韓瀟杰,任志杰,李雙靜,田培培,盧素豪,馬耕,王麗芳,馬冬云,趙亞南,王晨陽
不同施氮量對土壤團(tuán)聚體碳氮含量及小麥產(chǎn)量的影響
1河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/國家小麥工程技術(shù)研究中心,鄭州 450046;2河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,鄭州 450046
【目的】探究長期不同施氮量對土壤團(tuán)聚體碳氮含量及小麥產(chǎn)量的影響,為合理施氮提供理論依據(jù)?!痉椒ā炕谠O(shè)置在河南省許昌市張潘鎮(zhèn)4個(gè)不同施氮水平11年定位試驗(yàn),施氮量分別為0(N0)、180 kg·hm-2(N1)、240 kg·hm-2(N2)及300 kg·hm-2(N3),分析不同處理土壤碳氮含量、團(tuán)聚體分布及其碳氮含量的變化,并探尋長期施氮對小麥產(chǎn)量及其構(gòu)成的調(diào)控路徑。【結(jié)果】隨著施氮量增加,各土層土壤團(tuán)聚體分布呈現(xiàn)大團(tuán)聚體(>0.25 mm)向微團(tuán)聚體(0.053—0.25 mm)和粉黏粒組分(<0.053 mm)轉(zhuǎn)化的趨勢,顯著降低了團(tuán)聚體平均重量直徑(MWD)。土壤碳、氮含量在0—20 cm土層隨施氮量增加而逐漸上升,20—40 cm土層呈先升高后降低趨勢。與N0相比,0—20 cm土層各施氮處理土壤有機(jī)碳和全氮含量的平均增幅分別為13.1%—37.2%和19.4%—29.4%;20—40 cm土層的平均增幅分別為15.3%—32.2%和6.1%—29.3%。長期施氮處理顯著提高了各粒級團(tuán)聚體有機(jī)碳含量,與N0相比,施氮處理大團(tuán)聚體有機(jī)碳平均含量提高31.6%—62.0%,微團(tuán)聚體提高8.7%—61.2%,粉黏粒提高14.0%—81.7%。在0—20 cm土層,各粒級團(tuán)聚體全氮含量亦隨施氮量增加而增加,各施氮處理大團(tuán)聚體、微團(tuán)聚體和粉黏粒中全氮含量平均增幅分別為32.6%—51.0%、25.7%—35.9%和3.2%—9.7%,且均以N3處理最高。在20—40 cm土層,各粒級團(tuán)聚體全氮含量隨施氮量增加呈先升高后降低趨勢,各施氮處理大團(tuán)聚體、微團(tuán)聚體和粉黏粒全氮含量平均增幅分別為17.6%—35.2%、11.7%—24.0%和1.1%—12.9%,且均以N1處理最高。研究結(jié)果還表明,長期施氮顯著增加了小麥成穗數(shù)和穗粒數(shù),進(jìn)而提高了產(chǎn)量。與N0相比,N1、N2和N3處理分別提高小麥產(chǎn)量188.1%、177.3%和173.2%。相關(guān)分析與結(jié)構(gòu)方程模型分析表明,小麥產(chǎn)量與土壤碳、氮含量及團(tuán)聚體中碳、氮含量均呈顯著正相關(guān),長期施氮通過改變土壤及團(tuán)聚體中碳、氮含量進(jìn)而影響小麥產(chǎn)量。【結(jié)論】綜上,長期合理施氮提高了土壤及團(tuán)聚體中碳、氮含量,提升了土壤肥力,促進(jìn)小麥增產(chǎn)。在本試驗(yàn)條件下以施氮量180 kg·hm-2時(shí)最優(yōu)。
氮肥施用量;土壤團(tuán)聚體;碳、氮含量;小麥產(chǎn)量
長期定位試驗(yàn)始于2012年,采用小麥-玉米周年輪作模式。試驗(yàn)地位于河南省許昌市張潘鎮(zhèn)(33°59′N,113°58′E),屬溫帶季風(fēng)氣候,年均溫為11.7 ℃,極端最高氣溫為41 ℃,極端最低氣溫為-12 ℃。多年平均降雨量642 mm,降水主要集中在7、8、9月。土壤類型為潮土,定位試驗(yàn)開始時(shí),0—20 cm土層有機(jī)碳含量為13.04 g·kg-1,全氮含量為0.72 g·kg-1,全磷含量0.79 g·kg-1,全鉀含量6.58 g·kg-1,速效磷含量22.36 mg·kg-1,速效鉀含量157.61 mg·kg-1。試驗(yàn)調(diào)查年度小麥播前(2021年10月)0—20 cm土層養(yǎng)分狀況見表1。
表1 2021年土壤養(yǎng)分狀況
定位試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),兩季作物均設(shè)置4個(gè)施氮量處理:0(N0)、180 kg·hm-2(N1)、240 kg·hm-2(N2)和300 kg·hm-2(N3),小區(qū)面積110 m2(10 m×11 m),3次重復(fù)。小麥季施磷肥(P2O5)120 kg·hm-2、鉀肥(K2O)75 kg·hm-2;玉米季施磷肥75 kg·hm-2、鉀肥75 kg·hm-2。氮肥施用尿素(N含量 46%),磷肥施用重過磷酸鈣,鉀肥施用氯化鉀。兩季作物秸稈均粉碎還田,小麥季肥料于耕前撒施,然后翻耕整地,等行距條播,播量為150 kg·hm-2;玉米季肥料采用溝施方式。以小麥品種百農(nóng)207和玉米品種登海678為試驗(yàn)材料。小麥每年10中旬播種,翌年6月中旬收獲,田間管理按正常大田進(jìn)行,小麥-拔節(jié)期灌溉1次。
1.3.1 土壤團(tuán)聚體的篩分與碳氮含量的測定 于2021年10月小麥播種期前,采用5點(diǎn)取樣法在每個(gè)小區(qū)按照“S”形使用土鉆采集0—20和20—40 cm土層土壤,混合后裝入自封袋帶回實(shí)驗(yàn)室。將土壤進(jìn)行風(fēng)干后,挑去根系和植物殘?bào)w等雜質(zhì),一部分研磨后過100目篩,用于測定土壤有機(jī)碳和全氮,一部分過4 mm篩,用于團(tuán)聚體篩分。團(tuán)聚體的篩分采用濕篩法[16],稱取風(fēng)干土50.0 g,放置于套篩上(套篩孔徑自上而下分別為0.25 mm和0.053 mm),浸泡5 min后,2 min內(nèi)上下勻速擺動(dòng)50次,獲得>0.25 mm的大團(tuán)聚體、0.25—0.053 mm微團(tuán)聚體和<0.053 mm粉黏粒組分。將各粒級團(tuán)聚體組分在50℃下烘干后過100目篩,用于有機(jī)碳和全氮的測定。有機(jī)碳采用重鉻酸鉀-硫酸外加熱法測定,全氮采用全自動(dòng)凱氏定氮儀測定。
1.3.2 團(tuán)聚體平均重量直徑及其碳氮貢獻(xiàn)率的計(jì)算 平均重量直徑(MWD)的計(jì)算公式為:
MWD=∑=1x∑=1
式中,為團(tuán)聚體粒級數(shù);x為級團(tuán)聚體的平均直徑(mm);ω為級團(tuán)聚體百分含量。
各級團(tuán)聚體碳(氮)貢獻(xiàn)率(%)=某一粒級團(tuán)聚體碳(氮)含量×該粒級團(tuán)聚體占重量的百分比/各粒級團(tuán)聚體碳(氮)含量的總和[17]。
1.3.3 產(chǎn)量及其構(gòu)成因素的測定 于成熟期對1 m雙行中的穗數(shù)進(jìn)行調(diào)查,并隨機(jī)選取30穗測定穗粒數(shù)。每個(gè)小區(qū)選取4 m2(2 m×2 m)的樣方進(jìn)行人工收獲,脫粒后測定含水量,用于產(chǎn)量和千粒重計(jì)算。
采用Excel 2019及SPSS 26進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,圖片繪制采用Origin 2021進(jìn)行,多重比較采用Duncan檢驗(yàn)法,顯著性水平為<0.05,結(jié)構(gòu)方程模型使用軟件AMOS進(jìn)行繪制。
由表2可知,長期施氮影響了土壤團(tuán)聚體粒級分布。隨施氮量的增加呈現(xiàn)出大團(tuán)聚體向微團(tuán)聚體和粉黏粒轉(zhuǎn)化的趨勢。在0—20 cm土層中,與N0相比,N1、N2和N3處理大團(tuán)聚體組分重量占比顯著降低31.1%、31.8%和34.1%,粉黏粒組分重量占比顯著增加18.6%、23.0%和32.4%,微團(tuán)聚體占比無顯著變化。在20—40 cm土層中,與N0相比,N1、N2和N3處理大團(tuán)聚體組分重量占比顯著降低29.5%、44.1%和63.5%,粉黏粒組分重量占比顯著增加16.1%、27.4%和40.9%,微團(tuán)聚體未呈現(xiàn)顯著變化。在長期不同施氮水平處理下,隨著施氮量的增加,各土層團(tuán)聚體平均重量直徑均呈現(xiàn)顯著下降的趨勢。在0—20 cm土層,與N0相比,N1、N2和N3處理平均重量直徑分別顯著降低28.5%、29.2%和32.0%;在20—40 cm土層,分別顯著降低25.7%、38.5%和55.0%。表明施氮促進(jìn)大團(tuán)聚體向小粒級團(tuán)聚體轉(zhuǎn)變,降低平均重量直徑,導(dǎo)致土壤穩(wěn)定性下降。
表2 長期不同施氮量下土壤團(tuán)聚體質(zhì)量百分比和平均重量直徑
不同字母表示處理間差異顯著(<0.05)。下同 Different letters meant significant difference among treatments at 0.05 level. The same below
由圖1可知,0—20 cm土層中有機(jī)碳含量隨施氮量增加呈上升趨勢,與N0相比,N1、N2和N3處理的土壤有機(jī)碳含量分別增加了13.1%、15.7%和37.2%。 20—40 cm土層中N1處理有機(jī)碳含量高于其他處理,與N0相比,N1、N2和N3處理的土壤有機(jī)碳含量分別顯著增加32.2%、15.3%和29.8%。0—20 cm土層中全氮含量隨施氮量增加呈上升趨勢,與N0相比,N1、N2和N3處理的土壤全氮含量分別增加19.4%、20.7%和29.4%。20—40 cm土層中N1處理土壤全氮含量高于其他處理,與N0相比,N1、N2和N3處理的土壤全氮含量分別增加29.3%、6.1%和8.5%。
由圖2可知,在長期不同施氮條件下,不同粒級水穩(wěn)定性團(tuán)聚體有機(jī)碳含量表現(xiàn)為大團(tuán)聚體>微團(tuán)聚體>粉黏粒組分。在0—20 cm土層中,與N0相比,N1、N2和N3處理的大團(tuán)聚體有機(jī)碳含量分別顯著增加了39.5%、59.1%和62.0%;微團(tuán)聚體有機(jī)碳含量分別顯著增加了44.9%、61.2%和47.1%;粉黏粒有機(jī)碳含量分別顯著增加了14.0%、15.5%和18.1%。在20—40 cm土層中,與N0相比,N1、N2和N3處理的大團(tuán)聚體有機(jī)碳含量分別顯著增加了31.6%、33.0%和43.2%;微團(tuán)聚體有機(jī)碳含量分別增加了20.2%、8.7%和14.1%;粉黏粒有機(jī)碳含量分別顯著增加了81.7%、42.8%和29.7%。由表3可知,長期不同施氮處理下微團(tuán)聚體中有機(jī)碳對土壤總有機(jī)碳貢獻(xiàn)率最大,為44.9%—60.5%。在0—20 cm土層,各粒級團(tuán)聚體對土壤總有機(jī)碳貢獻(xiàn)率表現(xiàn)為微團(tuán)聚體>大團(tuán)聚體>粉黏粒,20—40 cm土層,各粒級團(tuán)聚體有機(jī)碳對土總有機(jī)碳貢獻(xiàn)率表現(xiàn)為微團(tuán)聚體>粉黏粒>大團(tuán)聚體。
圖1 長期不同施氮量下不同土層土壤有機(jī)碳和全氮含量
圖2 長期不同施氮量下不同土層團(tuán)聚體中有機(jī)碳含量
由圖3可知,在長期不同施氮量條件下,0—20 cm土層,隨施氮量增加各粒級團(tuán)聚體全氮含量呈上升趨勢,各粒級團(tuán)聚體全氮含量均以N3處理最高。與N0相比,N1、N2和N3處理的大團(tuán)聚體全氮含量分別顯著增加了32.6%、43.0%和51.0%;微團(tuán)聚體全氮含量分別顯著增加了25.7%、29.2%和35.9%;粉黏粒全氮含量分別增加了3.2%、8.9%和9.7%。在20—40 cm土層中,隨施氮量增加各粒級團(tuán)聚體全氮含量呈先升高后降低趨勢,各粒級團(tuán)聚體全氮含量均以N1處理最高。與N0相比,N1、N2和N3處理的大團(tuán)聚體全氮含量分別顯著增加了35.2%、17.6%和28.5%;微團(tuán)聚體全氮含量分別顯著增加了24.0%、11.7%和14.1%;粉黏粒全氮含量分別增加了12.9%、5.9%和1.1%。由表4可知,微團(tuán)聚體氮對土壤全氮貢獻(xiàn)率最高,為48.5%—60.9%。在0—40 cm土層中各粒級團(tuán)聚體氮對土壤全氮貢獻(xiàn)率表現(xiàn)為微團(tuán)聚體>粉黏粒>大團(tuán)聚體。
表3 長期不同施氮量下土壤各粒級團(tuán)聚體有機(jī)碳對土壤總有機(jī)碳的貢獻(xiàn)率
圖3 長期不同施氮量下不同土層團(tuán)聚體中全氮含量
由表5可知,施氮量對穗數(shù)、穗粒數(shù)、粒重和產(chǎn)量都有顯著的影響。與N0相比,各施氮處理顯著增加了穗數(shù)(54.4%—74.0%)、穗粒數(shù)(18.0%— 20.3%),顯著降低了千粒重(6.4%—9.0%)。與N0相比,N1、N2和N3處理的產(chǎn)量分別增加了188.1%、177.3%和173.2%,其中N1處理的產(chǎn)量最高,為11 149.9 kg·hm-2。
土壤碳氮含量及各粒級團(tuán)聚體碳氮含量與小麥產(chǎn)量均呈現(xiàn)正相關(guān)關(guān)系(圖4和圖5)。土壤有機(jī)碳含量、大團(tuán)聚體有機(jī)碳含量、微團(tuán)聚體有機(jī)碳含量和粉黏粒有機(jī)碳含量分別可以解釋小麥產(chǎn)量57.2%、85.2%、75.3%和78.4%的變異。土壤全氮含量、大團(tuán)聚體全氮含量、微團(tuán)聚體全氮含量和粉黏粒全氮含量分別可以解釋小麥產(chǎn)量75.3%、85.4%、82.7%和37.7% 的變異。其中,土壤全氮含量與小麥產(chǎn)量的相關(guān)性要高于土壤有機(jī)碳與小麥產(chǎn)量的相關(guān)性。在各級團(tuán)聚體有機(jī)碳含量與小麥產(chǎn)量的關(guān)系中,其密切程度表現(xiàn)為大團(tuán)聚體>粉黏粒>微團(tuán)聚體。在各級團(tuán)聚體全氮含量與小麥產(chǎn)量的關(guān)系中,其密切程度表現(xiàn)為大團(tuán)聚體>微團(tuán)聚體>粉黏粒。
表4 長期不同施氮量下各粒級團(tuán)聚體全氮對土壤全氮的貢獻(xiàn)率
圖4 小麥產(chǎn)量與土壤及團(tuán)聚體中有機(jī)碳含量的關(guān)系
圖5 小麥產(chǎn)量與土壤及團(tuán)聚體中全氮含量的關(guān)系
為探究長期不同施氮量與土壤碳氮及產(chǎn)量的關(guān)聯(lián)性,利用結(jié)構(gòu)方程模型(SEM)對施氮量、團(tuán)聚體碳氮含量、土壤碳氮含量及產(chǎn)量進(jìn)行模擬,發(fā)現(xiàn)施氮對土壤和微團(tuán)聚體碳氮含量均有正向的直接影響,路徑系數(shù)分別為0.55(<0.05)、0.24(>0.05)和0.17(>0.05)、0.56(<0.05);微團(tuán)聚體有機(jī)碳含量對土壤有機(jī)碳含量有正向的直接影響,路徑系數(shù)為0.19(>0.05);微團(tuán)聚體全氮含量對土壤全氮含量有極顯著正向的直接影響,路徑系數(shù)為0.84(<0.001);土壤有機(jī)質(zhì)和全氮含量對產(chǎn)量有正向的直接影響,路徑系數(shù)為0.26(<0.05)和0.26(>0.05);微團(tuán)聚體有機(jī)質(zhì)和全氮含量對產(chǎn)量有正向的直接影響,路徑系數(shù)為0.42(<0.01)和0.13(>0.05);土壤全氮含量對土壤有機(jī)碳含量有正向的直接影響,路徑系數(shù)為0.21(>0.05);微團(tuán)聚體全氮含量對微團(tuán)聚體有機(jī)碳含量有正向的直接影響,路徑系數(shù)為0.76(<0.001)。間接因素施氮量通過影響土壤和微團(tuán)聚體碳氮含量進(jìn)而影響小麥產(chǎn)量。
χ2/df=0.792,GFI=0.938,RMSEA=0.000
箭頭旁的數(shù)字表示標(biāo)準(zhǔn)化路徑系數(shù),表示該變量所解釋的方差,虛線表示不顯著。*<0.05,**<0.01,***<0.001
The number adjacent to arrow line is standardized coefficients that shows the variance explained by the variable. The dotted line shows no significant correlation. *<0.05, **<0.01, ***<0.001
N rate:施氮量Nitrogen application rate;Mic-SOC:微團(tuán)聚體有機(jī)碳含量Organic carbon content of micro-aggregates;Mic-TN:微團(tuán)聚體全氮含量Total nitrogen content of micro-aggregates;SOC:土壤有機(jī)碳含量Soil organic carbon content;STN:土壤全氮含量Soil total nitrogen content;Yield:小麥產(chǎn)量Wheat yield
圖6 施氮量影響土壤碳氮及產(chǎn)量的結(jié)構(gòu)方程模型
Fig. 6 Structural equation model of effects of N rate on yield, soil C, and soil N
土壤團(tuán)聚體的組成與穩(wěn)定性存在緊密聯(lián)系,影響著土壤肥力和物理結(jié)構(gòu)。在本試驗(yàn)條件下,施氮處理各土層土壤團(tuán)聚體組分均以微團(tuán)聚體為主,施氮顯著降低了大團(tuán)聚體重量占比,增加了粉黏粒重量占比(表1)。究其原因,可能一方面隨施氮量增加引起土壤pH降低,加劇了土壤中可交換性陽離子總量的下降[18],而這些可交換性陽離子形成的無機(jī)膠結(jié)物質(zhì)與土壤團(tuán)聚體的形成及穩(wěn)定性密切相關(guān)[19]。另一方面施氮會導(dǎo)致土壤真菌生物量下降,而真菌(如叢枝菌根真菌)生物量與土壤大團(tuán)聚體形成密切相關(guān)[20]。因此長期施氮會促使大團(tuán)聚體轉(zhuǎn)化為較小的團(tuán)聚體,且不利于微團(tuán)聚體和粉黏粒團(tuán)聚形成大團(tuán)聚體。
土壤有機(jī)碳作為土壤肥力的重要評價(jià)指標(biāo),也是土壤質(zhì)量和功能的核心[21]。本試驗(yàn)中,與不施氮相比,施氮顯著提高了不同土層土壤有機(jī)碳含量,0—20 cm土層中增幅為13.1%—37.2%,20—40 cm土層中增幅為15.3%—32.2%,這與王慧等[22]的研究結(jié)果一致。施氮一方面通過增加植株的生物量,提高了植株凋零物以及根系殘留物的量,進(jìn)而增加了土壤的碳源[23];另一方面促進(jìn)了微生物群落的生長,提高了土壤微生物群落碳源利用率[24],并有助于增強(qiáng)土壤中微生物殘?bào)w的積累[25]。本試驗(yàn)還發(fā)現(xiàn),施氮顯著提高了各級團(tuán)聚體有機(jī)碳含量,其中大團(tuán)聚體有機(jī)碳增幅為31.6%— 62.0%。大團(tuán)聚體作為土壤中有機(jī)碳固存的重要場所,在土壤碳素供給中發(fā)揮重要作用[26]。大團(tuán)聚體有機(jī)碳含量顯著增加,主要是植株凋落物進(jìn)入土壤后,會被大團(tuán)聚體所包裹,經(jīng)過大團(tuán)聚體中微生物的分解轉(zhuǎn)化為顆粒有機(jī)物,顆粒有機(jī)物被礦物質(zhì)及微生物所包裹,進(jìn)而形成對有機(jī)碳的物理保護(hù)作用[27]。陳秋雨[28]的研究表明,長期施氮下土壤團(tuán)聚體的有機(jī)碳含量表現(xiàn)為大團(tuán)聚體>微團(tuán)聚體>粉黏粒,即隨施氮量的增加,粉黏粒中有機(jī)碳首先達(dá)到飽和,其次是微團(tuán)聚體,最后是大團(tuán)聚體,這與本試驗(yàn)結(jié)論一致。這可能是因?yàn)椴煌<増F(tuán)聚體的養(yǎng)分固存能力和物理保護(hù)能力存在差異[29],大團(tuán)聚體能力強(qiáng)于微團(tuán)聚體和粉黏粒,因此當(dāng)微團(tuán)聚體和粉黏粒達(dá)到飽和時(shí),繼續(xù)增加有機(jī)碳輸入不能被固存,而大團(tuán)聚體能持續(xù)固存有機(jī)碳。在本試驗(yàn)中,施氮不僅會影響土壤有機(jī)碳含量,同時(shí)影響各級團(tuán)聚體有機(jī)碳含量。阮文亮等[30]研究表明,施氮顯著降低了各級團(tuán)聚體有機(jī)碳含量,這與本試驗(yàn)的結(jié)果不同。這可能是因?yàn)楸驹囼?yàn)為11年長期定位試驗(yàn),土壤團(tuán)聚體養(yǎng)分變化趨于穩(wěn)定,而短期向土壤輸入大量氮,會導(dǎo)致土壤C/N比下降,促進(jìn)土壤微生物增殖,提高土壤有機(jī)碳礦化速率[31]。
氮素作為植物生長發(fā)育所必需的大量元素之一,土壤中全氮含量影響著土壤生產(chǎn)力[32]。土壤中碳與氮含量存在顯著的相關(guān)性[33]。在本試驗(yàn)中,隨施氮量增加土壤全氮含量的變化趨勢與土壤有機(jī)碳含量趨于一致。在0—20 cm土層中土壤全氮含量增幅為19.4%— 29.4%,在20—40 cm土層中增幅為6.1%— 29.3%。與不施氮相比,施氮顯著增加大團(tuán)聚體和微團(tuán)聚體全氮含量,增幅分別為17.6%—51.0%和11.7%—35.9%,這與曹寒冰等[34]的研究結(jié)果一致,不同施肥方式能夠顯著提高大團(tuán)聚體中的全氮含量,而對粉黏粒沒有顯著的影響。這可能與團(tuán)聚體養(yǎng)分固存能力有關(guān)。在0—20 cm土層各團(tuán)聚體全氮含量表現(xiàn)為N3處理最高。而在20—40 cm土層表現(xiàn)為N1處理最高,N3處理全氮含量較N1處理下降5.0%—10.4%。這可能是由于增施氮肥促進(jìn)了植株對土壤氮素的吸收[35];另一方面過量施氮(N3)造成20—40 cm土層大團(tuán)聚體占比顯著下降,導(dǎo)致土壤氮素固存能力降低,同時(shí)還加劇土壤氮素礦化[36],提高土壤中反硝化微生物豐度,促進(jìn)土壤反硝化作用[37],從而降低了土壤團(tuán)聚體全氮含量。
氮肥的施用對于小麥產(chǎn)量的提高具有極顯著的效應(yīng),不同施氮量對于小麥產(chǎn)量的影響存在一定的差異[38-39]。本試驗(yàn)條件下,施氮顯著提高了小麥穗數(shù)和穗粒數(shù),以施氮量180 kg·hm-2(N1)時(shí)小麥產(chǎn)量最高,這與以往的試驗(yàn)結(jié)果一致[3,40-42]。以往多數(shù)研究證明,氮肥的施用能夠顯著提高小麥群體數(shù)量[43]、增加可育小花和小穗的數(shù)量[44],進(jìn)而提高了穗數(shù)和穗粒數(shù);而在小麥產(chǎn)量構(gòu)成要素中穗數(shù)的貢獻(xiàn)最大[45]。但籽粒灌漿的總營養(yǎng)物質(zhì)有限,庫容過度增加會導(dǎo)致粒重的降低。本研究表明,N1、N2和N3千粒重分別較N0下降了7.6%、6.4%和9.0%。
在本試驗(yàn)中,通過對土壤碳氮含量與小麥產(chǎn)量之間進(jìn)行線性擬合,得出土壤碳氮含量與小麥產(chǎn)量間存在極顯著相關(guān)關(guān)系。通過結(jié)構(gòu)方程模型進(jìn)行擬合,發(fā)現(xiàn)土壤碳氮含量對小麥產(chǎn)量呈正向的直接效應(yīng),這與以往的研究結(jié)果一致[46]。土壤有機(jī)碳為土壤微生物增殖提供了豐富的有機(jī)底物和適宜的生長環(huán)境,促進(jìn)微生物活性[47]。土壤氮是影響微生物代謝的重要因素[48],適當(dāng)?shù)靥岣咄寥捞嫉吭黾恿宋⑸锶郝涠鄻有?,進(jìn)而加快養(yǎng)分周轉(zhuǎn),為作物提供更多可利用養(yǎng)分[49],最終提高作物產(chǎn)量。侯永坤[50]的研究發(fā)現(xiàn),30—40 cm土層中有機(jī)碳和全氮含量對于小麥產(chǎn)量具有顯著影響,而本試驗(yàn)N1處理20—40 cm土層土壤碳氮含量高于其他處理,這可能是導(dǎo)致N1處理小麥產(chǎn)量高于其他處理的重要原因。
在本試驗(yàn)中,大團(tuán)聚體和微團(tuán)聚體碳氮含量與小麥產(chǎn)量呈極顯著正相關(guān),微團(tuán)聚體碳氮含量對小麥產(chǎn)量具有正向的直接效應(yīng),其中微團(tuán)聚體有機(jī)碳含量具有極顯著的正效應(yīng),微團(tuán)聚體有機(jī)碳含量與產(chǎn)量之間關(guān)系最密切,這與曹寒冰等[34]研究結(jié)果一致。團(tuán)聚體對土壤有機(jī)碳具有重要物理保護(hù)作用,隨著施氮量的增加,大粒級團(tuán)聚體向小粒級團(tuán)聚體轉(zhuǎn)化,顯著提高了微團(tuán)聚體的比例,與大團(tuán)聚體中的顆粒有機(jī)物質(zhì)相比,微團(tuán)聚體中顆粒有機(jī)物質(zhì)穩(wěn)定性更高[51],從而更多的有機(jī)碳被保護(hù)[52],因此,在長期施氮作用下,微團(tuán)聚體通過提高并穩(wěn)定土壤中的有機(jī)碳,提高土壤肥力,形成良好的土壤環(huán)境并提高根系生物量,進(jìn)而在提高小麥產(chǎn)量中發(fā)揮著重要的作用。
4.1 長期施氮降低了土壤中大團(tuán)聚體含量,增加了粉黏粒組分含量,各土層均以微團(tuán)聚體為主;同時(shí)長期施氮提高了0—20和20—40 cm土層各組分團(tuán)聚體碳氮含量,其中以微團(tuán)聚體對土壤有機(jī)碳和全氮的貢獻(xiàn)率最高。
4.2 小麥產(chǎn)量的提高主要是由于施氮顯著提高了成穗數(shù)和穗粒數(shù)。結(jié)構(gòu)方程模型分析表明,土壤和微團(tuán)聚體的碳氮含量對小麥產(chǎn)量具有正向直接效應(yīng),長期合理施氮通過增加團(tuán)聚體中碳氮含量,提升土壤肥力,最終實(shí)現(xiàn)小麥增產(chǎn)。
[1] 劉玉秀, 黃淑華, 王景琳, 張正茂. 小麥籽粒鈣元素含量的研究進(jìn)展. 作物學(xué)報(bào), 2021, 47(2): 187-196.
LIU Y X, HUANG S H, WANG J L, ZHANG Z M. Research advance on calcium content in wheat grains. Acta Agronomica Sinica, 2021, 47(2): 187-196. (in Chinese)
[2] 朱統(tǒng)泉, 吳大付. 河南小麥生產(chǎn)現(xiàn)狀分析. 陜西農(nóng)業(yè)科學(xué), 2014, 60(1): 78-81.
ZHU T Q, WU D F. Analysis of wheat production status in Henan Province. Shaanxi Journal of Agricultural Sciences, 2014, 60(1): 78-81. (in Chinese)
[3] 李雪萌, 楊梅, 秦保平, 李賽星, 郝倩倩, 石彩云, 張敏, 蔡瑞國, 楊敏. 施氮量對強(qiáng)筋小麥物質(zhì)積累與籽粒產(chǎn)量的影響. 麥類作物學(xué)報(bào), 2023, 43(5): 609-622.
LI X M, YANG M, QIN B P, LI S X, HAO Q Q, SHI C Y, ZHANG M, CAI R G, YANG M. Effect of nitrogen application rate on matter accumulation and grain yield of strong gluten wheat. Journal of Triticeae Crops, 2023, 43(5): 609-622. (in Chinese)
[4] 趙亞南, 徐霞, 黃玉芳, 孫笑梅, 葉優(yōu)良. 河南省小麥、玉米氮肥需求及節(jié)氮潛力. 中國農(nóng)業(yè)科學(xué), 2018, 51(14): 2747-2757. doi: 10.3864/j.issn.0578-1752.2018.14.012.
ZHAO Y N, XU X, HUANG Y F, SUN X M, YE Y L. Nitrogen requirement and saving potential for wheat and maize in Henan Province. Scientia Agricultura Sinica, 2018, 51(14): 2747-2757. doi: 10.3864/j.issn.0578-1752.2018.14.012. (in Chinese)
[5] 婁庭, 龍懷玉, 楊麗娟, 陳寶鴻, 周水亮, 穆真. 在過量施氮農(nóng)田中減氮和有機(jī)無機(jī)配施對土壤質(zhì)量及作物產(chǎn)量的影響. 中國土壤與肥料, 2010(2): 11-15, 34.
LOU T, LONG H Y, YANG L J, CHEN B H, ZHOU S L, MU Z. The effect of fertilizer ratio and rate on soil quality and crop yields in the farmland of excessive use of nitrogenous fertilizers. Soil and Fertilizer Sciences in China, 2010(2): 11-15, 34. (in Chinese)
[6] 吳波, 張亞軍. 氮肥施用量對冬小麥的影響. 現(xiàn)代農(nóng)業(yè), 2009(11): 19-20.
WU B, ZHANG Y J. Effect of nitrogen fertilizer application rate on winter wheat. Modern Agriculture, 2009(11): 19-20. (in Chinese)
[7] 丁永剛, 李福建, 王亞華, 湯小慶, 杜同慶, 朱敏, 李春燕, 朱新開, 丁錦峰, 郭文善. 稻茬小麥氮高效品種產(chǎn)量構(gòu)成和群體質(zhì)量特征. 作物學(xué)報(bào), 2020, 46(4): 544-556.
DING Y G, LI F J, WANG Y H, TANG X Q, DU T Q, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Characteristics of yield components and population quality in high-nitrogen- utilization wheat cultivars. Acta Agronomica Sinica, 2020, 46(4): 544-556. (in Chinese)
[8] 翟勇全, 馬琨, 賈彪, 魏雪, 運(yùn)彬媛, 馬健禎, 張昊, 姬麗, 李稼潤. 不同降水年型滴灌玉米土壤硝態(tài)氮分布、淋失量及氮素吸收利用特征. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào) (中英文), 2023, 31(5): 765-775
ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Soil nitrate-N distribution, leaching loss and nitrogen uptake and utilization of maize under drip irrigation in different precipitation years. Chinese Journal of Eco-Agriculture, 2023, 31(5): 765-775. (in Chinese)
[9] 陳津賽, 孫瑋皓, 王廣帥, Abubakar Sunusi Amin, 高陽. 不同施氮量對麥田土壤水穩(wěn)性團(tuán)聚體和N2O排放的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2021, 32(11): 3961-3968.
CHEN J S, SUN W H, WANG G S, ABUBAKAR S A, GAO Y. Effects of different nitrogen application rates on soil water stable aggregates and N2O emission in winter wheat field. Chinese Journal of Applied Ecology, 2021, 32(11): 3961-3968. (in Chinese)
[10] 李彩霞, 陳津賽, 付媛媛, 韓其晟, 寧慧峰, 王廣帥. 施氮和灌溉管理對麥田土壤團(tuán)聚體組成及有機(jī)碳的影響. 灌溉排水學(xué)報(bào), 2022, 41(12): 59-64, 80.
LI C X, CHEN J S, FU Y Y, HAN Q S, NING H F, WANG G S. Effects of nitrogen fertilization and irrigation on soil aggregation and soil organic carbon in winter wheat field. Journal of Irrigation and Drainage, 2022, 41(12): 59-64, 80. (in Chinese)
[11] 郭戎博, 李國棟, 潘夢雨, 鄭險(xiǎn)峰, 王朝輝, 何剛. 秸稈還田與施氮對耕層土壤有機(jī)碳儲量、組分和團(tuán)聚體的影響. 中國農(nóng)業(yè)科學(xué), 2023, 56(20): 4035-4048.doi: 10.3864/j.issn.0578-1752.2023.20.009.
GUO R B, LI G D, PAN M Y, ZHENG X F, WANG Z H, HE G. Effects of long-term straw return and nitrogen application rate on organic carbon storage, components and aggregates in cultivated layers. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048. doi: 10.3864/j.issn.0578-1752.2023.20.009. (in Chinese)
[12] WANG F L, LIU Y, LIANG B, LIU J, ZONG H Y, GUO X H, WANG X X, SONG N N. Variations in soil aggregate distribution and associated organic carbon and nitrogen fractions in long-term continuous vegetable rotation soil by nitrogen fertilization and plastic film mulching. The Science of the Total Environment, 2022, 835: 155420.
[13] 楊家明, 胡健, 潘軍曉, 彭逸飛, 魏春雪, 汪金松, 田大栓, 周青平. 氮添加對高寒草甸土壤團(tuán)聚體分布及其碳氮含量的影響. 北京林業(yè)大學(xué)學(xué)報(bào), 2022, 44(12): 102-110.
YANG J M, HU J, PAN J X, PENG Y F, WEI C X, WANG J S, TIAN D S, ZHOU Q P. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow. Journal of Beijing Forestry University, 2022, 44(12): 102-110. (in Chinese)
[14] WANG J J, SUN X, DU L N, SUN W L, WANG X L, GAAFAR A R Z, ZHANG P, CAI T, LIU T N, JIA Z K, CHEN X L, REN X L. Appropriate fertilization increases carbon and nitrogen sequestration and economic benefit for straw-incorporated upland farming. Geoderma, 2024, 441: 116743.
[15] 張寧. 河南省典型土壤生態(tài)系統(tǒng)服務(wù)功能及其價(jià)值評價(jià)研究[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2016.
ZHANG N. Study on the typical soil ecosystem services value in Henan Province[D]. Zhengzhou: Henan Agricultural University, 2016. ( in Chinese)
[16] SIX J, ELLIOTT E T, PAUSTIAN K, DORAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377.
[17] CHENG Y T, XU G C, WANG X K, LI P, DANG X H, JIANG W T, MA T T, WANG B, GU F Y, LI Z B. Contribution of soil aggregate particle size to organic carbon and the effect of land use on its distribution in a typical small watershed on Loess Plateau, China. Ecological Indicators, 2023, 155: 110988.
[18] 姚俊紅, 武俊男, 王呈玉, 崔炎田, 高云航, 孫嘉璐, 劉淑霞. 長期不同施氮量下黑土團(tuán)聚體穩(wěn)定性及有機(jī)碳含量的變化. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2024, 43(1): 102-110.
YAO J H, WU J N, WANG C Y, CUI Y T, GAO Y H, SUN J L, LIU S X. Changes in aggregates stability and organic carbon content of black soil following the use of different long-term nitrogen application rates. Journal of Agro-Environment Science, 2024, 43(1): 102-110. (in Chinese)
[19] ZHANG J, WEI D, ZHOU B K, ZHANG L J, HAO X Y, ZHAO S C, XU X P, HE P, ZHAO Y, QIU S J, ZHOU W. Responses of soil aggregation and aggregate-associated carbon and nitrogen in black soil to different long-term fertilization regimes. Soil and Tillage Research, 2021, 213: 105157.
[20] 譚文峰, 許運(yùn), 史志華, 蔡鵬, 黃巧云. 膠結(jié)物質(zhì)驅(qū)動(dòng)的土壤團(tuán)聚體形成過程與穩(wěn)定機(jī)制. 土壤學(xué)報(bào), 2023, 60(5): 1297-1308.
TAN W F, XU Y, SHI Z H, CAI P, HUANG Q Y. The formation process and stabilization mechanism of soil aggregates driven by binding materials. Acta Pedologica Sinica, 2023, 60(5): 1297-1308. (in Chinese)
[21] 王楚涵, 劉菲, 高健永, 張慧芳, 謝英荷, 曹寒冰, 謝鈞宇. 減氮覆膜下土壤有機(jī)碳組分含量的變化特征. 中國農(nóng)業(yè)科學(xué), 2022, 55(19): 3779-3790.doi: 10.3864/j.issn.0578-1752.2022.19.008.
WANG C H, LIU F, GAO J Y, ZHANG H F, XIE Y H, CAO H B, XIE J Y. The variation characteristics of soil organic carbon component content under nitrogen reduction and film mulching. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. doi: 10.3864/j.issn. 0578-1752.2022.19.008. (in Chinese)
[22] 王慧, 劉金山, 惠曉麗, 戴健, 王朝輝. 旱地土壤有機(jī)碳氮和供氮能力對長期不同氮肥用量的響應(yīng). 中國農(nóng)業(yè)科學(xué), 2016, 49(15): 2988-2998.doi: 10.3864/j.issn.0578-1752.2016.15.013.
WANG H, LIU J S, HUI X L, DAI J, WANG Z H. Responses of soil organic carbon, organic nitrogen and nitrogen supply capacity to long-term nitrogen fertilization practices in dryland soil. Scientia Agricultura Sinica, 2016, 49(15): 2988-2998. doi: 10.3864/j.issn. 0578-1752.2016.15.013. (in Chinese)
[23] 祁瑜, 黃永梅, 王艷, 趙杰, 張景慧. 施氮對幾種草地植物生物量及其分配的影響. 生態(tài)學(xué)報(bào), 2011, 31(18): 5121-5129.
QI Y, HUANG Y M, WANG Y, ZHAO J, ZHANG J H. Biomass and its allocation of four grassland species under different nitrogen levels. Acta Ecologica Sinica, 2011, 31(18): 5121-5129. (in Chinese)
[24] 夏雪, 谷潔, 車升國, 高華, 秦清軍. 施氮水平對塿土微生物群落和酶活性的影響. 中國農(nóng)業(yè)科學(xué), 2011, 44(8): 1618-1627. doi: 10.3864/j.issn.0578-1752.2011.08.010.
XIA X, GU J, CHE S G, GAO H, QIN Q J. Effects of nitrogen application rates on microbial community and enzyme activities in Lou soil. Scientia Agricultura Sinica, 2011, 44(8): 1618-1627. doi: 10.3864/j.issn.0578-1752.2011.08.010. (in Chinese)
[25] HU Q Y, LIU T Q, DING H N, LI C F, YU M, LIU J, CAO C G. The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice–wheat rotation system. Pedobiologia, 2023, 101: 150913.
[26] WANG Y L, WU P N, QIAO Y B, LI Y M, LIU S M, GAO C K, LIU C S, SHAO J, YU H L, ZHAO Z H, GUAN X K, WEN P F, WANG T C. The potential for soil C sequestration and N fixation under different planting patterns depends on the carbon and nitrogen content and stability of soil aggregates. The Science of the Total Environment, 2023, 897: 165430.
[27] SIX J, ELLIOTT E T, PAUSTIAN K. Aggregate and soil organic matter dynamics under conventional and No-tillage systems. Soil Science Society of America Journal, 1999, 63(5): 1350-1358.
[28] 陳秋雨. 長期覆蓋和施氮下塿土土壤質(zhì)量演變及碳氮轉(zhuǎn)化特征研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2021.
CHEN Q Y. Evaluation on soil quality evolution and carbon and nitrogen transformation characteristics of Lou soil under long-term mulching and nitrogen application[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[29] KOOL D M, CHUNG H, TATE K R, ROSS D J, NEWTON P C D, SIX J. Hierarchical saturation of soil carbon pools near a natural CO2spring. Global Change Biology, 2007, 13(6): 1282-1293.
[30] 阮文亮, 彭松, 祝曉慧, 崔凱榮, 趙利強(qiáng), 揭佳惠, 李瑞琦, 王建武, 田紀(jì)輝. 減量施氮與間作大豆對甜玉米土壤團(tuán)聚體及有機(jī)碳含量的影響. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 41(5): 811-819.
RUAN W L, PENG S, ZHU X H, CUI K R, ZHAO L Q, JIE J H, LI R Q, WANG J W, TIAN J H. Effects of nitrogen reduction and soybean intercropping on soil aggregates and organic carbon content of sweet maize. Journal of Sichuan Agricultural University, 2023, 41(5): 811-819. (in Chinese)
[31] 龐飛, 李志剛, 李健. 有機(jī)物料和氮添加對寧夏沙化土壤碳礦化的影響. 水土保持研究, 2018, 25(3): 75-80.
PANG F, LI Z G, LI J. Effects of incorporated organic materials with n fertilizer on soil carbon mineralization of desertified soil in Ningxia. Research of Soil and Water Conservation, 2018, 25(3): 75-80. (in Chinese)
[32] 向艷文, 鄭圣先, 廖育林, 魯艷紅, 謝堅(jiān), 聶軍. 長期施肥對紅壤水稻土水穩(wěn)性團(tuán)聚體有機(jī)碳、氮分布與儲量的影響. 中國農(nóng)業(yè)科學(xué), 2009, 42(7): 2415-2424. doi: 10.3864/j.issn.0578-1752.2009.07.021.
XIANG Y W, ZHENG S X, LIAO Y L, LU Y H, XIE J, NIE J. Effects of long-term fertilization on distribution and storage of organic carbon and nitrogen in water-stable aggregates of red paddy soil. Scientia Agricultura Sinica, 2009, 42(7): 2415-2424. doi: 10.3864/j.issn.0578- 1752.2009.07.021.(in Chinese)
[33] 董雪, 郝玉光, 辛智鳴, 段瑞兵, 李新樂, 劉芳. 科爾沁沙地4種典型灌木灌叢下土壤碳、氮、磷化學(xué)計(jì)量特征. 西北植物學(xué)報(bào), 2019, 39(1): 164-172.
DONG X, HAO Y G, XIN Z M, DUAN R B, LI X L, LIU F. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus of four typical shrubs in horqin sandy land. Acta Botanica Boreali- Occidentalia Sinica, 2019, 39(1): 164-172. (in Chinese)
[34] 曹寒冰, 謝鈞宇, 強(qiáng)久次仁, 郭璐, 洪堅(jiān)平, 荊耀棟, 孟會生. 施肥措施對復(fù)墾土壤團(tuán)聚體碳氮含量和作物產(chǎn)量的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(18): 135-143.
CAO H B, XIE J Y, QIANG J, GUO L, HONG J P, JING Y D, MENG H S. Effects of fertilization regimes on carbon and nitrogen contents of aggregates and maize yield in reclaimed soils. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 135-143. (in Chinese)
[35] 黃建華, 史永暉, 馬慶國, 王蕾, 陳國慶.施氮量對夏玉米不同生長階段氮素吸收及N2O排放的影響.山東農(nóng)業(yè)科學(xué), 2023, 55(3): 109-116.
HUANG J H, SHI Y H, MA Q G, WANG L, CHEN G Q. Effects of nitrogen application on nitrogen uptake and N2O emission of maize at different growth stages. Shandong Agricultural Sciences, 2023, 55(3): 109-116. (in Chinese)
[36] 劉金山, 戴健, 劉洋, 郭雄, 王朝輝. 過量施氮對旱地土壤碳、氮及供氮能力的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 112-120.
LIU J S, DAI J, LIU Y, GUO X, WANG Z H. Effects of excessive nitrogen fertilization on soil organic carbon and nitrogen and nitrogen supply capacity in dryland. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 112-120. (in Chinese)
[37] 宋亞娜, 林智敏, 林艷. 氮肥對稻田土壤反硝化細(xì)菌群落結(jié)構(gòu)和豐度的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(1): 7-12.
SONG Y N, LIN Z M, LIN Y. Response of denitrifying bacteria community structure and abundance to nitrogen in paddy fields. Chinese Journal of Eco-Agriculture, 2012, 20(1): 7-12. (in Chinese)
[38] 任開明, 楊文俊, 王犇, 樊永惠, 張文靜, 馬尚宇, 黃正來. 施氮量對稻茬弱筋小麥籽粒氮代謝及灌漿的影響. 核農(nóng)學(xué)報(bào), 2023, 37(3): 606-616.
REN K M, YANG W J, WANG B, FAN Y H, ZHANG W J, MA S Y, HUANG Z L. Effect of nitrogen application rate on grain nitrogen metabolism and grain filling of weak gluten wheat after rice. Journal of Nuclear Agricultural Sciences, 2023, 37(3): 606-616. (in Chinese)
[39] 傅曉藝, 何明琦, 趙彥坤, 張士昌, 單子龍, 韓然, 張鐵石, 史占良. 長期定位施氮條件下種植密度對冬小麥?zhǔn)?366品質(zhì)和氮肥利用的影響. 麥類作物學(xué)報(bào), 2023, 43(2): 215-224.
FU X Y, HE M Q, ZHAO Y K, ZHANG S C, SHAN Z L, HAN R, ZHANG T S, SHI Z L. Effect of planting density on quality characteristics and nitrogen utilization of winter wheat Shi 4366 under long-term positioning nitrogen application. Journal of Triticeae Crops, 2023, 43(2): 215-224. (in Chinese)
[40] 王麗芳, 康娟, 馬耕, 王家瑞, 申圓心, 劉世潔, 王晨陽. 農(nóng)田施氮對冬小麥產(chǎn)量、根-冠氮素積累及其利用效率的影響. 麥類作物學(xué)報(bào), 2021, 41(11): 1403-1408.
WANG L F, KANG J, MA G, WANG J R, SHEN Y X, LIU S J, WANG C Y. Effect of Nitrogen Application on yield, nitrogen accumulation and use efficiency in root-shoot of winter wheat. Journal of Triticeae Crops, 2021, 41(11): 1403-1408. (in Chinese)
[41] 張姍, 石祖梁, 楊四軍, 顧克軍, 戴廷波, 王飛, 李想, 孫仁華. 施氮和秸稈還田對晚播小麥養(yǎng)分平衡和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(9): 2714-2720.
ZHANG S, SHI Z L, YANG S J, GU K J, DAI T B, WANG F, LI X, SUN R H. Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation. Chinese Journal of Applied Ecology, 2015, 26(9): 2714-2720. (in Chinese)
[42] 李俊志, 常旭虹, 王德梅, 王艷杰, 楊玉雙, 趙廣才. 施氮水平對不同強(qiáng)筋小麥品種產(chǎn)量和品質(zhì)的影響. 作物雜志, 2023(3): 148-153.
LI J Z, CHANG X H, WANG D M, WANG Y J, YANG Y S, ZHAO G C. Effects of nitrogen application levels on yield and quality of different strong gluten wheat varieties. Crops, 2023(3): 148-153. (in Chinese)
[43] 王麗芳, 劉世潔, 康娟, 馬耕, 王晨陽. 施氮對小麥根-冠及土壤碳氮特征的影響. 麥類作物學(xué)報(bào), 2022, 42(4): 451-456.
WANG L F, LIU S J, KANG J, MA G, WANG C Y. Influence of nitrogen application on the carbon and nitrogen characteristics of root-shoot and soil in wheat filed. Journal of Triticeae Crops, 2022, 42(4): 451-456. (in Chinese)
[44] 李存東, 曹衛(wèi)星, 張?jiān)鲁? 嚴(yán)美春. 氮肥施用時(shí)期對小麥不同莖蘗位頂端發(fā)育的調(diào)控效應(yīng). 植物營養(yǎng)與肥料學(xué)報(bào), 2001, 7(1): 17-22.
LI C D, CAO W X, ZHANG Y C, YAN M C. Effect of N fertilizer application on apex development of different tiller positions at different spike development stages. Plant Nutrition and Fertilizer Science, 2001, 7(1): 17-22. (in Chinese)
[45] 田紀(jì)春, 鄧志英, 胡瑞波, 王延訓(xùn). 不同類型超級小麥產(chǎn)量構(gòu)成因素及籽粒產(chǎn)量的通徑分析. 作物學(xué)報(bào), 2006, 32(11): 1699-1705.
TIAN J C, DENG Z Y, HU R B, WANG Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agronomica Sinica, 2006, 32(11): 1699-1705. (in Chinese)
[46] REN Z J, HAN X J, FENG H X, WANG L F, MA G, LI J H, LV J J, TIAN W Z, HE X H, ZHAO Y N, WANG C Y. Long-term conservation tillage improves soil stoichiometry balance and crop productivity based on a 17-year experiment in a semi-arid area of Northern China. The Science of the Total Environment, 2024, 908: 168283.
[47] YANG H S, FANG C, MENG Y, DAI Y J, LIU J. Long-term ditch-buried straw return increases functionality of soil microbial communities. Catena, 2021, 202: 105316.
[48] HENNERON L, KARDOL P, WARDLE D A, CROS C, FONTAINE S. Rhizosphere control of soil nitrogen cycling: A key component of plant economic strategies. The New Phytologist, 2020, 228(4): 1269-1282.
[49] MA T T, YANG K, YANG L, ZHU Y, JIANG B Q, XIAO Z P, SHUAI K F, FANG M, GONG J, GU Z M, XIANG P H, LIU Y J, LI J. Different rotation years change the structure and diversity of microorganisms in the nitrogen cycle, affecting crop yield. Applied Soil Ecology, 2024, 193: 105123.
[50] 侯永坤. 不同耕作模式對土壤理化性質(zhì)和冬小麥產(chǎn)量的影響[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2019.
HOU Y K. Effects of different tillage models on soil physicochemical properties and winter wheat yield[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[51] BAI J S, ZHANG S Q, HUANG S M, XU X P, ZHAO S C, QIU S J, HE P, ZHOU W. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study. Journal of Integrative Agriculture, 2023, 22(11): 3517-3534.
[52] 馬原, 遲美靜, 張玉玲, 范慶峰, 虞娜, 鄒洪濤. 黑土旱地改稻田土壤水穩(wěn)性團(tuán)聚體有機(jī)碳和全氮的變化特征. 中國農(nóng)業(yè)科學(xué), 2020, 53(8): 1594-1605. doi: 10.3864/j.issn.0578-1752.2020.08.009.
MA Y, CHI M J, ZHANG Y L, FAN Q F, YU N, ZOU H T. Change characteristics of organic carbon and total nitrogen in water-stable aggregate after conversion from upland to paddy field in black soil. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605. doi: 10.3864/ j.issn.0578-1752.2020.08.009. (in Chinese)
Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield
HAN XiaoJie1, REN ZhiJie2, LI ShuangJing1, TIAN PeiPei1, LU SuHao1, MA Geng1, WANG LiFang1, MA DongYun1, ZHAO YaNan2, WANG ChenYang1
1College of Agronomy, Henan Agricultural University/National Engineering Research Center for Wheat, Zhengzhou 450046;2College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046
【Objective】The influence mechanism of varying nitrogen (N) rates on the carbon (C) and N content of soil aggregate, as well as wheat yield were investigated in this study, so as to provide a scientific basis for the rational application of N fertilizer.【Method】The 11-year experiment was conducted in Zhangpan Town, Xuchang City, Henan Province, with four different N levels, including 0 (N0), 180 kg·hm-2(N1), 240 kg·hm-2(N2), and 300 kg·hm-2(N3). The study systematically analyzed changes in soil carbon and nitrogen content, cluster distribution and their carbon and nitrogen content in different soil layers as a result of long-term N application, and investigated the regulatory pathways of long-term N application on wheat yield and its composition.【Result】There was a transformation in the composition of soil aggregates in every soil layer, specifically from larger macroaggregates (>0.25 mm) to microaggregates (0.25-0.053 mm) and silt and clay particles (<0.053 mm), as well as an increase in N rate. Additionally, the application of N resulted in a significant decrease in the mean weight diameter (MWD). As N application rates increase, the C and N content of the soil increased in the 0-20 cm layer, the C and N content of the soil in the 20-40 cm soil layer showed the trend to increase at first and then decrease. Compared with the N0 treatment, N application increased soil organic carbon (SOC) and soil total nitrogen (STN) content by 13.1%-37.2% and 19.4%-29.4% in the 0-20 cm layer and by 15.3%-32.2% and 6.1%-29.3% in the 20-40 cm layer, respectively. The N treatment significantly increased the SOC content of each particle size aggregates compared with N0 treatment, with the SOC content of macroaggregates increasing by 31.6%-62.0%, the SOC content of microaggregates increasing by 8.7%-61.2% and the SOC content of silt and clay increasing by 14.0%-81.7%. As N application rates increased, the STN content of the soil increased in the 0-20 cm layer. With the STN content of macroaggregates increasing by 32.6%-51.0%, the STN content of microaggregates increased by 25.7%-35.9% and the STN content of silt and clay increased by 3.2%-9.7%, the N3 treatment had the highest STN content of all particle size aggregates. In the 20-40 cm soil layer, the STN content of all particle size aggregates tended to increase at first and then decrease. With the STN content of macroaggregates increasing by 17.6%-35.2%, the STN content of microaggregates increased by 11.7%-24.0% and the STN content of silt and clay increased by 1.1%-12.9%, and the N1 treatment had the highest STN content of all particle size aggregates. The study results indicated that long-term nitrogen application had a significant impact on the spike number and grain number per spike in wheat, resulting in increased yield. Compared with the N0 treatment, the application of N1, N2, and N3 treatments resulted in a significant increase in wheat yield, with improvements of 188.1%, 177.3%, and 173.2%, respectively. The correlation and structural equation modelling analyses revealed a significant and positive correlation between wheat yield and soil carbon and nitrogen content, as well as carbon and nitrogen content in aggregates. Additionally, the long-term application of nitrogen was found to influence wheat yield formation by affecting carbon and nitrogen content in microaggregates.【Conclusion】In summary, the application of nitrogen over a long period of time raised the content of carbon and nitrogen in both soil and aggregates, enhanced soil fertility, ultimately promoting wheat yield. The optimal nitrogen application rate was 180 kg·hm-2under the condition of this experiment.
nitrogen application rates; soil aggregates; content of carbon and nitrogen; wheat yield
10.3864/j.issn.0578-1752.2024.09.011
2024-01-05;
2024-02-29
國家重點(diǎn)研發(fā)計(jì)劃(2022YFD2300803)、河南省重大科技專項(xiàng)(221100110700)、河南省科技攻關(guān)項(xiàng)目(232102111022)
韓瀟杰,E-mail:xiaojiehan523@163.com。通信作者王晨陽,E-mail:xmzxwang@163.com
(責(zé)任編輯 李云霞)