楊道山 左峻澤
主持人按語
專欄:光促進(jìn)有機(jī)轉(zhuǎn)化和應(yīng)用
【特約主持人】 :張志國:“河南省杰出青年科學(xué)基金”入選者
100多年前,意大利化學(xué)家G. Ciamician 和 P. Silber意識到有機(jī)光化學(xué)反應(yīng)具有重要意義.十幾年前,當(dāng)科學(xué)家將光氧化還原催化劑第一次應(yīng)用到化學(xué)合成當(dāng)中時(shí),走向綠色化學(xué)的重大一步就這樣邁出了.普林斯頓大學(xué)化學(xué)系的David MacMillan教授認(rèn)為:“光氧化還原反應(yīng)不僅僅讓合成變得更快,更使以前根本不敢想的分子合成反應(yīng)變?yōu)榭赡埽夷銉H僅只需要一步反應(yīng)”.光氧化還原催化劑主要包括金屬和有機(jī)光催化劑.由于金屬光催化劑當(dāng)中的稀有金屬造價(jià)不菲,近年來有機(jī)光氧化還原催化劑快速興起.在對其修飾和設(shè)計(jì)之后可以達(dá)到廉價(jià)、高效催化氧化還原反應(yīng)的效果,代替金屬催化劑.如今,有機(jī)光化學(xué)與多學(xué)科、多領(lǐng)域高度交叉融合,其核心使命是發(fā)展高效、高選擇性、高經(jīng)濟(jì)性、節(jié)能又環(huán)保的方式實(shí)現(xiàn)物質(zhì)的化學(xué)轉(zhuǎn)化.
本專欄圍繞兩種有機(jī)光催化劑促進(jìn)的功能有機(jī)分子創(chuàng)制過程進(jìn)行討論,其中《光誘導(dǎo)基于EDA機(jī)理構(gòu)建S-芳基黃原酸酯新策略》發(fā)展了通過光誘導(dǎo)的硫負(fù)離子與噻蒽鹽間的電子給體受體過程實(shí)現(xiàn)C-S鍵構(gòu)建的新策略.在溫和的、無金屬的條件下獲得了一系列S-芳基黃原酸酯類化合物并實(shí)現(xiàn)了克級規(guī)模的制備,證明了反應(yīng)的潛在應(yīng)用價(jià)值,為黃原酸酯類化合物的合成提供了一種新思路.《一鍋多組分反應(yīng)合成3-(2-(芳基乙炔)苯基)喹唑啉酮》介紹了一種可用于通過自由基串聯(lián)環(huán)化反應(yīng)合成含氮雜環(huán)化合物的新型自由基受體化合物的構(gòu)建方法.合成了一系列3-(2-(芳基乙炔)苯基)喹唑啉酮類化合物,該系列化合物可以作為自由基受體在藍(lán)光誘導(dǎo)下轉(zhuǎn)化為新型膦?;蜻⑧惢衔?
期待本專欄能夠?yàn)閺氖掠袡C(jī)光化學(xué)轉(zhuǎn)化領(lǐng)域中有機(jī)功能分子的設(shè)計(jì)、合成和應(yīng)用等相關(guān)領(lǐng)域的研究者提供參考.
摘? 要:黃原酸酯類化合物作為藥物化學(xué)、農(nóng)業(yè)化學(xué)、材料化學(xué)中重要的組成部分,一直備受化學(xué)家們的關(guān)注.尋找簡單、高效合成S-芳基取代黃原酸酯的方法引起了研究者廣泛的關(guān)注.報(bào)道了一種可見光誘導(dǎo)下基于硫負(fù)離子與噻蒽鹽間的EDA(電子供體受體)過程實(shí)現(xiàn)C-S鍵構(gòu)建的新策略.在溫和無金屬的條件下,以中等至優(yōu)良的收率得到了一系列S-芳基黃原酸酯,克級實(shí)驗(yàn)與日光實(shí)驗(yàn)證明了反應(yīng)的應(yīng)用潛力,為黃原酸酯類化合物的合成提供了一種新思路.
收稿日期:2023-06-27;修回日期:2023-08-13.
基金項(xiàng)目:國家自然科學(xué)基金(22271170).
作者簡介(通信作者):楊道山(1982-),男,山東臨沂人,青島科技大學(xué)教授,主要從事有機(jī)合成方法學(xué)研究,E-mail:yangdaoshan@tsinghua.org.cn.
引用本文:楊道山,左峻澤.光誘導(dǎo)基于EDA機(jī)理構(gòu)建S-芳基黃原酸酯新策略[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,52(3):1-9.(Yang Daoshan,Zuo Junze.A new strategy for the synthesis of S-arylxanthate via electron donor acceptor complex photoactivation[J].Journal of Henan Normal University(Natural Science Edition),2024,52(3):1-9.DOI:10.16366/j.cnki.1000-2367.2023.06.27.0001.)
關(guān)鍵詞:黃原酸酯;EDA復(fù)合物;噻蒽鹽;可見光誘導(dǎo);C-S鍵的構(gòu)建
中圖分類號:O612????? 文獻(xiàn)標(biāo)志碼:A文章編號:1000-2367(2024)03-0001-09
硫元素廣泛存在于天然產(chǎn)物及藥物分子中,構(gòu)建含硫化合物在制藥工業(yè)和合成化學(xué)上具有重要意義[1-2].化學(xué)家們發(fā)現(xiàn)通過硫酚產(chǎn)生的硫中心自由基可以作為高活性中間體,用于實(shí)現(xiàn)復(fù)雜含硫化合物的構(gòu)建,如圖1所示.硫鎓鹽是最具活性的自由基前體之一,同時(shí)由于其正電性,硫鎓鹽也是一類很好的電子受體.近年來硫鎓鹽廣泛用于EDA過程[3-5]中,具有很大的發(fā)展?jié)摿Γ?-11].
黃原酸鹽是在堿性條件下由醇對CS2親核進(jìn)攻生成的重要硫源試劑,在傅克反應(yīng)[12]、三硫代碳酸酯的合成[13-14]、硫醇的合成[15]等過程中都有重要的應(yīng)用.在有機(jī)全合成領(lǐng)域,黃原酸酯可以穩(wěn)定活性自由基,從而提高活性自由基在高濃度介質(zhì)中的存在時(shí)間,同時(shí)還可通過調(diào)節(jié)其絕對和相對濃度,使自由基加成到未活化的烯烴上[16].黃原酸酯還允許自由基添加到芳香環(huán)上,這一特性與烯烴的分子間加成結(jié)合,可用于構(gòu)建3,4-二氫萘-1(2H)-酮化合物,在適當(dāng)?shù)臈l件下可以轉(zhuǎn)化成萘.這種通用、高效的合成手段對于制藥和農(nóng)業(yè)化學(xué)工業(yè)以及材料科學(xué)來說非常重要[17-18].
由于黃原酸酯類化合物在藥物化學(xué)、農(nóng)業(yè)化學(xué)和材料科學(xué)等領(lǐng)域中的重要作用,近年來,開發(fā)更廣泛的黃原酸酯類化合物引起了人們的廣泛關(guān)注.S-芳基的黃原酸酯類化合物作為一類重要的黃原酸酯衍生物,其高效的合成策略一直存在一定的挑戰(zhàn).以往獲得S-芳基黃原酸酯的方法都不太成功,存在硫醚作為唯一產(chǎn)物或副產(chǎn)物[19-20]的問題,如圖2所示.最可靠的方法是基于1890年LEUCKART[21]提出的芳基重氮鹽的芳基化.然而,由于芳基重氮鹽存在著穩(wěn)定性和安全性的問題,這種方法的應(yīng)用受到限制.
隨著可見光催化技術(shù)的發(fā)展,許多以前難以實(shí)現(xiàn)的反應(yīng)可以在溫和的條件下進(jìn)行[22-26].光誘導(dǎo)的EDA機(jī)理由于其無金屬性、溫和性,最近也成為光催化合成領(lǐng)域的一種有效策略[27-30].本文報(bào)道了一種溫和實(shí)用的方法,通過可見光激發(fā)噻蒽鹽和黃原酸鹽產(chǎn)生EDA復(fù)合物,從芳烴出發(fā)通過間接的C-H官能化策略實(shí)現(xiàn)芳基黃原酸酯類化合物的合成,如圖3所示.
1? 實(shí)驗(yàn)部分
1.1? 儀器與試劑
所有溶劑與試劑(二異丙基乙胺,DIPEA;碳酸鈉,Na2CO3;碳酸鉀,K2CO3;叔丁醇鋰,tBuOLi;三乙胺,Et3N;吡啶,Pyridine;二氯甲烷,DCM;N,N-二甲基甲酰胺,DMF;N-甲基吡咯烷酮,NMP;四氫呋喃,THF;1,4-二氧六環(huán),1,4-Dioxane;二甲基亞砜,DMSO;乙腈,CH3CN;乙醇,EtOH;乙酸乙酯,EtOAc)均為分析純,除特殊說明否則使用時(shí)未經(jīng)進(jìn)一步純化.核磁共振測試中所用溶劑為CDCl3(氘代氯仿)或 DMSO-d6(氘代二甲基亞砜),1H NMR所用頻率為500 MHz,13C NMR所用頻率為125 MHz.“δ”表示化學(xué)位移,“J”表示耦合常數(shù).所有反應(yīng)通過用GF254硅膠涂覆的TLC(薄層色譜)板監(jiān)測.文中所有化合物均是通過使用200~300目硅膠填充的高壓快速柱色譜法分離純化.
1.2? 實(shí)驗(yàn)方法
首先向烘箱干燥過的25 mL Schlenk管中加入磁力攪拌子,然后依次加入噻蒽鹽1a(0.3 mmol)、黃原酸鹽2a(0.4 mmol).加入完畢之后將Schlenk管置換氮?dú)庵辽?次.最后在氮?dú)獗Wo(hù)下使用注射器加入反應(yīng)所需溶劑DCM 2 mL.隨后封好管口,確保Schlenk管內(nèi)體系被氮?dú)獗Wo(hù)并處于封閉狀態(tài),將Schlenk管置于藍(lán)光燈處,在室溫下進(jìn)行光照并攪拌.反應(yīng)一段時(shí)間后使用TLC技術(shù)對反應(yīng)進(jìn)行監(jiān)測,直至反應(yīng)結(jié)束.反應(yīng)結(jié)束后,向體系中加入3~4 mL飽和食鹽水,然后加入EtOAc進(jìn)行萃取,得到的有機(jī)相進(jìn)行合并,無水硫酸鈉干燥后過濾并減壓旋蒸.最后將得到的體系通過柱層析法對體系進(jìn)行分離純化,得到最終的產(chǎn)物.
1.3? 產(chǎn)物表征數(shù)據(jù)
O-環(huán)己基-S-(3-甲?;?4-甲氧基)苯基黃原酸酯(3a).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:85%(79 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)= 20/1.1H NMR(500 MHz,CDCl3)δ: 10.45~10.43(m,1H),7.95(d,J=2.3 Hz,1H),7.65(dd,J=8.7,2.3 Hz,1H),7.05(d,J=8.7 Hz,1H),5.53~5.47(m,1H),3.98(s,3H),1.88~1.83(m,2H),1.57~1.51(m,4H),1.48~1.43(m,1H),1.39~1.33(m,2H),1.29~1.24(m,1H).13C NMR(CDCl3,125 MHz)δ: 212.10,188.64,162.68,142.47,135.69,125.34,122.40,112.55,82.97,56.01,30.56,25.13,23.10.
O-環(huán)戊基-S-(3-甲?;?4-甲氧基)苯基黃原酸酯(3b).產(chǎn)物性狀:淡藍(lán)色液體;產(chǎn)率:85%(76 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=20/1.1H NMR(500 MHz,CDCl3)δ: 10.48(s,1H),7.96(d,J=2.4 Hz,1H),7.67(dd,J=8.7,2.4 Hz,1H),7.08(d,J=8.7 Hz,1H),5.84~5.79(m,1H),4.02(s,3H),1.94~1.88(m,2H),1.85~1.80(m,2H),1.63~1.59(m,4H).13C NMR(CDCl3,125 MHz,ppm)δ:212.14,188.65,162.66,142.42,135.66,125.32,122.47,112.51,88.14,56.00,32.46,23.74.
O-(4-苯丁基)-S-(3-甲?;?4-甲氧基)苯基黃原酸酯(3c).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:72%(78 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=20/1.1H NMR(500 MHz,CDCl3)δ:10.42(s,1H),7.95(t,J=2.6 Hz,1H),7.65(dd,J=8.7,2.4 Hz,1H),7.28(t,J=7.5 Hz,2H),7.19(t,J=7.3 Hz,1H),7.12(d,J=7.2 Hz,2H),7.02(d,J=8.7 Hz,1H),4.55(t,J=6.4 Hz,2H),3.95(s,3H),2.57(t,J=7.7 Hz,2H),1.76~1.71(m,2H),1.63~1.56(m,2H).13C NMR(CDCl3,125 MHz)δ:213.14,188.56,162.76,142.60,141.77,135.73,128.36,128.32,125.89,125.42,122.18,112.64,74.35,55.98,35.29,27.72,27.53.
O-環(huán)己基-S-對甲苯基黃原酸酯(3d).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:82%(66 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ:7.38(d,J=8.0 Hz,2H),7.23(d,J=7.9 Hz,2H),5.56~5.49(m,1H),2.39(s,3H),1.88~1.79(m,2H),1.61~1.49(m,4H),1.39~1.23(m,4H).13C NMR(CDCl3,125 MHz)δ:212.78,140.16,134.89,129.87,126.79,82.42,30.48,25.13,22.94,21.38.
O-環(huán)戊基-S-對甲苯基黃原酸酯(3e).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:80%(61 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ:7.36(d,J=8.1 Hz,2H),7.22(d,J=7.9 Hz,2H),5.78~5.82(m,1H),2.39(s,3H),1.89~1.76(m,4H),1.59~1.55(m,4H).13C NMR(CDCl3,125 MHz)δ:212.80,140.14,134.84,129.85,126.87,87.66,32.38,23.65,21.37.
O-4-叔丁苯基-S-(對甲苯基)黃原酸酯(3f).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:70%(66 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ: 7.39(d,J=8.0 Hz,2H),7.30(t,J=7.5 Hz,2H),7.21(dd,J=12.3,7.7 Hz,3H),7.13(d,J=7.3 Hz,2H),4.56(t,J=6.3 Hz,2H),2.58(t,J=7.7 Hz,2H),2.39(s,3H),1.76~1.70(m,2H),1.62~1.56(m,2H).13C NMR(CDCl3,125 MHz)δ:213.72,141.79,140.32,134.97,129.98,128.34,128.29,126.60,125.82,73.99,35.25,27.69,27.47,21.37.
O-環(huán)己基-S-苯基黃原酸酯(3g).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:80%(61 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ:7.54~ 7.49(m,2H),7.47~7.39(m,3H),5.57~5.50(m,1H),1.86~1.77(m,2H),1.59~1.53(m,2H),1.46~1.40(m,2H),1.39~1.31(m,2H),1.30~1.23(m,1H).13C NMR(CDCl3,125 MHz)δ:211.93,134.97,130.09,129.85,129.09,82.39,30.41,25.11,22.82.
O-環(huán)戊基-S-苯基黃原酸酯(3h).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:75%(54 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ:7.52~7.46(m,2H),7.44~7.39(m,3H),5.82~5.77(m,1H),1.89~1.81(m,2H),1.78~1.76(m,2H),1.58~1.52(m,4H).13C NMR(CDCl3,125 MHz)δ:211.94,134.90,130.17,129.83,129.06,87.73,32.37,23.61.
O-環(huán)己基-S-(3,4-二甲氧基)苯基黃原酸酯(3i).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:79%(74 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ:7.07(d,J=8.3 Hz,1H),7.00(s,1H),6.89(d,J=8.3 Hz,1H),5.56~5.48(m,1H),3.91(s,3H),3.87(s,3H),1.82~1.81(m,2H),1.59~1.48(m,4H),1.43~1.26(m,4H).13C NMR(CDCl3,125 MHz)δ:212.98,150.59,149.08,128.12,121.32,117.92,111.28,82.35,56.01,55.90,30.51,25.12,22.93.
O-環(huán)己基-S-4-(叔丁基)苯基黃原酸酯(3j).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:81%(75 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ: 7.43(d,J=2.5 Hz,4H),5.56~5.53(m,1H),1.75(s,2H),1.59(d,J=6.4 Hz,2H),1.40~1.28(m,15H).13C NMR(CDCl3,125 MHz)δ:212.38,153.28,134.63,126.77,126.13,81.96,34.80,31.17,30.32,25.14,22.52.
O-環(huán)己基-S-4-(4-溴苯氧基)苯基黃原酸酯(3k).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:92%(117 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=90/1.1H NMR(500 MHz,CDCl3)δ:7.47(ddd,J=8.2,5.0,1.9 Hz,4H),7.01(dd,J=8.6,1.8 Hz,2H),6.93(dd,J=8.7,1.8 Hz,2H),5.59~5.51(m,1H),1.82(s,2H),1.62~1.55(m,2H),1.52~1.32(m,6H).13C NMR(CDCl3,125 MHz)δ:212.22,158.57,155.36,136.88,132.89,124.38,121.19,118.86,116.66,82.40,30.42,25.14,22.83.
O-環(huán)己基-S-4-(1,1'-聯(lián)苯)基黃原酸酯(3l).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:86%(65 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ: 7.64(dd,J=14.2,7.9 Hz,4H),7.58(d,J=8.2 Hz,2H),7.48(t,J=7.6 Hz,2H),7.40(t,J=7.3 Hz,1H),5.60~5.53(m,1H),1.89~1.81(m,2H),1.63~1.57(m,2H),1.50~1.48(m,2H),1.46~1.40(m,1H),1.40~1.34(m,2H),1.31~1.25(m,1H).13C NMR(CDCl3,125 MHz)δ:211.88,142.67,139.95,135.27,128.91,128.87,127.88,127.71,127.13,82.49,30.44,25.11,22.86.
O-(4-叔丁氧基)-S-4-(1,1'-聯(lián)苯)基黃原酸酯(3m).產(chǎn)物性狀:淡黃色液體;產(chǎn)率:66%(75 mg);洗脫劑:V(石油醚)/V(乙酸乙酯)=100/1.1H NMR(500 MHz,CDCl3)δ:7.64(d,J=8.2 Hz,2H),7.59(dd,J=12.3,8.0 Hz,4H),7.48(t,J=7.5 Hz,2H),7.40(t,J=7.3 Hz,1H),7.23(t,J=7.3 Hz,2H),7.17(t,J=7.2 Hz,1H),7.10(d,J=7.3 Hz,2H),4.58(t,J=6.3 Hz,2H),2.56(t,J=7.7 Hz,2H),1.63~1.57(m,2H),1.63~1.57(m,2H).13C NMR(CDCl3,125 MHz)δ:212.87,142.80,141.72,139.84,135.35,128.88,128.67,128.28,127.93,127.80,127.15,125.81,74.09,35.26,27.70,27.54.
2? 結(jié)果與討論
2.1? 反應(yīng)條件的優(yōu)化
以1a(芳基硫鎓鹽)、2a(環(huán)己基黃原酸鈉)作為反應(yīng)的模板底物,對反應(yīng)的最佳條件進(jìn)行篩選.首先,在室溫下用455 nm藍(lán)光照射, DCM作為反應(yīng)溶劑,對堿進(jìn)行優(yōu)化(表1,條目1~7),在使用Et3N作為堿時(shí),反應(yīng)產(chǎn)物的產(chǎn)率最高,達(dá)到了82%.同時(shí)實(shí)驗(yàn)結(jié)果表明在無堿的情況下反應(yīng)產(chǎn)物的產(chǎn)率沒有明顯變化,說明堿在反應(yīng)中對體系沒有很大的促進(jìn)作用(表1,條目8).然后對反應(yīng)溶劑進(jìn)行優(yōu)化(表1,條目8~16),結(jié)果表明,CH3CN是反應(yīng)的最佳溶劑.為了進(jìn)一步提高轉(zhuǎn)化率,使用了DMSO與H2O作為混合溶劑進(jìn)行探索.實(shí)驗(yàn)結(jié)果表明,隨著H2O在混合溶劑中比例的提高,產(chǎn)物的產(chǎn)率并沒有提高,反而略微下降(表1,條目17~19),綜上選用CH3CN作為體系的最佳溶劑.在確定了反應(yīng)體系的溶劑之后,對光照條件進(jìn)行了探索:在室溫、黑暗環(huán)境中,并沒有檢測到反應(yīng)產(chǎn)物,說明光照在反應(yīng)過程中是必要的(表1,條目20).隨后探索了溫度對反應(yīng)的影響,在避光的條件下,升高反應(yīng)溫度,結(jié)果表明,溫度的升高會導(dǎo)致產(chǎn)率降低(表1,條目21~22).根據(jù)一系列的優(yōu)化實(shí)驗(yàn),得到反應(yīng)的最佳條件為以乙腈作為反應(yīng)溶劑,在室溫及氮?dú)獗Wo(hù)下光照,反應(yīng)時(shí)間為24? h(表1,條目14).
2.2? 反應(yīng)底物拓展
在確定最佳的反應(yīng)條件后,為了探究反應(yīng)策略對不同官能團(tuán)的耐受性,對不同取代的硫鎓鹽1和黃原酸鹽2的底物適應(yīng)范圍進(jìn)行了探究,結(jié)果總結(jié)在表2中.實(shí)驗(yàn)結(jié)果表明,不同的反應(yīng)底物均能生成對應(yīng)的S-芳基黃原酸酯3,并且產(chǎn)率良好(3a~3m).首先使用環(huán)己醇、環(huán)戊醇、1-苯基-4-丁醇合成對應(yīng)的黃原酸鹽與芳基硫鎓鹽進(jìn)行拓展.由鄰甲氧基苯甲醛合成對應(yīng)的硫鎓鹽與黃原酸鹽生成的衍生物3a~3c,產(chǎn)率在72%~85%.隨后又嘗試了給電子基團(tuán)的芳基合成的硫鎓鹽進(jìn)行拓展.對甲基苯合成的硫鎓鹽以70%~82%的產(chǎn)率得到產(chǎn)物3d~3f.而以苯合成的硫鎓鹽與黃原酸鹽反應(yīng)生成的底物3g、3h也以80%、75%的產(chǎn)率得到.當(dāng)以其他取代苯如鄰二甲氧基苯、叔丁基苯也都分別以79%、81%的產(chǎn)率得到3i~3j.其他芳香化合物如4-溴聯(lián)苯醚合成的硫鎓鹽與環(huán)己基黃原酸鹽也得到對應(yīng)的衍生物3k,產(chǎn)率為92%;聯(lián)苯合成的硫鎓鹽也得到了對應(yīng)的產(chǎn)物3l、3m,產(chǎn)率為86%、66%.上述結(jié)果表明,在此策略中各種芳基取代的硫鎓鹽都表現(xiàn)出了良好的耐受性,證明了該策略具有良好的底物范圍,對S-芳基黃原酸酯類化合物的研究起到重要的促進(jìn)作用.
2.3? 反應(yīng)應(yīng)用性研究
接下來,為了證明反應(yīng)具有潛在的應(yīng)用價(jià)值,以硫鎓鹽1a、黃原酸鹽2a為底物進(jìn)行了克級轉(zhuǎn)化,以78%的收率得到了目標(biāo)產(chǎn)物3a.此外,為了證明體系對反應(yīng)條件的耐受性,還進(jìn)行了日光實(shí)驗(yàn),在日光下以71%的產(chǎn)率得到產(chǎn)物3a(圖4).這些結(jié)果充分證明了該策略潛在的價(jià)值.
此外,在標(biāo)準(zhǔn)條件下處理硫鎓鹽1a與黃原酸鹽2a反應(yīng)的產(chǎn)物后,還以94%的分離產(chǎn)率回收了噻蒽,可以繼續(xù)合成5-氧化噻蒽,進(jìn)而合成硫鎓鹽.這證明此策略良好的原子經(jīng)濟(jì)性,如圖5所示.
2.4? 反應(yīng)機(jī)理研究
2.4.1? 自由基捕獲實(shí)驗(yàn)
為了進(jìn)一步探究反應(yīng)機(jī)理,進(jìn)行了自由基捕獲實(shí)驗(yàn).首先,在標(biāo)準(zhǔn)條件下,在反應(yīng)體系里加入了0.6 mmol TEMPO(四甲基哌啶氧化物,一種常見的自由基捕獲劑).實(shí)驗(yàn)結(jié)果表明,3a的形成被完全抑制,如圖6.這一實(shí)驗(yàn)結(jié)果證明了反應(yīng)轉(zhuǎn)化中涉及自由基的過程,但沒有捕獲到自由基中間體,可能是該反應(yīng)體系中自由基物種過于活潑導(dǎo)致.
2.4.2? 可能的機(jī)理
在初步實(shí)驗(yàn)結(jié)果和已有報(bào)道的基礎(chǔ)上,提出了一種合理的反應(yīng)機(jī)理.首先,硫鎓鹽1與黃原酸鹽2通過陰離子交換過程反應(yīng)生成 EDA復(fù)合物A.隨后EDA復(fù)合物A被光激發(fā)變?yōu)榧ぐl(fā)態(tài)B,并且在光誘導(dǎo)下進(jìn)行從黃原酸鹽陰離子到硫鎓鹽1誘導(dǎo)的單電子轉(zhuǎn)移(SET),產(chǎn)生一個(gè)自由基中間體C和一個(gè)硫中心自由基D.自由基C經(jīng)歷不可逆的裂解以產(chǎn)生芳基自由基F和可以循環(huán)利用的噻蒽E.最后,硫中心自由基D與芳基自由基F通過偶聯(lián)以產(chǎn)生目標(biāo)產(chǎn)物3.
3? 結(jié)? 論
綜上所述,利用光激活EDA復(fù)合物,在溫和無金屬的條件下高效地實(shí)現(xiàn)了C-S鍵的構(gòu)建,得到了一系列S-芳基黃原酸酯類化合物,并成功放大到克級,克服了這類化合物難以高效合成的難題.以噻蒽鹽為芳基化試劑和電子受體,再一次證明了噻蒽鹽應(yīng)用的巨大潛力.此外,S-芳基黃原酸酯有望通過后期修飾,促進(jìn)新的醫(yī)用藥物和農(nóng)藥的出現(xiàn).
參? 考? 文? 獻(xiàn)
[1]?? FENG M H,TANG B Q,LIANG S H,et al.Sulfur containing scaffolds in drugs:synthesis and application in medicinal chemistry[J].Current Topics in Medicinal Chemistry,2016,16(11):1200-1216.
[2]ZHAO J Y,JIANG X F.The application of sulfur-containing peptides in drug discovery[J].Chinese Chemical Letters,2018,29(7):1079-1087.
[3]XU H,LI X F,DONG Y Z,et al.Thianthrenium-enabled phosphorylation of aryl C-H bonds via electron donor-acceptor complex photoactivation[J].Organic Letters,2023,25(20):3784-3789.
[4]XU H,LI X F,MA J,et al.An electron donor-acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions[J].Chinese Chemical Letters,2023,34(11):108403.
[5]CABRERA-AFONSO M J,GRANADOS A,MOLANDER G A.Sustainable thioetherification via electron donor-acceptor photoactivation using thianthrenium salts[J].Angewandte Chemie(International Ed in English),2022,61(22):e202202706.
[6]BERGER F,PLUTSCHACK M B,RIEGGER J,et al.Site-selective and versatile aromatic C-H functionalization by thianthrenation[J].Nature,2019,567(7747):223-228.
[7]ENGL P S,HRING A P,BERGER F,et al.C-N cross-couplings for site-selective late-stage diversification via aryl sulfonium salts[J].Journal of the American Chemical Society,2019,141(34):13346-13351.
[8]LI J K,CHEN J T,SANG R C,et al.Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination[J].Nature Chemistry,2020,12(1):56-62.
[9]YE F,BERGER F,JIA H,et al.Aryl sulfonium salts for site-selective late-stage trifluoromethylation[J].Angewandte Chemie(International Ed in English),2019,58(41):14615-14619.
[10]XU P,ZHAO D,BERGER F,et al.Site-selective late-stage aromatic[(18)F]fluorination via aryl sulfonium salts[J].Angewandte Chemie(International Ed in English),2020,59(5):1956-1960.
[11]SANG R C,KORKIS S E,SU W Q,et al.Site-selective C-H oxygenation via aryl sulfonium salts[J].Angewandte Chemie(International Ed in English),2019,58(45):16161-16166.
[12]KAWATA T,HARANO K,TAGUCHI T.Catalytic rearrangement of xanthates to dithiolcarbonates[J].Chemical and Pharmaceutical Bulletin,1973,21(3):604-608.
[13]YOSHIDA H,OGATA T,INOKAWA S.The conversion of some alkylxanthates to the corresponding trithiocarbonates.the nucleophilic reaction of -SCSSR[J].Bulletin of the Chemical Society of Japan,1971,44(11):3106-3108.
[14]OVERBERGER C G,DRUCKER A.The preparation of meso-and DL-α,α'-stilbenedithiol,meso-and DL-2,3-butanedithiol,and DL-1,2,3,4-butanetetrathiol[J].The Journal of Organic Chemistry,1964,29(2):360-366.
[15]DJERASSI C,GORMAN M,MARKLEY F X,et al.Studies in organic sulfur compounds.VII.1 lithium aluminum hydride reduction of xanthates to mercaptans.synthesis of substituted β-mercaptoethanols[J].Journal of the American Chemical Society,1955,77(3):568-571.
[16]QUICLET-SIRE B,ZARD S Z.On the strategic impact of the degenerative transfer of xanthates on synthetic planning[J].Israel Journal of Chemistry,2017,57(3/4):202-217.
[17]ZHAO B W,LI J J,PAN X Q,et al.Photoinduced free radical promoted cationic RAFT polymerization toward "living" 3D printing[J].ACS Macro Letters,2021,10(10):1315-1320.
[18]BARTHET C,WILSON J,CADIX A,et al.Micellar RAFT/MADIX polymerization[J].ACS Macro Letters,2017,6(12):1342-1346.
[19]VOLKOV A A,BUGAENKO D I,BOGDANOV A V,et al.Visible-light-driven thioesterification of aryl halides with potassium thiocarboxylates:transition-metal catalyst-free incorporation of sulfur functionalities into an aromatic ring[J].The Journal of Organic Chemistry,2022,87(12):8170-8182.
[20]HE R F,LIU Y,F(xiàn)ENG Y Q,et al.Access to thienopyridine and thienoquinoline derivatives via site-selective C-H bond functionalization and annulation[J].Organic Letters,2022,24(17):3167-3172.
[21]LEUCKART R.Eine neue methode zur darstellung aromatischer mercaptane[J].Journal Für Praktische Chemie,1890,41(1):179-224.
[22]YU X Y,CHEN J R,XIAO W J.Visible light-driven radical-mediated C-C bond cleavage/functionalization in organic synthesis[J].Chemical Reviews,2021,121(1):506-561.
[23]GENTRY E C,KNOWLES R R.Synthetic applications of proton-coupled electron transfer[J].Accounts of Chemical Research,2016,49(8):1546-1556.
[24]ARORA A,WEAVER J D.Visible light photocatalysis for the generation and use of reactive azolyl and polyfluoroaryl intermediates[J].Accounts of Chemical Research,2016,49(10):2273-2283.
[25]ENGL S,REISER O.Copper-photocatalyzed ATRA reactions:concepts,applications,and opportunities[J].Chemical Society Reviews,2022,51(13):5287-5299.
[26]CHANG L,AN Q,DUAN L F,et al.Alkoxy radicals see the light:new paradigms of photochemical synthesis[J].Chemical Reviews,2022,122(2):2429-2486.
[27]CHEN Z R,XUE F,LIU T X,et al.Synthesis of β-hydroxysulfides via visible-light-driven and EDA complex-promoted hydroxysulfenylation of styrenes with heterocyclic thiols in EtOH under photocatalyst-free conditions[J].Green Chemistry,2022,24(8):3250-3256.
[28]WOZ′NIAK ,MURPHY J J,MELCHIORRE P.Photo-organocatalytic enantioselective perfluoroalkylation of β-ketoesters[J].Journal of the American Chemical Society,2015,137(17):5678-5681.
[29]LIANG X,LI Y F,XIA Q,et al.Visible-light-driven electron donor-acceptor complex induced sulfonylation of diazonium salts with sulfinates[J].Green Chemistry,2021,23(22):8865-8870.
[30]YANG Z L,LIU Y T,CAO K,et al.Synthetic reactions driven by electron-donor-acceptor(EDA) complexes[J].Beilstein Journal of Organic Chemistry,2021,17:771-799.
A new strategy for the synthesis of S-arylxanthate via electron donor acceptor complex photoactivation
Yang Daoshan, Zuo Junze
(College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)
Abstract: Xanthate esters have been attacting chemists' interest as an important component in medicinal chemistry, agricultural chemistry, and materials chemistry. However, the efficient synthesis of S-aryl-substituted xanthate esters has still faced challenges. Herein, we report a new strategy for the construction of C-S bonds based on the EDA(electron donor acceptor) process under light-induced conditions. A series of S-aryl xanthates were obtained in moderate to excellent yields under mild metal-free conditions. Gram-scale and sunlight experiments demonstrated the potential applications of the reaction, which will provide a new strategy for the synthesis of xanthate esters.
Keywords: xanthate esters; electron donor acceptor complex; thianthrenium salts; visible light induction; construction of C-S bond
[責(zé)任編校? 趙曉華? 陳留院]