D].Shanghai:Fudan University,2004.
[34] 趙小強,任續(xù)偉,張金乾,等.外源2,4-表油菜素內(nèi)酯對干旱脅迫下青貯玉米幼苗生長和光合特性的影響[J].分子植物育種,2023,21(10),3371-3382.
ZHAO Xiaoqiang,REN Xuwei,ZHANG Jinqian,et al.Effects of exogenous 2,4-epibrassinolide on growth and photosynthetic characteristics of Silage Maize Seedlings under drought stress[J].Molecular Plant Breeding,2023,21(10),3371-3382.
[35] Choudhary S P,Yu J Q,Yamaguchi-Shinozaki K,et al.Benefits of Brassinosteroid Crosstalk [J].Trends in Plant Science,2012,17(10):594-605.
[36]Clouse D, Sasse M.Brassionsteroids: Essential Regulators of Plant Growth and Development [J].Annu Rev Plant Physiol Plant Mol Biol,1998,49:427-451.
[37] 許金亮,謝鵬飛,向世鵬,等.噴施外源EBR和H2O2對低溫脅迫煙苗恢復(fù)生長期生理特性的影響[J].中國煙草學(xué)報,2022,28(3):44-51.
XU Jinliang,XIE Pengfei,XIANG Shipeng,et al.Effects of exogenous EBR and H2O2 on physiological characteristics of tobacco seedlings under low temperature stress [J].Chinese Tobacco Science, 2022,28(3):44-51.
[38] Mahesh K,Balaraju P,Ramakrishna B,et al.Effect of brassinosteroids on germination and seedling growth of radish (Raphanus SativusL.) under PEG-6000 induced water stress[J].American Journal of Plant Sciences,2013,4(12): 2305-2313.
[39] 吳志勇,顧紅,程大偉,等.油菜素內(nèi)酯調(diào)控植物根系發(fā)育機制研究進展[J].中國農(nóng)業(yè)科技導(dǎo)報,2022,24(2): 68-76.
WU Zhiyong,GU Hong,CHENG Dawei,et al.Advances in regulatory mechanism of brassinolide on plant root development [J].Journal of Agricultural Science and Technology,2022,24(2): 68-76.
[40] 周曄,趙璇,王璐,等.植物BZR家族基因調(diào)控非生物脅迫應(yīng)答和生長發(fā)育的研究進展[J].中國油料作物學(xué)報,2020,42(4): 499-511.
ZHOU Ye,ZHAO Xuan,WANG Lu,et al.Research advances on plant BZR family genes in regulating abiotic stress response and development[J].Chinese Journal of Oil Crop Sciences,2020,42(4): 499-511.
[41] Jia D D,Chen L G,Yin G M,et al.Brassinosteroids regulate outer ovule integument growth in part via the control of inner no outer by brassinozole-resistant family transcription factors[J].Journal of Integrative Plant Biology, 2020,62(8): 1093-1111.
[42] 蘭彩耘,宋洪元.超量表達DWF4基因?qū)娌松L發(fā)育的影響[J].西南大學(xué)學(xué)報(自然科學(xué)版),2021,43(12): 26-37.
LAN Caiyun,SONG Hongyuan.Effect of DWF4 Gene Overexpression on Growth and Development in Brassica juncea [J].Journal of Southwest University (Natural Science Ed.),2021,43(12): 26-37.
Effects of 2,4-epibrassinolide on growth and related genes expression of watermelon seedlings under drought Stress
ZHANG Wei1,YANG Guohui2,YU Hui1
(1. Ordos Vocational College of Eco-environment,Ordos,Inner Mongolia 017000,China; 2.College of Landscape and Horticulture,Northeast Agricultural University,Harbin 150030,China)
Abstract:【Objective】 To reveal the effects of exogenous 2,4-epibrassinolide (EBR) on the growth and related gene expression of watermelon seedlings under drought stress,so as to provide a theoretical basis for the study of watermelon drought resistance.
【Methods】 Watermelon variety Qihong 1 was taken as the experimental material by using 15% polyethylene glycol (PEG6000) to simulate drought stress,and then,three treatments were set up: CK (clear water),PEG and PEG + EBR,in which the concentration of EBR was 0.01 mg/L.Finally,the biomass,photosynthesis index,chlorophyll content,antioxidant enzyme activity and expression of related genes of watermelon seedlings after different treatments were detected.
【Results】? Spraying exogenous EBR could alleviate the inhibition and damage of drought stress on the growth and development of watermelon seedlings and also activate EBR signal transduction pathway and improve the drought tolerance of watermelon seedlings by increasing the expression of response genes.Compared with PEG stress,the plant height,root length,aboveground fresh weight and underground fresh weight of watermelon seedlings sprayed with exogenous EBR increased by 2.41%,36.76%,1.88% and 3.42% respectively.Moreover,it also enhances various indicators of photosynthesis and the activities of antioxidant enzymes (POD and SOD).The expression of key response genes BRI1,BIN2,BES1 and DWF4 of Brassinolide (BRS) signal transduction pathway also changed to varying degrees,and the expression of drought related genes CDSP32 and MYB101 also changed significantly.
【Conclusion】? Exogenous EBR can effectively alleviate the damage caused by drought stress to watermelon seedlings,thus improving the drought resistance of watermelon seedlings.
Key words:watermelon seedings; 2,4-epibrassinolide; drought stress; growth index; gene expression
Fund project:The Project of the Education Department of Inner Mongolia Autonomous Region "Preliminary Establishment of Watermelon Inbred Line Germplasm Resource Database and Character Database in Ordos Area"(NJZY19376)
Correspondence author:YU Hui (1976-),male,from Qiqihar,Heilongjiang,associate professor,master,research direction: in watermelon planting resources and breeding,(E-mail)yh1166@sina.com