李斌 肖海強 常大磊
摘要:不動點理論在研究方程解的存在性、唯一性及具體計算都有重要的理論與實用價值。本文基于巴拿赫度量空間中壓縮映射原理通過兩點之間距離的改變,借助于單調(diào)函數(shù)自映射原理在已有的結(jié)論基礎上推廣了度量空間上自映射的Pathak、Rekha Sharam、Khan、和Sastry and Babu 函數(shù)和的一些不動點定理,并得出函數(shù)和唯一不動點定理 。
關鍵詞:不動點;距離變化;函數(shù)和
中圖分類號:O177.2文獻標志碼:A文獻標識碼
Some fixed point theorems about the sum of functions in metric spaces by altering distances
LI? Bin,XIAO? Haiqiang,CHANG? Dalei*
(College of Sciences,Shihezi University,Shihezi,Xinjiang 832000,China)
Abstract:? Fixed point theory has important theoretical and practical value in studying the existence, uniqueness, and specific calculations of equation solutions. Based on the principle of contractive mapping in Banach metric space, this paper extends some fixed point theorems of Pathak and Rekha Sharam, Khan, and Sastry and Babu function sums of self-mapping in metric space by changing the distance between two points and by virtue of the principle of monotone function self-mapping on the basis of the existing conclusions, and obtains function and unique fixed point theorems。
Key words: fixed point;alteration of distances;the sum of functions
著名的度量空間上的巴拿赫壓縮原理已被一些作者推廣。Rhoades[1] 和 TaskoviAc'1][2]已經(jīng)建立了度量空間上的自映射的推廣。此外,Khan等[3]通過Banach壓縮原理改變點之間的距離,得到了度量空間上的自映射的概念。隨后一些學者又繼續(xù)朝這個方向研究[4-7],推廣了改變距離的函數(shù)的不動點定理,本文在結(jié)合已有結(jié)論的基礎上[8-9],得出了關于度量空間中改變距離的函數(shù)和的不動點定理。
4 結(jié)論
本文在已有結(jié)論的基礎上,首先在度量空間中建立自映射,通過改變點之間的距離,并結(jié)合Nashine等、Fang和Masmali等的定理得到了改變距離的函數(shù)和的不動點的存在性,其次,結(jié)合Amini-harandi等和Venkata等的定理得到了不動點的唯一性,最后,我們利用已有的結(jié)論和Kumar等的定理推廣了函數(shù)和的不動點的一些性質(zhì)。
參考文獻(References)
[1] RHOADES B E. A comparison of various definitions of contractive mappings[J]. Transactions of the American Mathematical Society, 1977, 226: 257-290.
[2] TASKOVIC' R M.Some new principles in fixed point theory[J].Math.Japon.1990,35:645-666.
[3] KHAN M S, SWALEH M, SESSA S. Fixed point theorems by altering distances between the points[J]. Bulletin of the Australian Mathematical Society, 1984,30(1): 1-9.
[4] KAMRAN T, KIRAN Q.Fixed point theorems for multi-valued mappings obtained by altering distances[J]. Mathematical and Computer Modelling, 2011, 54(11-12): 2772-2777.
[5] SASTRY K P R, NAIDU S V R, BABU G V R, et al. Generalization of common fixed point theorems for weakly commuting maps by altering distances[J]. Tamkang Journal of Mathematics, 2000, 31(3): 243-250.
[6] ANSARI Q H, BABU F. Proximal point algorithm for inclusion problems in Hadamard manifolds with applications[J]. Optimization Letters, 2021, 15(3): 901-921.
[7] SASTRY K P R, NAIDU S V R. Uniform convexity and strict convexity in metric linear spaces[J]. Mathematische Nachrichten, 1981, 104(1): 331-347.
[8] NAIDU S V R. Some fixed point theorems in metric spaces by altering distances[J]. Czechoslovak Mathematical Journal, 2003, 53(1): 205-212.
[9] MOHD I, LADLAY K. Fixed point theorems for two pairs of nonself mappings in metrically convex spaces by altering distances[J]. Mathematica Moravica, 2006,(10): 27-40.
[10] SASTRY K P R, NAIDU G A. Fixed point theorems for weak K-quasi contractions on a generalized metric space with partial order[J]. International Journal of Engineering Research and Applications, 2017, 7(2): 18-25.
[11] ALI J,POPA V, IMDAD M. Strict common fixed point theorems for hybrid pairs of mappings via altering distances and an application[J]. Honam Mathematical Journal, 2016, 38(2): 213-229.
[12] AMINI-HARANDI A, PETRUEL A. A fixed point theorem by altering distance technique in complete metric spaces[J]. Miskolc Mathematical Notes, 2013,14(1):11.
[13] NASHINE H K, AYDI H. Generalized altering distances and common fixed points in ordered metric spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2012, 2012: 736367.
[14] FANG J X. A note on fixed point theorems of Hadzˇíc[J]. Fuzzy Sets and Systems, 1992, 48(3): 391-395.
[15] AHMAD J, AZAM A, SAEJUNG S. Common fixed point results for contractive mappings in complex valued metric spaces[J]. Fixed Point Theory and Applications, 2014, 2014(1):67.
[16] MASMALI I, DALAL S, REHMAN N. Fixed point results by altering distances in fuzzy metric spaces[J]. Advances in Pure Mathematics, 2015, 5(6): 377-382.
[17] VENKATA R G, VIJAYA S Y. Fixed and periodic point results for generalized altering distance with partial order relation[J]. Journal of Statistics and Mathematical Engineering, 2021, 7(1): 16-28.
[18] KUMAR M, DEVI S, SINGH P. Fixed point theorems by using altering distance function in S-metric spaces[J]. Communications in Mathematics and Applications, 2022, 13(2): 553-573.
[19] DONG Q L,LIU L L,GIBALI A.A dynamic simultaneous algorithm for solving split equality fixed point problems[J].Optimization,2024,73(3):833-849.
[20] KARLSSON A.A metric fixed point theorem and some of its applications[J].Geometric and Functional Analysis,2024,34(2):486-511.
[21] BRAVO M,COMINETTI R.Stochastic fixed-point iterations for nonexpansive maps: Convergence and error bounds[J].SIAM Journal on Control and Optimization,2024,62(1):191-219.
[22] SALUJA S G.Some common fixed point theorems for contractive type conditions in complex valued S-metric spaces[J].International Journal of Mathematical Combinatorics,2023,2(1):1-17.
[23] HAMAIZIA T.Coincidence and common fixed point theorems for hybrid mappings[J].General Mathematics,2023,31(1):51-57.
[24] OREGAN D.Continuous selecting families and collectively fixed point theory[J].Aequationes mathematicae,2023,97(4):871-881.
[25] SOLAN E,SOLAN O N.Browders theorem through brouwers fixed point theorem[J].The American Mathematical Monthly,2023,130(4):370-374.
[1] RHOADES B E. A comparison of various definitions of contractive mappings[J]. Transactions of the American Mathematical Society, 2010, 226(0): 257-290.
[2] M.R.TaskoviAc'1]:Some new principles in fixed point theory.Math.Japon.1990,35:645-666.
[2] NAIDU S V R. Some fixed point theorems in metric spaces by altering distances[J]. Czechoslovak Mathematical Journal, 2003, 53(1): 205-212.
[3] KHAN M S, SWALEH M, SESSA S. Fixed point theorems by altering distances between the points[J]. Bulletin of the Australian Mathematical Society, 1984,30(1): 1-9.
[3] MOHD I, LADLAY K. Fixed point theorems for two pairs of nonself mappings in metrically convex spaces by altering distances[J]. Mathematica Moravica, 2006,(10): 27-40.
[5] ANSARI Q H, BABU F. Proximal point algorithm for inclusion problems in hadamard manifolds with applications[J]. Optimization Letters, 2021, 15(3): 901-921.
[6] SASTRY K P R, NAIDU S V R. Uniform convexity and strict convexity in metric linear spaces[J]. Mathematische Nachrichten, 1981, 104(1): 331-347.
[7] SASTRY K P R, NAIDU S V R, BABU G V R, et al. Generalization of common fixed point theorems for weakly commuting maps by altering distances[J]. Tamkang Journal of Mathematics, 2020, 31(3): 243-250.
[8] SASTRY K P R, NAIDU G A. Fixed point theorems for weak K-Quasi contractions on a generalized metric space with partial order[J]. International Journal of Engineering Research and Applications, 2017, 7(2): 18-25.
[10] KAMRAN T, KIRAN Q.Fixed point theorems for multi-valued mappings obtained by altering distances[J]. Mathematical and Computer Modelling, 2011, 54(11-12): 2772-2777.
[11] ALI J,POPA V, IMDAD M. Strict common fixed point theorems for hybrid pairs of mappings via altering distances and an application[J]. Honam Mathematical Journal, 2016, 38(2): 213-229.
[12] AMINI-HARANDI A, PETRUASXU]EL A. A fixed point theorem by altering distance technique in complete metric spaces[J]. Miskolc Mathematical Notes, 2013,14(1):11-11.
[13] NASHINE H K, AYDI H. Generalized altering distances and common fixed points in ordered metric spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2012, 2012: 1-23.
[14] FANG J X. A note on fixed point theorems of Hadzci′c[J]. Fuzzy Sets and Systems, 1992, 48(3): 391-395.
[15] MASMALI I, DALAL S, REHMAN N. Fixed point results by altering distances in fuzzy metric spaces[J]. Advances in Pure Mathematics, 2015, 5(6): 377-382.
[16] VENKATA R G, VIJAYA S Y. Fixed and periodic point results for generalized altering distance with partial order relation[J]. Journal of Statistics and Mathematical Engineering, 2021, 7(1): 16-28.
[17] KUMAR M, DEVI S, SINGH P. Fixed point theorems by using altering distance function in s-metric spaces[J]. Communications in Mathematics and Applications, 2022, 13(2): 553-573.
[18] AHMAD J, AZAM A, SAEJUNG S. Common fixed point results for contractive mappings in complex valued metric spaces[J]. Fixed Point Theory and Applications, 2014, 2014(1):67-78.
(責任編輯:編輯郭蕓婕)