劉玉瑩 楊斌
【摘要】晚期支架內(nèi)血栓形成是經(jīng)皮冠狀動(dòng)脈介入治療(PCI)后主要的并發(fā)癥,嚴(yán)重影響了冠狀動(dòng)脈粥樣硬化性心臟病患者的預(yù)后,帶來不可逆轉(zhuǎn)的危害。PCI后損傷血管再內(nèi)皮化可減少晚期支架內(nèi)血栓的形成,再內(nèi)皮化的機(jī)制主要包括內(nèi)皮細(xì)胞黏附和增殖的調(diào)控、平滑肌細(xì)胞黏附和增殖的調(diào)控、血小板黏附聚集和活化以及纖維蛋白原的吸附。對(duì)冠狀動(dòng)脈粥樣硬化性心臟病患者血管損傷再內(nèi)皮化機(jī)制的研究,可為損傷后血管重塑提供新的思路和治療靶點(diǎn),有利于提升PCI患者的預(yù)后。現(xiàn)就PCI后損傷血管再內(nèi)皮化的相關(guān)機(jī)制和治療進(jìn)行綜述。
【關(guān)鍵詞】經(jīng)皮冠狀動(dòng)脈介入治療;晚期支架內(nèi)血栓形成;血管內(nèi)皮生長因子;RNA結(jié)合蛋白;藥物洗脫支架
【DOI】10.16806/j.cnki.issn.1004-3934.2024.03.013
Mechanism and Therapy of Reendothelialization of Injured Vessels After Percutaneous Coronary Intervention
LIU Yuying,YANG Bin
(The Affiliated Hospital of Qingdao University,Qingdao 266000,Shandong,China)
【Abstract】Late stent thrombosis is a major complication of percutaneous coronary intervention (PCI) therapy,which seriously affects the prognosis of patients with atherosclerotic cardiovascular disease and causes irreversible harm.Reendothelialization of damaged vessels after PCI therapy is available to reduce late stent thrombosis.The mechanisms of reendothelialization mainly include the adhesion and proliferation of endothelial cell,the adhesion and proliferation of smooth muscle cell,the adhesive aggregation and activation of platelet,and the absorption of fibrinogen.The study on the mechanism of reendothelialization of vascular injury in patients with atherosclerotic cardiovascular disease provides new views and therapeutic targets for vascular remodeling after injury,which is conducive to improving the prognosis of patients undergoing PCI.This article reviews the relevant mechanism and therapy of reendothelialization of injured vessels after PCI.
【Keywords】Percutaneous coronary intervention;Late stent thrombosis;Vascular endothelial growth factor;RNA binding protein;Drug eluting stent
經(jīng)皮冠狀動(dòng)脈介入治療(percutaneous coronary intervention,PCI)是一種重建狹窄或閉塞冠狀動(dòng)脈血管的方法,因其簡單有效的手術(shù)方式經(jīng)常被用于冠狀動(dòng)脈粥樣硬化性心臟病的治療,顯著降低了冠狀動(dòng)脈粥樣硬化性心臟病的致病率和死亡率[1]。然而,PCI后出現(xiàn)的一系列并發(fā)癥嚴(yán)重影響了患者的預(yù)后,其中最主要的并發(fā)癥是支架植入30 d后發(fā)生的晚期支架內(nèi)血栓形成(late stent thrombosis,LST)[2-3]。LST的主要病理機(jī)制是以不完全再內(nèi)皮化和纖維蛋白持續(xù)存在為特征的動(dòng)脈延遲愈合,支架缺乏內(nèi)膜覆蓋和洗脫支架的不均勻愈合都會(huì)增加血栓形成的風(fēng)險(xiǎn)[4-5]。支架本身的性質(zhì)如支架貼壁不良、支架的鋼梁過粗和支架的持久耐用性差會(huì)導(dǎo)致?lián)p傷血管再內(nèi)皮化延遲,影響患者的預(yù)后[6-7]。除了這些外源性因素,一些內(nèi)源性機(jī)制也影響支架植入患者的血管損傷再內(nèi)皮化進(jìn)程。如圖1所示,血管再內(nèi)皮化的4種內(nèi)源性調(diào)控機(jī)制包括內(nèi)皮細(xì)胞(endothelial cell,EC) 黏附和增殖的調(diào)控、平滑肌細(xì)胞(smooth muscle cell,SMC) 黏附和增殖的調(diào)控、血小板的黏附聚集和活化以及纖維蛋白原的吸附[8-9]?;趽p傷血管再內(nèi)皮化的機(jī)制,一些新型藥物洗脫支架(drug eluting stents,DES)被發(fā)展和改進(jìn),極大地改善了PCI患者的預(yù)后。
1 損傷血管的再內(nèi)皮化機(jī)制
1.1 EC的黏附和增殖
EC的完整性和功能活動(dòng)在PCI后預(yù)防血栓中發(fā)揮重要作用,支架植入引起EC嚴(yán)重抑制,導(dǎo)致?lián)p傷血管的再內(nèi)皮化延遲。這一過程主要由血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)介導(dǎo)[10-11],而RNA結(jié)合蛋白(RNA binding protein,RBP)在調(diào)節(jié)VEGF的生物合成、轉(zhuǎn)運(yùn)和翻譯中發(fā)揮關(guān)鍵作用。
1.1.1 人類抗原R
人類抗原R(human antigen R,HuR)能通過結(jié)合位于3非翻譯區(qū)(3untranslated region,3UTR)調(diào)控VEGF的表達(dá),刺激血管生成[12]。HuR能抑制內(nèi)皮型一氧化氮合酶的表達(dá)并穩(wěn)定細(xì)胞間黏附分子-1和血管細(xì)胞黏附分子-1來促進(jìn)內(nèi)皮活化,進(jìn)而實(shí)現(xiàn)血管再內(nèi)皮化[13]。
1.1.2 胰島素樣生長因子ⅡmRNA結(jié)合蛋白3
胰島素樣生長因子ⅡmRNA結(jié)合蛋白(insulin like growth factor Ⅱ mRNA binding protein,IMP)3是IMP家族的一種新型RBP,在EC的生長和遷移中發(fā)揮關(guān)鍵作用[14]。IMP3可通過調(diào)節(jié)胰島素樣生長因子結(jié)合蛋白激活下游PI3K/MAPK信號(hào)通路來促進(jìn)VEGF的表達(dá),有利于損傷血管的再內(nèi)皮化[15]。
1.1.3 上游移碼蛋白1
上游移碼蛋白1(up-frameshift protein 1,UPF1)作為一種VEGF的RBP,UPF1是無義介導(dǎo)的mRNA降解途徑的關(guān)鍵蛋白,拮抗VEGF轉(zhuǎn)錄本的翻譯[16]。UPF1與SMG-1-UPF1-eRF1-eRF3復(fù)合體結(jié)合,導(dǎo)致UPF1磷酸化,驅(qū)動(dòng)VEGF下調(diào),導(dǎo)致血管損傷的再內(nèi)皮化進(jìn)程的抑制[17]。
1.1.4 多聚尿嘧啶結(jié)合蛋白1
多聚尿嘧啶結(jié)合蛋白1[poly(U)-binding protein 1,Pub1]是VEGF的一種細(xì)胞聚腺苷酸化RBP,在血管損傷的再內(nèi)皮化中發(fā)揮重要作用。Pub1通過與EC轉(zhuǎn)錄本的5非翻譯區(qū)中穩(wěn)定作用元件結(jié)合,并阻止了含有上游開放閱讀框的VEGF降解,實(shí)現(xiàn)了VEGF的穩(wěn)定和更新,促進(jìn)了血管損傷的再內(nèi)皮化。
1.1.5 三四脯氨酸
三四脯氨酸( tristetraprolin,TTP) 是一種早期反應(yīng)蛋白,在VEGF的mRNA降解中起到關(guān)鍵作用,主要通過招募外泌體PM-Scl75和Rrp4到VEGF的mRNA來誘導(dǎo)VEGF衰變,抑制損傷血管的再內(nèi)皮化[18]。此外,TTP通過TZF結(jié)構(gòu)域與VEGF mRNA中的3UTR實(shí)現(xiàn)最佳結(jié)合,阻止VEGF mRNA的翻譯并降低其穩(wěn)定性,減少VEGF的生成,阻礙再內(nèi)皮化進(jìn)程[19]。
1.1.6 多聚腺苷酸結(jié)合蛋白相互作用蛋白2
多聚腺苷酸結(jié)合蛋白相互作用蛋白2[poly (A)-binding protein-interacting protein 2,Paip2]可結(jié)合VEGF中3UTR的特定區(qū)域,延長了VEGF中3UTR的半衰期,進(jìn)而穩(wěn)定VEGF,導(dǎo)致VEGF表達(dá)增加。此外,Paip2作為一種VEGF mRNA表達(dá)的調(diào)控因子,還能與HuR相互作用,協(xié)同穩(wěn)定VEGF mRNA??傊琍aip2可通過多種通道穩(wěn)定VEGF的表達(dá),促進(jìn)損傷血管的再內(nèi)皮化。
1.2 SMC的黏附和增殖
SMC的增殖和表型改變是新生內(nèi)膜增生最重要的病理機(jī)制。支架植入后,內(nèi)膜被損壞,許多細(xì)胞因子和生長因子合成和釋放。PCI后損傷血管的細(xì)胞內(nèi)環(huán)境也發(fā)生了改變,影響了細(xì)胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo),這些信號(hào)會(huì)控制血管SMC的增殖、遷移,最終會(huì)導(dǎo)致新生內(nèi)膜增生。
1.2.1 平滑肌祖細(xì)胞
平滑肌祖細(xì)胞(smooth muscle progenitor cell,SMPC)一般由血管祖細(xì)胞分化而來,TGF-β1/TGF-β受體Ⅱ-ALK5/Smad2信號(hào)通路介導(dǎo)血管祖細(xì)胞向SMPC表型轉(zhuǎn)變[20]。隨后,SMPC特異性標(biāo)志物的上調(diào)會(huì)導(dǎo)致細(xì)胞骨架重排和收縮表型的出現(xiàn),大量積累的SMPC在PCI后血管機(jī)械性損傷的LST中起著關(guān)鍵作用。而血管損傷后炎癥的發(fā)生可刺激SMPC發(fā)生動(dòng)員,向SMC分化。SMC參與新生內(nèi)膜形成,引起血管再內(nèi)皮化延遲。
1.2.2 粒細(xì)胞集落刺激因子
粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF) 可促進(jìn)細(xì)胞活力,通過影響血管生成調(diào)控PCI后損傷血管的再內(nèi)皮化[21]。由于G-CSF能在蛋白激酶p44/42 MAPK、Akt和S6激酶信號(hào)轉(zhuǎn)導(dǎo)下促進(jìn)SMC的激活和遷移,所以G-CSF在治療PCI后LST中并未起到很好的療效[22]。因此,G-CSF抑制了損傷血管的再內(nèi)皮化,阻礙了損傷血管的修復(fù)。
1.2.3 核因子κB
核因子κB(nuclear factor-κB,NF-κB)作為一種蛋白質(zhì)家族,能上調(diào)內(nèi)皮素-1,促進(jìn)細(xì)胞外基質(zhì)(extracellular matrix,ECM)合成,加速SMC增殖[23]。
NF-κB家族,尤其是p65和p50在血管增殖性疾病的發(fā)病機(jī)制中發(fā)揮著重要作用,EC和巨噬細(xì)胞中的p65和p50可在血管損傷時(shí)被誘導(dǎo)。此外,NF-κB可促進(jìn)SMC表型轉(zhuǎn)變,不利于損傷血管的修復(fù)[24]。
1.3 血小板的黏附聚集和活化
血小板在血管損傷后可被激活,釋放趨化因子,誘導(dǎo)和招募單核細(xì)胞遷移,導(dǎo)致巨噬細(xì)胞的浸潤,引起支架植入后炎癥和LST的發(fā)生。隨后,活化的血小板刺激了SMC的增殖和ECM的分泌,誘發(fā)LST出現(xiàn)[25]??傊?,血小板通過調(diào)控其黏附、聚集和活化,在PCI患者內(nèi)皮損傷后再內(nèi)皮化和血管重塑中發(fā)揮重要作用。
1.3.1 CD11b/CD18
冠狀動(dòng)脈支架植入可引起血小板和中性粒細(xì)胞表面的糖蛋白CD11b/CD18 (巨噬細(xì)胞分化抗原-1)的激活和上調(diào),通過介導(dǎo)白細(xì)胞黏附于纖維蛋白原引起LST的發(fā)生。此外,CD11b/CD18的上調(diào)會(huì)引起中性粒細(xì)胞活化與可溶性細(xì)胞間黏附分子-1表達(dá)增加,引起新生內(nèi)膜增厚,進(jìn)而導(dǎo)致再內(nèi)皮化延遲。
1.3.2 基質(zhì)金屬蛋白酶
基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP) 釋放可溶的Kit-配體刺激內(nèi)皮細(xì)胞增生,通過產(chǎn)生的生物活性ECM片段和調(diào)節(jié)基質(zhì)與非基質(zhì)的降解,對(duì)血管損傷的再內(nèi)皮化起著關(guān)鍵作用[26]。MMP-9可介導(dǎo)G-CSF與趨化因子的協(xié)同動(dòng)員,抑制損傷血管的再內(nèi)皮化[27]。此外,MMP-7還能通過裂解血小板反應(yīng)蛋白-1抑制血管損傷后EC的恢復(fù),引起再內(nèi)皮化延遲[28]。
1.4 纖維蛋白原的吸附
纖維蛋白原是一種參與血液凝固的蛋白質(zhì),非常容易被氧化,導(dǎo)致完整性和穩(wěn)定性受到破壞。纖維蛋白原的吸附受到膽紅素和纖維連接蛋白的調(diào)控,影響血小板的活化,進(jìn)而影響損傷血管的再內(nèi)皮化[29]。
1.4.1 膽紅素
膽紅素對(duì)纖維蛋白原具有抗氧化作用,可防止其羰基化和聚集[30]。纖維蛋白原的結(jié)合位點(diǎn)對(duì)膽紅素不是立體特異性的,并且能容納兩個(gè)膽紅素構(gòu)象體,提高了抗氧化性能[31]??傊w維蛋白原和膽紅素在生理濃度下相互作用,保證了纖維蛋白原的完整性,促進(jìn)損傷血管的再內(nèi)皮化。
1.4.2 纖維連接蛋白
纖維連接蛋白是ECM中的一種主要成分,由兩個(gè)單體在其C端由二硫鍵連接而成。它能吸附或連接到生物材料的表面,促進(jìn)EC的附著、擴(kuò)散和分化。此外,纖維連接蛋白的生成會(huì)受到血漿聚合物膜等物質(zhì)的調(diào)節(jié),影響纖維蛋白原的吸附,進(jìn)而實(shí)現(xiàn)對(duì)血管內(nèi)皮化的調(diào)控[32]。
2 新型藥物洗脫支架治療
為了減少PCI后LST的發(fā)生,更好地改善預(yù)后,近年來一些新型DES被發(fā)展起來。根據(jù)再內(nèi)皮化延遲的機(jī)制,通過覆蓋在支架表面的藥物來促進(jìn)EC黏附和增殖,抑制SMC黏附和增殖,防止血小板黏附聚集和減少纖維蛋白原的吸附,從而加速損傷血管的再內(nèi)皮化[33-35]。
沒食子酸功能化作為一種增強(qiáng)再內(nèi)皮化的策略,涂覆在支架表面不僅能增強(qiáng)EC黏附、增殖和遷移,還能抑制SMC黏附和增殖[36-37]。肝素是一種由糖醛酸和葡萄糖胺組成的高度硫酸化的糖胺聚糖,常作為抗凝藥物用于防止金屬支架上血栓形成。肝素的抗凝作用機(jī)制是通過與抗凝血酶Ⅲ反應(yīng)而發(fā)生,抗凝血酶Ⅲ可使凝血酶及其他與血栓有關(guān)的蛋白酶失活[38-39]。一些研究[40]表明,肝素修飾的底物可增強(qiáng)EC的黏附、增殖和遷移,抑制SMC的生長和增殖,還能降低纖維蛋白原吸附和血小板黏附。巖藻多糖是從褐藻中提取的硫酸多糖,具有與肝素相似的抗凝作用。低分子量巖藻多糖可減少SMC的增殖,從而防止新生內(nèi)膜增生,促進(jìn)內(nèi)皮修復(fù)[41]。
透明質(zhì)酸是一種帶負(fù)電荷的非硫酸化多糖,通過與細(xì)胞表面受體相互作用,在細(xì)胞附著和信號(hào)轉(zhuǎn)導(dǎo)中發(fā)揮作用[42-43]。此外,在不銹鋼支架上涂覆透明質(zhì)酸可減少血小板的黏附和聚集。多巴胺偶聯(lián)透明質(zhì)酸涂覆支架也能抑制血小板的黏附和活化,維持內(nèi)皮細(xì)胞的活力和增殖,表現(xiàn)出最低的纖維蛋白原吸附。NO可舒張血管,抑制血小板的聚集和SMC的增殖,在維持血管內(nèi)環(huán)境穩(wěn)態(tài)中發(fā)揮重要作用。許多研究[44-45]已證明,支架周圍缺乏NO是血栓形成和再內(nèi)皮化延遲的重要原因。因此,一些NO釋放支架被發(fā)展起來用于改善臨床上的LST。
為了獲得有利于促進(jìn)內(nèi)皮細(xì)胞黏附和增殖的微環(huán)境,促進(jìn)損傷血管的再內(nèi)皮化,多種具有不同性質(zhì)的生物分子共同涂覆在支架表面,形成了多功能涂層[46]。如肝素和纖維連接蛋白復(fù)合物共同固定在鈦底物上形成的涂層,能減少血小板的黏附聚集,降低纖維蛋白原的吸附[47-48]。此外,在多功能微環(huán)境中使用肝素/多聚賴氨酸、VEGF對(duì)鈦底物進(jìn)行功能化,已被證明能抑制血栓形成,促進(jìn)損傷血管的再內(nèi)皮化[49]。
3 小結(jié)
血管損傷再內(nèi)皮化的機(jī)制主要包括VEGF對(duì)EC黏附和增殖的調(diào)控、SMC黏附和增殖的調(diào)控、血小板的黏附聚集和活化以及纖維蛋白原的吸附。改善動(dòng)脈粥樣硬化患者再內(nèi)皮化的新型DES為促進(jìn)血管生成提供了新的治療策略。未來應(yīng)致力于具體的治療措施來促進(jìn)損傷血管的再內(nèi)皮化和修復(fù),抑制不良的內(nèi)膜增生,減少甚至消除PCI后LST的發(fā)生,進(jìn)一步提高支架治療的安全性,改善患者的預(yù)后。
參考文獻(xiàn)
[1]Ahadi F,Azadi M,Biglari M,et al.Evaluation of coronary stents:a review of types,materials,processing techniques,design,and problems[J].Heliyon,2023,9(2):e13575.
[2]Otto S,Díaz VAJ,Weilenmann D,et al.Crystalline sirolimus-coated balloon (cSCB) angioplasty in an all-comers,patient population with stable and unstable coronary artery disease including chronic total occlusions:rationale,methodology and design of the SCORE trial[J].BMC Cardiovasc Disord,2023,23(1):176.
[3]Butala NM,Yeh RW.Improvements in coronary stent design translate to better real-world outcomes[J].JACC Asia,2021,1(3):357-359.
[4]Park DS,Jeong MH,Jin YJ,et al.Preclinical evaluation of an everolimus-eluting bioresorbable vascular scaffold via a long-term rabbit iliac artery model[J].Tissue Eng Regener Med,2023,20(2):239-249.
[5]Vidovich MI.Three decades of SVG PCI:a short history of nearly everything[J].JACC Case Rep,2023,10:101744.
[6]Bedair TM,Cho Y,Joung YK,et al.Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface[J].Colloids Surf B Biointerfaces,2014,122:808-817.
[7]Zhang Y,Wu Z,Wang S,et al.Clinical outcome of paclitaxel-coated balloon angioplasty versus drug-eluting stent implantation for the treatment of coronary drug-eluting stent in-stent chronic total occlusion[J].Cardiovasc Drugs Ther,2023,37(6):1155-1166.
[8]Kawagoe Y,Otsuka F,Onozuka D,et al.Early vascular responses to abluminal biodegradable polymer-coated versus circumferential durable polymer-coated newer-generation drug-eluting stents in humans:a pathological study[J].EuroIntervention,2023,18(15):1284-1294.
[9]Bedair TM,Elnaggar MA,Joung YK,et al.Recent advances to accelerate re-endothelialization for vascular stents[J].J Tissue Eng,2017,8:2041731417731546.
[10]Kawarada O,Otsuka F,Miki K,et al.Heterogeneous vascular response after implantation of bare nitinol self-expanding stents in the swine femoropopliteal artery[J].Cardiovasc Interv Ther,2023,38(2):210-222.
[11]Zhu YX,Liang L,Parasa R,et al.Early vascular healing after neXt-generation drug-eluting stent implantation in Patients with non-ST Elevation acute Coronary syndrome based on optical coherence Tomography guidance and evaluation (EXPECT):study protocol for a randomized controlled trial[J].Front Cardiovasc Med,2023,10:1003546.
[12]Chang SH,Hla T.Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis[J].Curr Opin Hematol,2014,21(3):235-240.
[13]Uren PJ,Burns SC,Ruan J,et al.Genomic analyses of the RNA-binding protein Hu antigen R (HuR) identify a complex network of target genes and novel characteristics of its binding sites[J].Biol Chem,2011,286(43):37063-37066.
[14]Zhu K,Gao T,Wang Z,et al.RNA N6-methyladenosine reader IGF2BP3 interacts with MYCN and facilitates neuroblastoma cell proliferation[J].Cell Death Discov,2023,9(1):151.
[15]Zheng X,Li S,Yu J,et al.N6-methyladenosine reader IGF2BP3 as a prognostic Biomarker contribute to malignant progression of glioma[J].Transl Cancer Res,2023,12(4):992-1005.
[16]He J,Ma X.Interaction between LncRNA and UPF1 in tumors[J].Front Genet,2021,12:624905.
[17]Palo A,Patel SA,Sahoo B,et al.FRG1 is a direct transcriptional regulator of nonsense-mediated mRNA decay genes[J].Genomics,2023,115(1):110539.
[18]Banerjee R,van Tubergen EA,Scanlon CS,et al.The G protein-coupled receptor GALR2 promotes angiogenesis in head and neck cancer[J].Mol Cancer Ther,2014,13(5):1323-1333.
[19]Zhang D,Zhou Z,Yang R,et al.Tristetraprolin,a potential safeguard against carcinoma:role in the tumor microenvironment[J].Front Oncol,2021,11:632189.
[20]Merkulova-Rainon T,Broquères-You D,Kubis N,et al.Towards the therapeutic use of vascular smooth muscle progenitor cells[J].Cardiovasc Res,2012,95(2):205-214.
[21]Liu Z,Zhang G,Chen J,et al.G-CSF promotes the viability and angiogenesis of injured liver via direct effects on the liver cells[J].Mol Biol Rep,2022,49(9):8715-8725.
[22]Ziauddin SM,Nakashima M,Watanabe H,et al.Biological characteristics and pulp regeneration potential of stem cells from canine deciduous teeth compared with those of permanent teeth[J].Stem Cell Res Ther,2022,13(1):439.
[23]Aggarwal V,Tuli HS,Varol A,et al.Role of reactive oxygen species in cancer progression:molecular mechanisms and recent advancements[J].Biomolecules,2019,9(11):735.
[24]Yoshida T,Yamashita M,Horimai C,et al.Smooth muscle-selective inhibition of nuclear factor-κB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury[J].J Am Heart Assoc,2013,2(3):e000230.
[25]Rohani MG,Parks WC.Matrix remodeling by MMPs during wound repair[J].Matrix Biol,2015,44-46:113-121.
[26]Quintero-Fabin S,Arreola R,Becerril-Villanueva E,et al.Role of matrix metalloproteinases in angiogenesis and cancer[J].Front Oncol,2019,9:1370.
[27]Scheau C,Badarau IA,Costache R,et al.The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma[J].Anal Cell Pathol(Amst),2019,2019:9423907.
[28]Kessler T,Zhang L,Liu Z,et al.ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1[J].Circulation,2015,131(13):1191.
[29]Gligorijevic′ N,ukalovic′ V,Penezic′ A,et al.Characterisation of the binding of dihydro-alpha-lipoic acid to fibrinogen and the effects on fibrinogen oxidation and fibrin formation[J].Int J Biol Macromol,2020,147:319-325.
[30]Longhi G,Ghidinelli S,Abbate S,et al.Insights into the structures of bilirubin and biliverdin from vibrational and electronic circular dichroism:history and perspectives[J].Molecules,2023,28(6):2564.
[31]Gligorijevic′ N,Minic′ S,Robajac′ D,et al.Characterisation and the effects of bilirubin binding to human fibrinogen[J].Int J Biol Macromol,2019,128:74-79.
[32]Buddhadasa M,Lerouge S,Girard P.Plasma polymer films to regulate fibrinogen adsorption:effect of pressure and competition with human serum albumin[J].Plasma Process Polym,2018,15(9):e1800040.
[33]Ariyaratne TV,Ademi Z,Huq M,et al.The real-world cost-effectiveness of coronary artery bypass surgery versus stenting in high-risk patients:propensity score-matched analysis of a single-centre experience[J].Appl Health Econ Health Policy,2018,16(5):661-674.
[34]Lee P,Brennan AL,Stub D,et al.Estimating the economic impacts of percutaneous coronary intervention in Australia:a registry-based cost burden study[J].BMJ Open,2021,11(12):e053305.
[35]Rykowska I,Nowak I,Nowak R.Drug-eluting stents and balloons—Materials,structure designs,and coating techniques:a review[J].Molecules,2020,25(20):4624.
[36]Jensen LO,Christiansen EH.Are drug-eluting stents safer than bare-metal stents?[J].Lancet,2019,393(10190):2472-2474.
[37]Piccolo R,Bonaa KH,Efthimiou O,et al.Drug-eluting or bare-metal stents for percutaneous coronary intervention:a systematic review and individual patient data meta-analysis of randomised clinical trials[J].Lancet,2019,393(10190):2503-2510.
[38]Yamamoto K,Sato T,Salem H,et al.Mechanisms and treatment outcomes of ostial right coronary artery in-stent restenosis[J].EuroIntervention,2023,19(5):e383-e393.
[39]Kim BY,Moon H,Kim SS,et al.Outcomes of percutaneous coronary intervention in elderly patients with rheumatoid arthritis:a nationwide population-based cohort study[J].Healthcare(Basel),2023,11(10):1381.
[40]Gherasie FA,Valentin C,Busnatu SS.Is there an advantage of ultrathin-strut drug-eluting stents over second- and third-generation drug-eluting stents?[J].J Pers Med,2023,13(5):753.
[41]Rigatelli G,Zuin M,Vassilev D,et al.Risk of dislodgement of ultrathin drug eluting stents versus thick drug eluting stents[J].Am J Cardiol,2020,125(11):1619-1623.
[42]Wang G,Zhao Q,Chen Q,et al.Comparison of drug-eluting balloon with repeat drug-eluting stent for recurrent drug-eluting stent in-stent restenosis[J].Coron Artery Dis,2019,30(7):473-480.
[43]Kaul U,Bhatia V.The trade-off of a long drug-eluting stent[J].EuroIntervention,2021,16(16):1297-1298.
[44]Zhang B,Qin Y,Wang Y.A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing[J].Biomaterials,2022,284:121478.
[45]Binder RK,Lüscher TF.Duration of dual antiplatelet therapy after coronary artery stenting:where is the sweet spot between ischaemia and bleeding?[J].Eur Heart J,2015,36(20):1207-1211.
[46]Yang L,Li L,Wu H,et al.Catechol-mediated and copper-incorporated multilayer coating:an endothelium-mimetic approach for blood-contacting devices[J].J Control Release,2020,321:59-70.
[47]Krger N,Kopp A,Staudt M,et al.Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications[J].Mater Sci Eng C Mater Biol Appl,2018,92:819-826.
[48]Hong Q,Zhou H,Cheng Y,et al.Synthesis of star 6-arm polyethylene glycol-heparin copolymer to construct anticorrosive and biocompatible coating on magnesium alloy surface[J].Front Bioeng Biotechnol,2022,10:853487.
[49]Liu Y,Zhang J,Wang J,et al.Tailoring of the dopamine coated surface with VEGF loaded heparin/poly-L-lysine particles for anticoagulation and accelerate in situ endothelialization[J].J Biomed Mater Res A,2015,103(6):2024-2034.
收稿日期:2023-08-02
通信作者:楊斌,E-mail:yangbin200612736@163.com