曹馨元 杜明利 王宇誠 陳欣華 陳佳欣 凌霄霞 黃見良 彭少兵 鄧南燕
稻油系統(tǒng)周年產(chǎn)量差及形成因素探究:以湖北省武穴市為例
曹馨元 杜明利 王宇誠 陳欣華 陳佳欣 凌霄霞 黃見良 彭少兵 鄧南燕*
作物遺傳改良全國重點(diǎn)實(shí)驗(yàn)室/ 農(nóng)業(yè)農(nóng)村部長江中游作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室 / 湖北洪山實(shí)驗(yàn)室/ 華中農(nóng)業(yè)大學(xué)植物科學(xué)技術(shù)學(xué)院, 湖北武漢 430070
明確農(nóng)戶水平稻油系統(tǒng)的產(chǎn)量差及進(jìn)一步增產(chǎn)的限制因素對保障我國糧油安全具有重要作用。本研究以我國典型稻油系統(tǒng)生產(chǎn)區(qū)湖北省武穴市為研究對象, 采用作物模型與田間調(diào)查相結(jié)合的方法評估了該地區(qū)稻油系統(tǒng)周年產(chǎn)量差, 并使用單因素方差分析和條件推斷樹綜合比較了農(nóng)戶在土壤條件和管理措施上的差異, 以探究該地區(qū)限制稻油系統(tǒng)產(chǎn)量進(jìn)一步增長的主要栽培因素及可行的增產(chǎn)途徑, 為因地制宜地縮小產(chǎn)量差提供新思路。結(jié)果表明: (1)武穴市水稻季和油菜季的潛在產(chǎn)量分別為11.79 t hm–2和4.43 t hm–2, 按照水稻和油菜籽粒的能量當(dāng)量換算系統(tǒng)周年能量后, 稻油系統(tǒng)的最高周年潛在能量為284 GJ hm–2。水稻季和油菜季的平均實(shí)際產(chǎn)量分別為8.11t hm–2和1.82 t hm–2, 系統(tǒng)平均實(shí)際周年能量為165 GJ hm–2。該地區(qū)稻油系統(tǒng)的平均周年相對產(chǎn)量差(產(chǎn)量差與潛在產(chǎn)量的比值)為42%, 其中油菜季(59%)比水稻季(31%)具有更大的產(chǎn)量提升空間。相較于湖北省和長江流域的平均水平, 武穴市稻油系統(tǒng)周年潛在能量相近, 而周年實(shí)際能量分別低13%和5%, 導(dǎo)致該地區(qū)的產(chǎn)量差相對較大, 其中分別有83%和61%的農(nóng)戶相對產(chǎn)量差大于湖北省和長江流域平均水平。(2) 該地區(qū)周年產(chǎn)量較低的農(nóng)戶具有以下主要特征: 土壤為沙壤土, 耕層較淺; 水稻季蟲草害防治效果差, 水稻季肥料做底肥一次施用且輕施氮、鉀肥; 油菜季重施肥料, 且油菜機(jī)收損失較大。(3) 武穴市89%的農(nóng)戶選擇種植常規(guī)稻品種黃華占, 其實(shí)際產(chǎn)量已達(dá)到該品種潛在產(chǎn)量的90%左右; 種植油菜品種的種類較多且產(chǎn)量差異較大。綜上, 武穴市稻油系統(tǒng)仍具有較大的增產(chǎn)空間; 縮小當(dāng)?shù)氐居拖到y(tǒng)產(chǎn)量差的技術(shù)措施包括: 適當(dāng)深耕提高土壤生產(chǎn)力; 油菜季選擇當(dāng)?shù)剡m宜的高產(chǎn)油菜品種; 水稻季加強(qiáng)推廣高產(chǎn)優(yōu)質(zhì)雜交稻品種, 重點(diǎn)關(guān)注增加水稻用種量, 提高直播密度和播種時的封閉除草, 系統(tǒng)周年施肥管理上應(yīng)降低油菜季而提高水稻季的肥料用量, 水稻季僅施底肥的農(nóng)戶適當(dāng)增施追肥等。
產(chǎn)量差; 田間調(diào)查; 稻油系統(tǒng); 作物模型; 管理措施
稻油系統(tǒng)作為一種糧油兼收且綠色高效的種植模式, 對保障我國糧油戰(zhàn)略安全具有重要作用。近年來農(nóng)村勞動力轉(zhuǎn)移、農(nóng)資和人工成本上漲等問題造成長江流域農(nóng)民改種雙季稻為單季稻的規(guī)模逐漸擴(kuò)大[1-2], 2000—2018年間長江流域單季稻面積增長了25%左右, 雙季稻縮減29%左右(國家統(tǒng)計(jì)局, http://data.stats.gov.cn/)。“雙改單”現(xiàn)象一定程度上緩解了稻油種植區(qū)的茬口矛盾, 但存在糧食安全風(fēng)險。因此, 明確稻油系統(tǒng)的增產(chǎn)空間及限制增產(chǎn)的關(guān)鍵栽培因子, 能夠?yàn)檫M(jìn)一步優(yōu)化農(nóng)戶的生產(chǎn)管理措施、提高該系統(tǒng)的周年產(chǎn)量提供重要理論依據(jù)。
合理的產(chǎn)量差評估能夠明確作物的增產(chǎn)潛力。產(chǎn)量差(Yield gap, Yg)是指作物的潛在產(chǎn)量(Yield potential, Yp)與實(shí)際產(chǎn)量(Actual yield, Ya)的差值。潛在產(chǎn)量是作物在不受生物、非生物脅迫及最佳管理措施下的最高產(chǎn)量[3]。作物模型通過數(shù)理方法和計(jì)算機(jī)技術(shù)量化基因-環(huán)境-管理之間的關(guān)系, 能夠高效模擬作物的生長過程和潛在產(chǎn)量[3], 是作物產(chǎn)量差評估的重要工具[4-5]。前人研究中綜合使用ORYZA和CROPGRO-Canola模型評估了我國長江流域中稻-油菜系統(tǒng)相對產(chǎn)量差(產(chǎn)量差與潛在產(chǎn)量的比值)為42%[6]。區(qū)域水平的產(chǎn)量差評估結(jié)果對于宏觀農(nóng)業(yè)政策制定具有指導(dǎo)意義, 但是難以為農(nóng)戶提供針對性的生產(chǎn)指導(dǎo)建議。田間調(diào)查是通過問卷調(diào)查的方式收集當(dāng)?shù)剞r(nóng)戶的栽培管理措施和產(chǎn)量數(shù)據(jù), 對探究農(nóng)戶水平的作物生產(chǎn)現(xiàn)狀和增產(chǎn)限制因子具有指導(dǎo)意義[7-9]。綜合作物模型與田間調(diào)查的方法能夠結(jié)合生產(chǎn)實(shí)踐, 更高效、準(zhǔn)確地探明實(shí)現(xiàn)種植系統(tǒng)周年高產(chǎn)的途徑, 如Agus等[10]和Rizzo等[11]基于ORYZA v3和Hybrid-Maize模型探究了印度尼西亞集約化稻玉系統(tǒng)產(chǎn)量差, 并通過分析多個站點(diǎn)的調(diào)查數(shù)據(jù)明確了產(chǎn)量的主要限制因素為施肥量、追肥次數(shù)和時間、播期及蟲害管理。但是, 國內(nèi)相關(guān)研究較少, 特別是鮮有將該方法應(yīng)用于稻油系統(tǒng)。
湖北省是我國第二大稻油系統(tǒng)種植省份, 約占全國總稻油系統(tǒng)面積的12%[6]。因此, 本研究以湖北省主要稻油生產(chǎn)區(qū)武穴市為例[12], 結(jié)合作物模型與田間調(diào)查, 評估了稻油系統(tǒng)的周年產(chǎn)量差及進(jìn)一步增產(chǎn)的限制因素, 為縮小農(nóng)戶水平的系統(tǒng)產(chǎn)量差提供理論參考。
研究地點(diǎn)為湖北省武穴市(29°50'—30°12'N, 115°22'—115°50'E), 平均海拔為70 m。該地區(qū)屬于亞熱帶季風(fēng)氣候, 2011—2022年的≥0℃和≥10℃年均積溫分別為6494.6℃ d–1和2811.3℃ d–1、總降水量為1036.6 mm、總太陽輻射量為4283.2 MJ m–2, 屬于中晚熟中稻種植區(qū)[13], 適宜發(fā)展稻油系統(tǒng)。
作物產(chǎn)量需要折算為標(biāo)準(zhǔn)含水量下的產(chǎn)量。水稻和油菜的濕種子含水量一般分別為20%和12%, 含雜率均為1%。由于ORYZA模型中水稻使用14%標(biāo)準(zhǔn)含水量[14], 計(jì)算系統(tǒng)周年能量的水稻籽粒能量當(dāng)量也是使用14%標(biāo)準(zhǔn)含水量[15-16]。因此, 為保證在計(jì)算產(chǎn)量差時標(biāo)準(zhǔn)含水量統(tǒng)一, 本文在計(jì)算農(nóng)戶實(shí)際產(chǎn)量時水稻使用14%標(biāo)準(zhǔn)含水量。標(biāo)準(zhǔn)含水量的水稻(14%)和油菜(9%)產(chǎn)量計(jì)算公式如下。
根據(jù)收獲籽粒的能量當(dāng)量將作物產(chǎn)量轉(zhuǎn)換為系統(tǒng)周年能量。水稻和油菜的能量當(dāng)量分別為14.7 MJ kg–1和25.0 MJ kg–1 [15-16], 系統(tǒng)的周年能量計(jì)算公式如下:
相對產(chǎn)量差(Relative yield gap, Re_Yg)的計(jì)算公式如下,
農(nóng)業(yè)技術(shù)轉(zhuǎn)移決策支持系統(tǒng)(Decision Support System for Agrotechnology Transfer, DSSAT)集合了多種作物生長模型, 能夠以日為時間步長模擬作物生長發(fā)育和產(chǎn)量形成過程[5]。本研究采用DSSAT 4.7.5版本中內(nèi)置的ORYZA和CROPGRO-Canola模塊分別模擬水稻和油菜的潛在產(chǎn)量。ORYZA模型是國際水稻研究所和荷蘭瓦格寧根大學(xué)共同開發(fā)的水稻專用生長模型, 已廣泛應(yīng)用于全球不同區(qū)域的水稻產(chǎn)量模擬[14,17-18]。CROPGRO-Canola模型是由美國弗羅里達(dá)大學(xué)和佐治亞大學(xué)共同開發(fā)的油菜模擬模型,已被證明能夠較好地模擬油菜的潛在產(chǎn)量[19-21]。
作物模型需要經(jīng)過本地化調(diào)參才能夠?qū)崿F(xiàn)準(zhǔn)確模擬作物的潛在產(chǎn)量。ORYZA模型的參數(shù)校正使用drate(v2).exe和param(v2).exe程序[14,17-18], CROPGRO模型使用試錯法和DSSAT內(nèi)置的GLUE (Generalized Likelihood Uncertainty Estimation)程序[5], 詳細(xì)的模型參數(shù)介紹可見附件表1。本研究的潛在產(chǎn)量模擬中水稻季選用當(dāng)?shù)刂髟云贩N黃華占(Huanghuazhan, HHZ)和高產(chǎn)雜交稻品種隆兩優(yōu)華占(Longliangyouhuazhan, LLYHZ)。而油菜受到統(tǒng)一供種政策的影響[22], 品種數(shù)量較多, 因此選用湖北省代表性高產(chǎn)品種華油雜62 (Huayouza 62, HYZ62)。其中LLYHZ-HYZ62為系統(tǒng)1、HHZ-HYZ62為系統(tǒng)2。模型調(diào)參過程中使用同一大田試驗(yàn)中的1~2年數(shù)據(jù)用于品種參數(shù)校正, 剩余1~2年用于該品種參數(shù)驗(yàn)證, 相關(guān)調(diào)參結(jié)果來自本實(shí)驗(yàn)室之前的研究Huang等[6]和Deng等[18]。該調(diào)參方法被大量研究證明能夠較為準(zhǔn)確地模擬作物生長發(fā)育和產(chǎn)量形成過程, 已廣泛應(yīng)用于作物模型調(diào)參和潛在產(chǎn)量評估方面的研究[18,23-27]。相關(guān)品種的模型參數(shù)可見附表2和附表3, 模型校正和驗(yàn)證過程可見附圖1。
用于潛在產(chǎn)量模擬的氣象數(shù)據(jù)來自華中農(nóng)業(yè)大學(xué)國家農(nóng)業(yè)科技創(chuàng)新與集成示范基地微型氣象站(AWS800, Campbell Scientific, Inc., 美國), 包括2011—2022年的日最低和最高溫度、降水量和總太陽輻射量。氣象數(shù)據(jù)質(zhì)量控制的方法參考Grassini等[28]和van Wart等[29]。土壤數(shù)據(jù)主要用于模擬水分對作物產(chǎn)量的限制, 數(shù)據(jù)來源為“作物模型應(yīng)用的全球高分辨率土壤剖面數(shù)據(jù)庫”, 包含不同土壤深度的土壤容重、土壤有機(jī)碳含量、土壤質(zhì)地、土壤pH值、土壤陽離子交換量等土壤特性[30]。
系統(tǒng)潛在產(chǎn)量模擬的具體設(shè)置如下: 長江流域的水稻以灌溉為主, ORYZA模型的水分、養(yǎng)分均設(shè)置為潛在模式, 即水稻產(chǎn)量不受水分、養(yǎng)分的脅迫, 模型模擬水稻的潛在產(chǎn)量Yp; 而油菜以雨養(yǎng)為主, CROPGRO-Canola模型分別模擬了油菜潛在模式下的產(chǎn)量Yp和水分限制(雨養(yǎng))條件下的潛在產(chǎn)量(Yw)。水稻和油菜的密度基于當(dāng)?shù)馗弋a(chǎn)試驗(yàn)分別設(shè)置為28株 m–2和45株 m–2。本研究分別模擬了當(dāng)?shù)剞r(nóng)民常用播期范圍內(nèi)(水稻: 5月下旬至6月中旬; 油菜: 9月下旬至10月中旬)水稻和油菜的生育期和潛在產(chǎn)量隨播期的變化情況, 將系統(tǒng)能量隨播期的變化達(dá)到的最高值作為系統(tǒng)潛在能量。模擬結(jié)果表明, 系統(tǒng)1在水稻播期為5月27日、油菜為10月6日時, 系統(tǒng)2在水稻播期為6月18日、油菜為10月7日時的周年能量最高(圖1)。
圖1 不同播期下的水稻季(a、e)、油菜季(b、f)及稻油系統(tǒng)(c、d、g、h)潛在產(chǎn)量及生育期
(a、e): LLYHZ和HHZ分別為雜交稻品種隆兩優(yōu)華占和常規(guī)稻品種黃華占; (b、f): Yp和Yw分別表示灌溉和雨養(yǎng)潛在產(chǎn)量; (c、d、g、h): LLYHZ-HYZ62為系統(tǒng)1、HHZ-HYZ62為系統(tǒng)2。誤差線表示2011–2022年產(chǎn)量均值的標(biāo)準(zhǔn)差。
(a, e): LLYHZ, hybrid rice variety Longliangyouhuazhan; HHZ, conventional rice variety Huanghuazhan. (b, f): Yp, potential yield; Yw, water-limited potential yield. (c, d, g, h): system1, LLYHZ-HYZ62; system2, HHZ-HYZ62. The error bar is the standard deviation of the average yield in 2011–2022.
本研究對2021—2022年武穴市稻油系統(tǒng)的生產(chǎn)情況進(jìn)行調(diào)查, 共調(diào)查大法寺、四望、花橋、梅川、余川、大金、石佛寺7個鄉(xiāng)鎮(zhèn), 每個鄉(xiāng)鎮(zhèn)選擇7~10個村, 每個村隨機(jī)抽選5~10位從事稻油系統(tǒng)生產(chǎn)的村民參與調(diào)查, 最終共收集有效問卷554份(圖2)。調(diào)查內(nèi)容包括作物產(chǎn)量、農(nóng)田基本情況(土壤類型、耕層深度)和生產(chǎn)管理措施(播期, 品種, 施肥次數(shù)、用量和種類, 農(nóng)藥施用次數(shù), 耕地、播種和收獲的方式等)。
條件推斷樹(condition inference tree)是一種用于分類和回歸的高性能機(jī)器學(xué)習(xí)算法, 具有輸出結(jié)果易于理解和解釋、能夠同時處理多種類型的數(shù)據(jù)(包括連續(xù)型和離散型、定量和定性數(shù)據(jù))和所有分類均經(jīng)過顯著性檢驗(yàn)等優(yōu)勢[31-32]。目前已在農(nóng)業(yè)生產(chǎn)管理措施的決策優(yōu)化方面得到了廣泛應(yīng)用, 如: 通過構(gòu)建條件決策樹, Mourtzinis等[33]明確了是否雨養(yǎng)、N肥的施用時間和比例和播種密度是造成美國不同地區(qū)大豆產(chǎn)量差異的主要原因, Corassa等[34]確定了巴西不同產(chǎn)量水平大豆產(chǎn)區(qū)的最適播種密度, Rizzo等[11]明確了提高N、K肥、殺蟲劑用量和追肥次數(shù)有利于進(jìn)一步縮小印度尼西亞水稻-玉米系統(tǒng)的產(chǎn)量差。
圖2 湖北省武穴市稻油系統(tǒng)生產(chǎn)現(xiàn)狀調(diào)查地點(diǎn)分布
地圖來源于湖北省地理信息公共服務(wù)平臺(https://hubei.tianditu. gov.cn/standardMap), 審圖號: 鄂S (2023)009號。
The map is from Hubei Provincial Platform for Common GeoSpatial Information Servies (website: https://hubei.tianditu.gov.cn/ standardMap), approval number: E S (2023) No. 009.
條件推斷樹的構(gòu)建過程為: 首先選擇出一個與因變量相關(guān)性最強(qiáng)的自變量, 基于置換檢驗(yàn)在該自變量中選擇值最小的劃分點(diǎn)作為二元分類節(jié)點(diǎn), 依此類推此過程直至所有可能的二元分類方式都沒有顯著性差異[35]。本研究在R 4.3.2版本中使用包的函數(shù)構(gòu)建條件決策樹, 設(shè)置產(chǎn)量為因變量, 土壤類型、耕層深度、品種、施肥次數(shù)、蟲藥和草藥使用次數(shù)、氮磷鉀肥施用量和收獲方式為自變量, 檢驗(yàn)方式為單變量分析, 最小分類閾值為=0.05, 每個分類節(jié)點(diǎn)至少包含總樣本數(shù)的10%, 終端節(jié)點(diǎn)的最小樣本數(shù)為10, 樹的最深深度為10。
在潛在產(chǎn)量上, 系統(tǒng)1中選用的雜交稻LLYHZ較系統(tǒng)2的常規(guī)稻HHZ具有更高的潛在產(chǎn)量, 分別為11.79 t hm–2和9.23 t hm–2, 而系統(tǒng)1和系統(tǒng)2中油菜潛在產(chǎn)量的差異較小, 分別為4.43 t hm–2和4.41t hm–2。因此, 系統(tǒng)1較系統(tǒng)2的平均周年能量當(dāng)量更高, 分別為284 GJ hm–2和246 GJ hm–2(圖3)。在實(shí)際產(chǎn)量上, 農(nóng)戶之間水稻季和油菜季實(shí)際產(chǎn)量的分布范圍分別為5.53~10.64 t hm–2和0.37~3.34 t hm–2(均值分別為8.11 t hm–2和1.82 t hm–2, 變異系數(shù)CV分別為11%和28%), 稻油系統(tǒng)周年能量當(dāng)量的分布范圍為101~231 GJ hm–2(均值為165 GJ hm–2, CV為12%) (圖3)。在產(chǎn)量差上, 水稻季和油菜季的平均產(chǎn)量差分別為3.69 t hm–2和2.60 t hm–2, 稻油系統(tǒng)的平均周年能量差為118 GJ hm–2。系統(tǒng)的平均周年相對產(chǎn)量差為42%, 其中水稻季和油菜季分別為31%和59%, 表明該系統(tǒng)中油菜季具有更大的增產(chǎn)空間(圖3)。
相較于湖北省和長江流域水平, 武穴市稻油系統(tǒng)的潛在產(chǎn)量相近, 系統(tǒng)、水稻和油菜的潛在產(chǎn)量分別較湖北省低–0.4%、–3%和4%, 分別較長江流域低0.7%、3%和–3%。而武穴市的實(shí)際產(chǎn)量偏低, 系統(tǒng)、水稻和油菜的實(shí)際產(chǎn)量分別較湖北省低13%、8%和24%, 分別較長江流域低5%、3%和11%, 造成武穴市稻油系統(tǒng)的產(chǎn)量差較大。平均系統(tǒng)產(chǎn)量差分別較湖北和長江流域高26%和5%, 且83%的農(nóng)戶系統(tǒng)相對產(chǎn)量差大于湖北省、61%的農(nóng)戶大于長江流域平均水平(圖3)。
圖3 武穴市稻油系統(tǒng)的潛在產(chǎn)量、實(shí)際產(chǎn)量和相對產(chǎn)量差的分布情況
(a): 水稻品種隆兩優(yōu)華占(LLYHZ)和黃華占(HHZ)的潛在產(chǎn)量(Yp)和實(shí)際產(chǎn)量(Ya); (b): 系統(tǒng)1和2的油菜品種華油雜62 (HYZ62)的Yp和Ya; (c): 系統(tǒng)1 (system1, LLYHZ-HYZ62)和系統(tǒng)2 (system2, HHZ-HYZ62)的Yp和Ya; (d): 水稻、油菜及系統(tǒng)的相對產(chǎn)量差, 即產(chǎn)量差占Yp的比例。紅色菱形和黃色三角形分別表示湖北和長江流域的平均產(chǎn)量水平[6]。箱線圖的上下邊緣值分別表示95%和5%分位數(shù), 箱的上下邊界分別表示75%和25%分位數(shù), 箱內(nèi)部的實(shí)線為中位數(shù), 虛線為平均值, 黑色點(diǎn)表示離群值。
(a): potential yield (Yp) and actual yield (Ya) of rice varieties of Longliangyouhuazhan (LLYHZ) and Huanghuazhan (HHZ). (b): Yp and Ya of rapeseed variety of Huayouza 62 (HYZ62). (c): Yp and Ya of system 1 (LLYHZ-HYZ62) and 2 (HHZ-HYZ62). (d): the relative yield gap (the ratio of yield gap to Yp) of rice, rapeseed, and the system. The red diamond and the yellow triangle indicate the average level in Hubei and Yangtze River Valley, respectively[6]. The upper and lower boundary is 95% and 5% quantile, respectively; the upper and lower border of the box is 75% and 25% quantile, respectively; and the solid and dashed line is the median and mean values, respectively.
本研究所調(diào)查農(nóng)戶的生產(chǎn)現(xiàn)狀可見圖4。田塊耕層深度以較淺耕層(10~30 cm)為主, 占比為73%, 土壤類型以黏土和沙壤土為主, 分別占比為44%和47%。管理措施上, 稻油系統(tǒng)以直播為主, 水稻季和油菜季分別為99%和100%。水稻季的草藥和蟲藥使用次數(shù)為2次及以上的占比分別為90%和94%, 油菜季分別為59%和64%, 表明水稻季的蟲草害發(fā)生程度更重。水稻季和油菜季的施肥次數(shù)均以2次為主, 分別占比70%和68%, 氮(100~200 kg hm–2)、磷(50~100 kg hm–2)、鉀(60~120 kg hm–2)肥均以中等施用量水平占比最大, 均在50%以上。水稻季以種植黃華占為主, 占比為89%, 而雜交稻占比最小, 僅4%。油菜品種數(shù)量較多, 各品種占比為15%~25%。系統(tǒng)周年水平上, 施肥次數(shù)以4次為主, 占比為49%, 氮(200~400 kg hm–2)、磷(100~200 kg hm–2)、鉀(120~240 kg hm–2)肥均以中等施用量水平占比最大, 分別為70%、60%和63%, 草藥和蟲藥使用次數(shù)在4次及以上的占比均超過80%。
圖4 不同土壤條件和管理措施下的水稻季、油菜季和稻油系統(tǒng)的產(chǎn)量比較
水稻品種中Hybrid為雜交稻品種, Other為其他常規(guī)稻品種, HHZ為常規(guī)稻品種黃華占; 油菜品種中Other為其他品種, YG2009為陽光2009, ZY28為浙油28, H919為華919, ZS11為中雙11。氮、磷、鉀肥分別表示N、P2O5、K2O的施用量。不同的字母標(biāo)注表示在0.05概率水平差異顯著, 誤差線表示均值的標(biāo)準(zhǔn)誤。
In rice variety: Hybrid, hybrid rice variety; Others, other conventional variety; HHZ, conventional rice variety Huanghuazhan. In rapeseed variety: Other, other rapeseed variety; YG2009, Yangguang 2009; ZY28, Zheyou 28; H919, Hua 919; ZS11, Zhongshuang 11. The input rates of nitrogen, phosphorus, and potassium are shown as N, P2O5, and K2O (kg hm–2), respectively. Different letters indicate significant difference at< 0.05, the error bar is the standard error of averages of each column.
2.3.1 土壤條件 耕層深度對水稻產(chǎn)量具有顯著影響, 土壤類型對油菜和系統(tǒng)周年產(chǎn)量具有顯著影響(圖4)。水稻在耕層深度為30~50 cm和50 cm以上分別較淺耕層(10~30 cm)的平均實(shí)際產(chǎn)量(8.03 t hm–2)高2.7%和2.6%。田塊為黏土的油菜和系統(tǒng)平均實(shí)際產(chǎn)量分別較沙壤土(油菜為1.74 t hm–2, 系統(tǒng)為162 GJ hm–2)顯著高10%和3%。
2.3.2 栽培措施 施肥次數(shù)、蟲草藥使用次數(shù)、氮肥施用量及品種選擇對水稻產(chǎn)量具有顯著影響(圖4)。產(chǎn)量隨著草藥使用次數(shù)的增加呈降低趨勢, 為1次和2次的農(nóng)戶分別較3次及以上的實(shí)際產(chǎn)量(7.89 t hm–2)高4%和2%。產(chǎn)量隨著蟲藥使用次數(shù)的增加呈增長趨勢, 為3次及以上較1次時的產(chǎn)量(7.71 t hm–2)顯著高6%。施肥次數(shù)為2次和3次及以上均較1次的實(shí)際產(chǎn)量(7.78 t hm–2)顯著高 5%, 二者間無顯著差異。N施用量為100~200 kg hm–2的實(shí)際產(chǎn)量最高, 較0~100 kg hm–2的產(chǎn)量(7.90 t hm–2)顯著高3%。品種選擇上, 其他常規(guī)稻品種和黃華占的實(shí)際產(chǎn)量分別較雜交稻(7.89 t hm–2)高6%和3%。
施肥次數(shù)、品種選擇和收獲方式對油菜產(chǎn)量具有顯著影響(圖4)。施肥次數(shù)為1次和2次分別較3次的實(shí)際產(chǎn)量(1.70 t hm–2)顯著高12%和8%。不同品種間, 中雙11、華919、浙油28和其他品種較陽光2009的實(shí)際產(chǎn)量(1.47 t hm–2)高26%~38%。不同收獲方式中, 人工收獲較機(jī)械收獲的實(shí)際產(chǎn)量(1.70 t hm–2)顯著高15%。不同氮磷鉀肥施用量下的油菜產(chǎn)量無顯著差異。
蟲藥、草藥使用次數(shù)對系統(tǒng)周年能量具有顯著影響(圖4)。系統(tǒng)產(chǎn)量隨著草藥使用次數(shù)的增加呈降低趨勢, 為2~3次和4次分別較5次及以上的實(shí)際能量(162 GJ hm–2)顯著提高 4%和2%。產(chǎn)量隨著蟲藥使用次數(shù)的增加呈增長趨勢, 為4次和5次及以上分別較1~3次的實(shí)際能量(160 GJ hm–2)高2%和5%, 而不同施肥量下的系統(tǒng)周年產(chǎn)量無顯著差異。
2.3.3 條件推斷樹分析 條件推斷樹的結(jié)果顯示,對水稻季、油菜季及系統(tǒng)周年產(chǎn)量影響最大的因素分別為草藥使用次數(shù)、收獲方式和土壤類型(圖5)。水稻季在草藥使用次數(shù)≤2次、耕層深度>38 cm、土壤類型為黏土的組合下產(chǎn)量最高(8.68 t hm–2), 較耕層≤38 cm、施肥次數(shù)≤1次時的產(chǎn)量高12%。油菜季在人工收獲、施肥次數(shù)為1次、鉀肥施用量≤81 kg hm–2組合下產(chǎn)量最高(2.36 t hm–2), 較機(jī)械收獲、土壤類型為沙壤土或黏土?xí)r的產(chǎn)量高52%。系統(tǒng)在土壤類型為黏土、耕層深度>25 cm、鉀肥施用量>205 kg hm–2組合下周年能量最高(177 GJ hm–2), 較土壤類型為沙壤土或黏土、氮肥施用量≤362 kg hm–2、蟲藥使用次數(shù)≤4次時高10%。
圖5 水稻、油菜和稻油系統(tǒng)的生產(chǎn)決策樹分析
氮、磷、鉀肥用量分別表示表示純N、P2O5、K2O施用量(kg hm–2)。每個節(jié)點(diǎn)內(nèi)的表示該變量二元分類出的兩組數(shù)據(jù)之間置換檢驗(yàn)的值,表示該變量包含的樣本數(shù)。
Nitrogen, phosphate, and potassic fertilizer input rates were shown as N, P2O5, and K2O (kg hm–2), respectively. The-value in each node is calculated based on permutation test for split and recurse the variable,is the number of samples in each node.
本研究以長江流域典型的稻油系統(tǒng)生產(chǎn)區(qū)湖北省武穴市為例, 利用作物模型和田間調(diào)查評估了該系統(tǒng)的周年產(chǎn)量差和增產(chǎn)限制因素。模型模擬的潛在產(chǎn)量與農(nóng)戶實(shí)際產(chǎn)量在光溫資源利用上存在一定差異。作物模型以日為步長, 基于氣象數(shù)據(jù)和光合同化能力計(jì)算當(dāng)日干物質(zhì)最大積累量且分配到各個器官, 通過每日累積獲得成熟期干物質(zhì)總量和潛在產(chǎn)量, 產(chǎn)量不受除氣象因素外的其他生物、非生物脅迫影響[14]。理論上而言, 本研究的系統(tǒng)模擬的潛在產(chǎn)量為該系統(tǒng)最適宜的周年光溫資源條件下所獲得的產(chǎn)量(圖1)。然而, 實(shí)際生產(chǎn)中農(nóng)民的播期選擇受到茬口矛盾、天氣因素、土壤因素、管理措施等多重因素的限制, 導(dǎo)致作物生育期內(nèi)的溫光資源分布處于非最佳狀態(tài)[36]。產(chǎn)量差的評估結(jié)果表明, 武穴市稻油系統(tǒng)的周年相對產(chǎn)量差為42%, 其中油菜季(59%)較水稻季(31%)具有更大的增產(chǎn)空間, 這與Huang等[6]的研究結(jié)果相似。此外, 相較于湖北省和長江流域水平, 武穴市稻油系統(tǒng)的實(shí)際產(chǎn)量較低, 尤其是在油菜季分別低24%和11%, 造成該地區(qū)系統(tǒng)產(chǎn)量差較大, 表明提升油菜產(chǎn)量是實(shí)現(xiàn)武穴市稻油系統(tǒng)周年高產(chǎn)的關(guān)鍵。相較于前人的產(chǎn)量差研究,本研究的創(chuàng)新點(diǎn)為: (1) 將田間調(diào)查與基于作物模型的產(chǎn)量差研究結(jié)合, 能夠在農(nóng)民生產(chǎn)實(shí)踐基礎(chǔ)上探究造成產(chǎn)量差形成的原因; (2)綜合使用單因素方差分析和條件推斷樹比較了不同產(chǎn)量水平的農(nóng)戶特征差異, 前者明確單個因素對產(chǎn)量的影響, 后者反映出各因素之間的關(guān)系, 結(jié)合兩種方法能夠更加準(zhǔn)確地反映出各因素對產(chǎn)量的綜合性影響。
本研究結(jié)果表明, 系統(tǒng)周年低產(chǎn)的農(nóng)戶表現(xiàn)為土壤類型為沙壤土、耕層較淺, 蟲草害發(fā)生嚴(yán)重, 水稻季所有肥料作為基肥一次施入且輕施氮鉀肥, 而油菜季則重施。土壤條件上, 土壤耕層較淺會導(dǎo)致根系下扎受阻、水分養(yǎng)分吸收困難, 造成淺根系作物水稻的產(chǎn)量顯著降低[37-39], 而土壤沙質(zhì)含量越高, 保水保肥能力越差[40-42], 造成油菜以及系統(tǒng)周年產(chǎn)量顯著下降。因此, 可以通過適當(dāng)深耕( >25 cm, 圖5), 改善作物根系的養(yǎng)分吸收狀況, 以提高土壤生產(chǎn)力[43-44]。蟲藥和草藥的使用次數(shù)能夠反映田間蟲草害發(fā)生的嚴(yán)重程度, 一般來說使用次數(shù)越多則受害程度越重。本研究中, 水稻季的蟲害管理次數(shù)達(dá)到2次及以上時可有效減少產(chǎn)量損失。而草害管理次數(shù)達(dá)到3次及以上時的防控效果差, 水稻產(chǎn)量反而下降(圖4和圖5), 主要是由于該地區(qū)的水稻以人工直播為主, 生長前期的作物群體小, 若防控不及時導(dǎo)致雜草發(fā)生嚴(yán)重, 即使后期加大投入也難以有效控制草害發(fā)生[45]。楊永杰等[46]研究表明, 播種當(dāng)天同步噴施封閉除草劑, 對直播稻田的禾本科、莎草科和闊葉雜草的防效達(dá)到98.3%以上, 且可較常規(guī)用量減少20%。因此, 水稻季應(yīng)重點(diǎn)關(guān)注封閉除草, 并在苗期及時淹水控草, 減輕后期草害治理壓力, 實(shí)現(xiàn)草害的高效防控。施肥管理上, 武穴市存在系統(tǒng)周年施肥比例不合理的現(xiàn)象, 水稻季所有肥料作底肥一次施用和肥料總量投入不足, 而油菜季追肥次數(shù)過多(>2次)和鉀肥施用過量不利于高產(chǎn)(圖5)。適當(dāng)降低油菜季而提高水稻季的肥料用量, 水稻季施肥次數(shù)僅為一次的農(nóng)戶適當(dāng)增加一次追肥可顯著提高產(chǎn)量(圖4), 促進(jìn)提升系統(tǒng)周年產(chǎn)量和肥料利用效率。
該地區(qū)普遍種植常規(guī)稻品種HHZ (占比89%), 主要是由于: (1) 相較于雜交稻, HHZ作為常規(guī)稻具有食味品質(zhì)佳、穩(wěn)產(chǎn)性好、種子成本低等優(yōu)勢[47]; (2) 農(nóng)民長期種植HHZ, 具有豐富的種植經(jīng)驗(yàn), 而缺乏系統(tǒng)的雜交稻種植技術(shù), 導(dǎo)致雜交稻在當(dāng)?shù)匚茨鼙憩F(xiàn)出產(chǎn)量優(yōu)勢; (3) HHZ的市場優(yōu)勢更大, 當(dāng)?shù)厥召徤谈嗖A于品質(zhì)更佳的常規(guī)稻HHZ[48]。但HHZ實(shí)際產(chǎn)量已達(dá)到該品種潛在產(chǎn)量的90%以上, 武穴市雜交稻的潛在產(chǎn)量較常規(guī)稻高28%, 更換潛在產(chǎn)量更高的雜交稻將為稻油系統(tǒng)帶來更大的增產(chǎn)空間(圖3-a)。針對實(shí)際生產(chǎn)中該地區(qū)的雜交稻未能表現(xiàn)出高產(chǎn)優(yōu)勢的問題, 可能是由于人工撒播的播種方式更易造成用種量較少的雜交稻種子分布不均勻, 不利于高產(chǎn)群體建成[49]。適當(dāng)增加水稻的用種量, 提高直播密度, 能夠提高有效穗數(shù)5.3%~16.7%、千粒重5.5%~7.2%和產(chǎn)量3.6%~6.5%, 并能夠在減少N肥投入(225 kg hm–2)的條件下實(shí)現(xiàn)與高N處理(300 kg hm–2)相當(dāng)?shù)漠a(chǎn)量[50-51]。另一方面, 農(nóng)戶的栽培管理方式以長期經(jīng)驗(yàn)為主, 而缺乏科學(xué)合理的雜交稻管理技術(shù)[52], 應(yīng)加強(qiáng)雜交稻栽培技術(shù)的培訓(xùn)和推廣。油菜品種數(shù)量較多且產(chǎn)量差異較大, 其中陽光2009的產(chǎn)量顯著低于其他品種, 可能是由于該品種的生物量和需肥量較大[53], 在當(dāng)前該地農(nóng)戶常規(guī)管理措施下難以實(shí)現(xiàn)高產(chǎn), 可選擇種植中雙11、華919等其他高產(chǎn)品種(圖4)。此外, 收獲方式是影響油菜產(chǎn)量的最重要因素(圖5), 當(dāng)?shù)赜筒藱C(jī)收較人工收獲的產(chǎn)量損失達(dá)到15%以上(圖4)。未來需進(jìn)一步培育和推廣適宜機(jī)械化作業(yè)的高產(chǎn)油菜品種, 開發(fā)和引進(jìn)油菜專用收割機(jī)及其配套技術(shù), 降低機(jī)收損失, 以提高當(dāng)?shù)氐挠筒水a(chǎn)量[54-58]。
本研究僅對2021—2022年的稻油系統(tǒng)生產(chǎn)現(xiàn)狀開展調(diào)查, 并沒有開展多年調(diào)查, 因此沒有進(jìn)行年度之間的差異分析。但是我們調(diào)查的生產(chǎn)數(shù)據(jù)多是來自長期從事稻油系統(tǒng)種植的農(nóng)戶, 種植經(jīng)驗(yàn)較為豐富, 據(jù)反映每年的產(chǎn)量變異不大, 表明本研究結(jié)果能夠一定程度反映當(dāng)?shù)囟嗄甑钠骄a(chǎn)量和栽培管理情況。此外, 本文重點(diǎn)關(guān)注農(nóng)戶栽培措施對系統(tǒng)產(chǎn)量差形成的影響, 沒有細(xì)化到對產(chǎn)量構(gòu)成因子的影響。在之后田間調(diào)查研究中, 需增加代表性高產(chǎn)和低產(chǎn)田塊取樣, 進(jìn)一步討論分析栽培措施對產(chǎn)量構(gòu)成因子的影響。
武穴市稻油系統(tǒng)存在42%的增產(chǎn)空間, 其中油菜(59%)比水稻(31%)具有更大的增產(chǎn)空間。相較于湖北省和長江流域, 武穴市的稻油系統(tǒng)產(chǎn)量差偏大, 主要是由于該地的實(shí)際產(chǎn)量偏低。通過適當(dāng)深耕(>25 cm)提高土壤生產(chǎn)力, 油菜季選擇當(dāng)?shù)剡m宜的高產(chǎn)油菜品種, 水稻季加強(qiáng)推廣優(yōu)質(zhì)高產(chǎn)的雜交稻品種, 并重點(diǎn)關(guān)注增加水稻用種量、提高直播密度和播種時的封閉除草, 系統(tǒng)周年施肥管理上降低油菜季而提高水稻季的肥料用量, 水稻季僅施底肥的農(nóng)戶可適當(dāng)增施追肥, 有助于促進(jìn)武穴市稻油系統(tǒng)的周年高產(chǎn)和資源高效利用。
[1] 潘孝武, 何強(qiáng), 張武漢, 舒服, 邢俊杰, 孫平勇, 鄧華鳳. 新形勢下長江流域稻作發(fā)展的思考. 雜交水稻, 2015, 30(6): 1–5. Pan X W, He Q, Zhang W H, Shu F, Xing J J, Sun P Y, Deng H F. Reflection of rice development in Yangtze Rice Basin under the new situation., 2015, 30(6): 1–5 (in Chinese with English abstract).
[2] 趙正洪, 戴力, 黃見良, 潘曉華, 游艾青, 趙全志, 陳光輝, 周政, 胡文彬, 紀(jì)龍. 長江中游稻區(qū)水稻產(chǎn)業(yè)發(fā)展現(xiàn)狀、問題與建議. 中國水稻科學(xué), 2019, 33: 553–564. Zhao Z H, Dai L, Huang J L, Pan X H, You A Q, Zhao Q Z, Chen G H, Zhou Z, Hu W B, Ji L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River., 2019, 33: 553–564 (in Chinese with English abstract).
[3] van Ittersum M K, Cassman K G. Yield gap analysis-rationale, methods and applications-introduction to the special issue., 2013, 143: 1–3.
[4] Jeong H, Jang T, Seong C, Park S. Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater., 2014, 141: 1–9.
[5] Hoogenboom G, Porter C H, Boote K J, Shelia V, Wilkens P W, Singh U, White J W, Asseng S, Lizaso J I, Moreno L P, Pavan W, Ogoshi R, Hunt L A, Tsuji G Y, Jones J W. The DSSAT Crop Modeling Ecosystem: Advances in Crop Modelling for a Sustainable Agriculture. Cambridge: Burleigh Dodds Science Publishing, 2019. pp 173–216.
[6] Huang J D, Cao X Y, Kuai J, Cheng H, Du H, Peng S B, Huang J L, Deng N Y. Evaluation of production capacity for rice-rapeseed cropping system in China., 2023, 293: 108842.
[7] 趙鵬飛, 黃文超, 高超男, 曹國鑫, 張宏彥, 李曉林. 小麥白穗病發(fā)生與主要栽培管理措施的關(guān)系研究初報. 華北農(nóng)學(xué)報, 2012, 27(增刊1): 368–373. Zhao P F, Huang W C, Gao C N, Cao G X, Zhang H Y, Li X L. Preliminary report on the relationship between occurrence of white ear symptom in winter wheat and the prominent agricultural management practices., 2012, 27(S1): 368–373 (in Chinese with English abstract).
[8] 何賢芳, 趙莉, 劉澤, 汪建來. 安徽稻茬小麥產(chǎn)量差異性與生產(chǎn)限制因子構(gòu)成解析. 北方農(nóng)業(yè)學(xué)報, 2020, 48(1): 123–128. He X F, Zhao L, Liu Z, Wang J L. Analysis of yield difference and production restriction factors of rice stubble wheat in Anhui province., 2020, 48(1): 123–128 (in Chinese with English abstract).
[9] Shao J J, Zhao W Q, Zhou Z G, Du K, Kong L J, Wang Y H. A new feasible method for yield gap analysis in regions dominated by smallholder farmers, with a case study of Jiangsu province, China., 2021, 20: 460–469.
[10] Agus F, Andrade J F, Edreira J I R, Deng N Y, Purwantomo D K G, Agustiani N, Aristya V E, Batubara S F, Herniwati, Hosang E Y, Krisnadi L Y, Makka A, Samijan, Cenacchi N, Wiebe K, Grassini P. Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia., 2019, 237: 12–22.
[11] Rizzo G, Agus F, Batubara S F, Andrade J F, Edreira J I R, Purwantomo D K G, Anasiru R H, Maintang, Marbun O, Ningsih R D, Syahri, Ratna B S, Yulianti V, Istiqomah N, Aristya V E, Howard R, Cassman K G, Grassini P. A farmer data-driven approach for prioritization of agricultural research and development: A case study for intensive crop systems in the humid tropics., 2023, 297: 108942.
[12] 楊婭, 田貴生, 吳海亞, 周雨亭, 周志華, 叢日環(huán). 武穴市油菜種植現(xiàn)狀調(diào)研與分析. 中國農(nóng)技推廣, 2019, 35(增刊1): 17–18. Yang Y, Tian G S, Wu H Y, Zhou Y T, Zhou Z H, Cong R H. Rapeseed production status investigation and analysis in Wuhan., 2019, 35(S1): 17–18 (in Chinese).
[13] 秦鵬程, 萬素琴, 鄧環(huán), 劉敏. 湖北省水稻種植布局精細(xì)化氣候區(qū)劃. 湖北農(nóng)業(yè)科學(xué), 2016, 55: 4150–4153. Qin P C, Wan S Q, Deng H, Liu M. Fine climatic regionalization of rice cultivated patterns in Hubei province., 2016, 55: 4150–4153 (in Chinese with English abstract).
[14] Li T, Angeles O, Marcaida III M, Manalo E, Manalili M P, Radanielson A, Mohanty Sl. From ORYZA2000 to ORYZA (v3): an improved simulation model for rice in drought and nitrogen-deficient environments., 2017, 237: 246–256.
[15] Sayin C, Mencet M N, Ozkan B. Assessing of energy policies based on Turkish agriculture: current status and some implications., 2005, 33: 2361–2373.
[16] Tabar I B, Keyhani A, Rafiee S. Energy balance in Iran’s agronomy (1990–2006)., 2010, 14: 849–855.
[17] Setiyono T D, Quicho E D, Gatti L, Campos-Taberner M, Busetto L, Collivignarelli F, García-Haro F J. Boschetti M, Khan N I, Holecz F. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model., 2018, 10: 293.
[18] Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. Closing yield gaps for rice self-sufficiency in China., 2019, 10: 1725.
[19] Boote K J, Jones J W, Hoogenboom G, Pickering N. The CROPGRO Model for Grain Legumes: Understanding Options for Agricultural Production. Dordrecht: Kluwer Academic Publishers, 1998. pp 99–128.
[20] Deligios P A, Farci R, Sulas L, Hoogenboom G, Ledda L. Predicting growth and yield of winter rapeseed in a Mediterranean environment: Model adaptation at a field scale., 2013, 144: 100–112.
[21] Xu M C, Wang C M, Ling L, Batchelor W D, Zhang J, Jie K. Sensitivity analysis of the CROPGRO-Canola model in China: a case study for rapeseed., 2021, 16: e0259929.
[22] 李萬君, 李艷軍. 基于企業(yè)視角的湖北省油菜良種補(bǔ)貼效果評析: 以統(tǒng)一供種為例. 華中農(nóng)業(yè)大學(xué)學(xué)報(社會科學(xué)版), 2016, 2: 47–52. Li W J, Li Y J. Effect analysis on improved canola seed subsidy in Hubei province from perspective of enterprises-taking unified seed supply program for example.(Soc Sci Edn), 2016, 2: 47–52 (in Chinese with English abstract).
[23] 熊偉, 林而達(dá), 楊婕, 李迎春. 作物模型區(qū)域應(yīng)用兩種參數(shù)校準(zhǔn)方法的比較. 生態(tài)學(xué)報, 2008, 28: 2140–2147. Xiong W, Lin E D, Yang J, Li Y C. Comparison of two calibration approaches for regional simulation of crop model., 2008, 28: 2140–2147 (in Chinese with English abstract).
[24] Yang H S, Dobermann A, Lindquist J L, Walters D T, Cassman K G. Hybrid maize: a maize simulation model that combines two crop modeling approaches., 2004, 87: 131–154.
[25] Grassini P, van Bussel L G J, Van Wart J, Wolf J, Claessens L, Yang H S, Boogaard H, de Groot H, van Ittersum M K, Cassman K G. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis., 2015, 177: 49–63.
[26] Schils R, Olesen J E, Kersebaum K C, Rijk B, Oberforster M, Kalyada V, Khitrykau M, Gobin A, Kirchev H, Manolova V, Manolov I, Trnka M, Hlavinka P, Palosuo T, Peltonen-Sainio P, Lorgeou J, Marrou H, Danalatos N, Archontoulis S, van Ittersum M K. Cereal yield gaps across Europe., 2018, 101: 109–120.
[27] Yuan S, Stuart A M, Laborte A G, Edreira J I R, Dobermann A, Kien L V N, Thúy L T, Paothong K, Traesang P, Tint K M, San S S, Villafuerte II M Q, Quicho E D, Pame A R P, Then R, Flor R J, Thon N, Agus F, Agustiani N, Deng N, Li T, Grassini P. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl., 2022, 3: 217–226.
[28] Grassini P, Eskridge K M, Cassman K G. Distinguishing between yield advances and yield plateaus in historical crop production trends., 2013, 4: 2918.
[29] van Wart J, Grassini P, Cassman K G. Impact of derived global weather data on simulated crop yields., 2013, 19: 3822–3834.
[30] Han E, Ines A, Koo J. Global high-resolution soil profile database for crop modeling applications., 2015, 1: 1–37.
[31] Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework., 2006, 15: 651–674.
[32] Guelman L, Guillén M, Pérez-Marín A M. A decision support framework to implement optimal personalized marketing interventions., 2015, 72: 24–32.
[33] Mourtzinis S, Kaur G, Orlowski J M, Shapiro C A, Lee C D, Wortmann C, Holshouser D, Nafziger E D, Kandel H, Niekamp J, Ross W J, Lofton J, Vonk J, Roozeboom K L,Thelen K D, Lindsey L E, Staton M,Naeve S L, Casteel S N, Wiebold W J, Conley S P. Soybean response to nitrogen application across the United States: a synthesis-analysis., 2018, 215: 74–82.
[34] Corassa G M, Amado T J C, Strieder M L, Strieder M L, Schwalbert R, Pires J L F, Carter P R, Ciampitti I A. Optimum soybean seeding rates by yield environment in southern Brazil., 2018, 110: 2430–2438.
[35] Hothorn T, Hornik K, Zeileis A. ctree: conditional inference trees., 2015, 8: 1–32.
[36] 陸佳嵐, 王凈, 馬成, 陶明煊, 趙春芳, 張亞東, 李霞, 方先文,張俊, 陳長青, 張巫軍, 夏加發(fā), 江學(xué)海, 柳開樓, 喬中英, 張彬. 長江流域中稻產(chǎn)量和品質(zhì)性狀差異與其生育期氣象因子的相關(guān)性. 江蘇農(nóng)業(yè)學(xué)報, 2020, 36: 1361–1372. Lu J L, Wang J, Ma C, Tao M X, Zhao C F, Zhang Y D, Li X, Fang X W, Zhang J, Chen C Q, Zhang W J, Xia J F, Jiang X H, Liu K L, Qiao Z Y, Zhang L. Correlation between the differences in yield and quality traits among various types of middle rice and meteorological factors during growth period in the Yangtze River basin., 2020, 36: 1361–1372 (in Chinese with English abstract).
[37] Linh T B, Sleutel S, Thi G V, Khoa L V, Cornelis W M. Deeper tillage and root growth in annual rice-upland cropping systems result in improved rice yield and economic profit relative to rice monoculture., 2015, 154: 44–52.
[38] 姜寶龍, 代貴金, 宮殿凱, 趙福財, 于廣星, 徐博, 劉憲平, 陳盈. 稻田旋耕深度對鹽豐47的生長發(fā)育及產(chǎn)量性狀的影響. 糧食科技與經(jīng)濟(jì), 2020, 45(6): 107–109. Jiang B L, Dai G J, Gong D K, Zhao F C, Yu G X, Xu B, Liu X P, Chen Y. Effect of rotary tillage depth on the growth and yield characters of Yanfeng 47., 2020, 45(6): 107–109 (in Chinese with English abstract).
[39] 劉智炫, 劉勇軍, 彭曙光, 單雪華, 謝鵬飛, 李宏光, 李強(qiáng), 穰中文, 周清明, 黎娟. 基于長期淺耕模式的煙稻輪作區(qū)土壤速效養(yǎng)分垂直分布特征. 中國煙草科學(xué), 2020, 41(3): 28–35. Liu Z X, Liu Y J, Peng S G, Shan X H, Xie P F, Li H G, Li Q, Rang Z W, Zhou Q M, Li J. Vertical distribution characteristics of soil available nutrients in tobacco rice rotation area based on long-term shallow tillage., 2020, 41(3): 28–35 (in Chinese with English abstract).
[40] Xing X, Zhang P, Ma X. Rapeseed dreg additive reducing soil infiltration and improving water retention., 2017, 33(2): 102–108.
[41] 袁金展, 馬霓, 張春雷, 李俊. 移栽與直播對油菜根系建成及籽粒產(chǎn)量的影響. 中國油料作物學(xué)報, 2014, 36: 189–197. Yuan J Z, Ma N, Zhang C L, Li J. Effects of direct drilling and transplanting on root system and rapeseed yield.2014, 36: 189–197 (in Chinese with English abstract).
[42] 王秋菊, 高中超, 張勁松, 常本超, 姜輝, 孫兵, 郭中原, 賈會彬, 焦峰, 劉峰. 黑土稻田連續(xù)深耕改善土壤理化性質(zhì)提高水稻產(chǎn)量大田試驗(yàn). 農(nóng)業(yè)工程學(xué)報, 2017, 33(9): 126–132. Wang Q J, Gao Z C, Zhang J S, Chang B C, Jiang H, Sun B, Guo Z Y, Jia H L, Jiao F, Liu F. Black-soil paddy field experiment on improving soil physical and chemical properties and increasing rice yield by continuous deep ploughing.2017, 33(9): 126–132 (in Chinese with English abstract).
[43] Arora V K, Joshi R, Singh C B. Irrigation and deep tillage effects on productivity of dry-seeded rice in a subtropical environment., 2018, 7: 416–423.
[44] Shen X L, Wang L L, Yang Q C, Xiu W M, Li G, Zhao H N, Zhang G L. Dynamics of soil organic carbon and labile carbon fractions in soil aggregates affected by different tillage managements., 2021, 13: 1541.
[45] 梁玉剛, 李靜怡, 周晶, 吳濤, 方寶華, 余政軍. 中國水稻栽培技術(shù)的演變與展望. 作物研究, 2022, 36: 180–188. Liang Y G, Li J L, Zhou J, Wu T, Fang B H, Yu Z J. Evolution and prospect of rice cultivation technology in China., 2022, 36: 180–188 (in Chinese with English abstract).
[46] 楊永杰, 張慧泉, 金文涌, 糜學(xué)江, 張建萍, 于曉玥, 唐偉, 陸永良. 幾種封閉除草劑兩個時期用藥效果對比及其交互作用分析. 植物保護(hù), 2022, 48(5): 341–347. Yang Y J, Zhang H Q, Jin W Y, Mi X J, Zhang J P, Yu X Y, Tang W, Lu Y L. Comparison of weed management with several pre-emergence herbicides under two application periods and analysis their interactions in weed control., 2022, 48(5): 341–347 (in Chinese with English abstract).
[47] 金紅梅. 長江中下游秈型常規(guī)稻與雜交稻主要性狀的比較分析. 中國稻米, 2011, 17(3): 14–16. Jin H M. Comparison of major traits between Indica conventional rice and hybrid rice in the middle and lower reaches of Yangtze River Valley., 2011, 17(3): 14–16 (in Chinese).
[48] 鄭華斌, 唐啟源, 陳風(fēng)波. 綠色超級稻品種黃華占在湖南推廣的啟示. 作物研究, 2019, 33: 44–46. Zheng H B, Tang Q Y, Chen F B. Enlightenment for promotion of Green Super Rice variety Huanghuazhan in Hunan., 2019, 33: 44–46 (in Chinese).
[49] 王亞梁, 朱德峰, 向鏡, 陳惠哲, 張玉屏, 徐一成, 張義凱. 雜交水稻機(jī)插定位定量播種技術(shù). 雜交水稻, 2020, 35(3): 42–45. Wang Y L, Zhu D F, Xiang J, Chen H Z, Zhang Y P, Xu Y C, Zhang Y K. Sowing techniques of seed location and quantitation for machine transplanting of hybrid rice., 2020, 35(3): 42–45 (in Chinese with English abstract).
[50] 季紅娟, 張小祥, 趙步洪, 鄭青松, 陳剛, 李育紅, 肖寧, 潘存紅, 吳云雨, 蔡躍, 李愛宏. 不同播期和密度對直播粳稻揚(yáng)粳3012產(chǎn)量及品質(zhì)的影響. 揚(yáng)州大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版), 2020, 41(1): 85–90. Ji H J, Zhang X X, Zhao B H, Zheng Q S, Chen G, Li Y H, Xiao N, Pan C H, Wu Y Y, Cai Y, Li A H. Effects of different sowing date and density on yield and quality of Yangjing 3012 indirect-seeding rice.(Agric Life Sci Edn), 2020, 41(1): 85–90 (in Chinese with English abstract).
[51] 吳培, 陳天曄, 袁嘉琦, 黃恒, 邢志鵬. 施氮量和直播密度互作對水稻產(chǎn)量形成特征的影響. 中國水稻科學(xué), 2019, 33: 269–281.Wu P, Chen T H, Yuan J Q, Huang H, Xing Z P. Effects of interaction between nitrogen application rate and direct-sowing density on yield formation characteristics of rice., 2019, 33: 269–281 (in Chinese with English abstract).
[52] 安寧, 范明生, 張福鎖. 水稻最佳作物管理技術(shù)的增產(chǎn)增效作用. 植物營養(yǎng)與肥料學(xué)報, 2015, 21: 846–852. An N, Fan M S, Zhang F S. Best crop management practices increase rice yield and nitrogen use efficiency., 2015, 21: 846–852 (in Chinese with English abstract).
[53] 劉助生, 鐘麗, 廖云云, 張宗急, 明日, 李云娟, 方鵬, 韋永忠.桂北地區(qū)不同油菜品種對氮磷鉀肥的響應(yīng)研究. 作物研究, 2022, 36: 320–326. Liu Z S, Zhong L, Liao Y Y, Zhang Z J, Ming R, Li Y J, Wan P, Wei Y Z. Responses of the different rapeseed cultivars to nitrogen, phosphorus and potassium fertilizers in northern Guangxi., 2022, 36: 320–326 (in Chinese with English abstract).
[54] Kuai J, Sun Y Y, Zuo Q S, Huang H D, Liao Q X, Wu C Y, Lu J W, Wu J S, Zhou G S. The yield of mechanically harvested rapeseed (L.) can be increased by optimum plant density and row spacing., 2015, 5: 18835.
[55] Kuai J, Sun Y Y, Zuo Q S, Liao Q X, Leng S H, Cheng Y G, Cao S, Wu J S, Zhou G S. Optimization of plant density and row spacing for mechanical harvest in winter rapeseed (L.)., 2016, 42: 898–908.
[56] 梁蘇寧, 沐森林, 湯慶, 張敏, 吳崇友. 收獲方式對油菜收獲損失構(gòu)成特征的影響. 農(nóng)機(jī)化研究, 2018, 40(3): 134–140. Liang S N, Ru S L, Tang Q, Zhang M, Wu C Y. The Effect of different harvest methods on formation of rape harvest loss., 2018, 40(3): 134–140 (in Chinese with English abstract).
[57] 王竹云, 張耀文, 趙小光, 侯君利, 關(guān)周博, 李殿榮, 史文青. 限制油菜高產(chǎn)水平提高的因素解析及解決途徑. 江西農(nóng)業(yè)學(xué)報, 2019, 31(6): 45–51. Wang Z Y, Zhang Y W, Zhao X G, Hou L J, Guan Z B, Li D R, Shi W Q. Analysis and solution of factors restricting high yield of rapeseed., 2019, 31(6): 45–51 (in Chinese with English abstract).
[58] 張立偉. 2021年菜籽菜油菜粕市場分析與2022年展望. 糧油與飼料科技, 2022, (3): 43–48.Zhang L W. The market analysis of rapeseed seeds, oil, and meal of 2021 and the outlook of 2022., 2022, (3): 43–48 (in Chinese).
附表1 ORYZA和CROPGRO-Canola主要校正的模型參數(shù)及定義
Table S1 Definition of major calibrated model parameters in ORYZA and CROPGRO-Canola models
模型Model參數(shù)Parameter定義Definition ORYZADVRJ幼苗期生長發(fā)育速率(℃ d–1) Development rate in juvenile phase (℃ d–1) DVRI光合敏感期生長發(fā)育速率(℃ d–1) Development rate in photoperiod-sensitive phase (℃ d–1) DVRP穗分化期生長發(fā)育速率(℃ d–1) Development rate in panicle development (℃ d–1) DVRR生殖生長期生長發(fā)育速率(℃ d–1) Development rate in reproductive phase (℃ d–1) CROPGRO-CanloEM-FL萌發(fā)到始花的光熱時間(℃ d) Photothermal days between plant emergence and flower appearance (℃ d) FL-SH始花到第一個莢形成的光熱時間(℃ d) Photothermal days between first flower and first pod (℃ d) FL-SD始花到第一個籽粒形成的光熱時間(℃ d) Photothermal days between first flower and first seed (℃ d) SD-PM第一個籽粒形成到生理成熟的光熱時間(℃ d)Photothermal days between first seed and physiological maturity (℃ d) FL-LF始花到葉片面積停止擴(kuò)大的光熱時間(℃ d) Photothermal days first flower and end of leaf expansion (℃ d) LFMAX30℃、350 vpm CO2和高光照條件下的葉片最大光合速率(mg CO2 m–2 s–1)Maximum leaf photosynthesis rate at 30℃, 350 vpm CO2, and high light (mg CO2 m–2 s–1) SLAVR標(biāo)準(zhǔn)生長條件下的特定品種比葉面積(cm2 g–1)Specific leaf area of cultivar under standard growth conditions (cm2 g–1) SIZIF最大全葉面積(三片葉)(cm2) Maximum size of full leaf (cm2) XFRT每日光合產(chǎn)物分配給種子+莢的最大比例Maximum fraction of daily growth that is partitioned to seed and shell WTPSD最大粒重(g) Maximum weight per seed (g) SFDUR標(biāo)準(zhǔn)生長條件下籽粒灌漿持續(xù)的光熱時間(℃ d)Seed filling duration for pod cohort at standard growth conditions (℃ d) SDPDV標(biāo)準(zhǔn)生長條件下每個莢的籽粒數(shù)(pod–1) Average seed per pod under standard growing conditions (pod–1) PODUR最佳生長條件下達(dá)到籽粒完成灌漿的光熱時間(℃ d)Photothermal days required to reach the final pod load under optimal (℃ d) THRSH成熟期時籽粒占籽粒+莢重量的最大比例The maximum ratio of (seed/(seed+shell)) at maturity FRSTMF最后一片葉子伸展后分配給莖的養(yǎng)分比例The increased partitioning weight which is allocated to stem when the maximum V-stage occurs FRLFF最后一片葉子伸展后分配給葉的養(yǎng)分比例The increased partitioning weight which is allocated to leaf when the maximum V-stage occurs FREEZ1葉片生長的最低溫度(℃) Temperature thresholds for leaf growth due to freezing (℃) FREEZ2葉片存活的最低溫度(℃) Temperature thresholds for leaf survival due to freezing (℃) YLEAF在各XLEAF時期營養(yǎng)分配給葉的比例Daily dry matter partitioning to leaf in each XLEAF YSTEM在各XLEAF時期營養(yǎng)分配給莖的比例Daily dry matter partitioning to stem in each XLEAF
附表2 校正后的ORYZA模型參數(shù)
Table S2 Calibrated parameters in ORYZA model
參數(shù)Parameter隆兩優(yōu)華占Longliangyouhuazhan黃華占Huanghuazhan DVRJ0.000,569,9050.000,765,9 DVRI0.000,757,600.000,807,6 DVRP0.000,680,800.000,769,8 DVRR0.001,442,430.001,684,2
附表3 校正后的CROPGRO-Canola模型參數(shù)
Table S3 Calibrated parameters in DSSAT-CROPGRO-Canola model
參數(shù)Parameter華油雜62Huayouza 62參數(shù)Parameter華油雜62Huayouza 62 CSDL23.73SIZLF97.01 PPSEN–0.019WTPSD0.008 EM-FL42.83SFDUR27.61 FL-SH6.85SDPDV25.41 FL-SD10.82PODUR5.17 SD-PM31.44THRSH53.93 FL-LF2.062FRLFF0.22 LFMAX2.000FRSTMF0.70 SLAVR256.3
附圖1 模型校正和驗(yàn)證的結(jié)果
Fig. S1 Model calibration and validation results
模型校正的模擬值與實(shí)測值在生物量(a)、生育期(b)和產(chǎn)量(c)上的比較, 驗(yàn)證的模擬值與實(shí)測值在生物量(d)、生育期(e)和產(chǎn)量(f)上的比較。決定系數(shù)(2)越接近于1, RMSE (均方根誤差)和nRMSE (歸一化均方根誤差)越小, 則表明模型的模擬表現(xiàn)越好。LLYHZ, 雜交稻品種隆兩優(yōu)華占; HHZ, 常規(guī)稻品種黃華占; HYZ62, 油菜品種華油雜62。
Comparison of calibrated model with actual data on the aspects of biomass (a), growth period (d), and yield (c). Comparison of validated model with actual data on the aspects of biomass (d), growth period (e), and yield (f). The2(coefficient of determination) closer to 1 and lower RMSE (root mean square error) and nRMSE (normalized RMSE) values indicate better model performance. LLYHZ: Longliangyouhuazhan; HHZ: Huanghuazhan; HYZ62: Huayouza 62.
Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China
CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, and DENG Nan-Yan*
National Key Laboratory of Crop Genetic Improvement / MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River / Hubei Hongshan Laboratory / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
To ensure national food and edible oil security, it is important to identify the yield gap and yield-limiting factors of rice-rapeseed cropping system at farmer level. In this study, Wuxue city, Hubei province, a typical rice-rapeseed cropping system production area in China was selected for the research. The annual system yield gap was evaluated by a mixed approach of crop modeling and field investigation. Comparisons were conducted among smallholders in terms of soil conditions and management practices by the methods of one-way ANOVA and conditional inference tree. The objective of this study is to identify the crucial yield-limiting factors for smallholders, to explore practical strategies to further increase system yield, and to provide innovative insight into how to adapt specific strategies to close the yield gap based on local conditions. The results showed as follows: (1) The potential yields of rice and rapeseed seasons in Wuxue were 11.79 t hm–2and 4.43 t hm–2, respectively, and the maximum annual system potential energy was 284 GJ hm–2based on the equivalent energy of rice and rapeseed. The actual yields for rice and rapeseed seasons were 8.11 t hm–2and 1.82 t hm–2, respectively, and the average annual actual system energy was 165 GJ hm–2. The average annual relative yield gap (the ratio of yield gap to potential yield) was 42%, and rapeseed (59%) had a greater space for yield increase than rice (31%) within the system. Compared with the average yields of Hubei province and Yangtze River Valley (YRV), the annual potential yield in Wuxue was similar, while the annual actual yield was 13% and 5% lower, respectively, resulting in a relatively large system yield gap in Wuxue. Specifically, approximately 83% and 61% of smallholders in Wuxue had larger relative yield gaps than the average levels in Hubei and the YRV, respectively. (2) Smallholders with relative low system yields presented the following characteristics: sandy-loam soil and low plowing depths, severe weed and pest damage, all fertilizers were applied as basal fertilizer in rice season, low annual fertilization input in rice season and high input in rapeseed season, and high rapeseed mechanical harvesting damage. (3) Most (89%) of smallholders in Wuxue planted the conventional rice Huanghuazhan, which has reached approximately 90% of its potential yield. In addition, rapeseed yield varied among different varieties. In conclusion, the rice-rapeseed system in Wuxue still had a large space for increasing production. The technical measures to reduce the yield gap of the local rice-rapeseed system including: appropriate deep plowing to increase soil production capacity, choosing suitable rapeseed high-yielding varieties in the rapeseed season. For rice season promoting hybrid rice varieties with high potential yield and good quality, increasing planting density, and strengthening weed control at sowing stage in rice season, and emphasizing topdressing in which only basal fertilizer is applied in rice season. Moreover, for the whole seoson ferti-lizer management it is important for local smallholders to reduce the amount in rapeseed season and increase the amount in rice season.
yield gap; field investigation; rice-rapeseed cropping system; crop modeling; management practices
10.3724/SP.J.1006.2024.32030
本研究由國家自然科學(xué)基金項(xiàng)目(31901424)和湖北省現(xiàn)代種業(yè)“揭榜掛帥”項(xiàng)目(水稻現(xiàn)代育種技術(shù)研發(fā)與良種選育攻關(guān))資助。
This study was supported by the National Natural Science Foundation of China (31901424) and the Seed Industry Modernization of “Open Bidding for Selecting the Best Candidates” Program of Hubei Province (the Research and Development of Modernized Rice Breeding Technology and Translation of Certified Seed Selection).
鄧南燕, E-mail: nydeng@mail.hzau.edu.cn
E-mail: caoxinyuan@webmail.hzau.edu.cn
2023-08-01;
2024-01-12;
2024-01-26.
URL: https://link.cnki.net/urlid/11.1809.S.20240125.1756.004
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).