摘要: 為探究端板對(duì)Savonius風(fēng)力機(jī)啟動(dòng)性能的影響,利用數(shù)值模擬和風(fēng)洞試驗(yàn)相結(jié)合的方法對(duì)比研究了端板對(duì)兩葉片、三葉片Savonius風(fēng)力機(jī)在不同風(fēng)速下的靜態(tài)啟動(dòng)性能,并對(duì)流場(chǎng)進(jìn)行了分析.結(jié)果表明:對(duì)于兩葉片Savonius風(fēng)力機(jī),有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)平均啟動(dòng)力矩提升了85.4%(u=8 m/s),且反向啟動(dòng)力矩小,但無(wú)端板風(fēng)力機(jī)啟動(dòng)力矩波動(dòng)范圍較有端板風(fēng)力機(jī)小;對(duì)于三葉片Savonius風(fēng)力機(jī),有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)平均啟動(dòng)力矩提升了17.9%(u=8 m/s),但有端板風(fēng)力機(jī)存在反向力矩,無(wú)端板風(fēng)力機(jī)較有端板風(fēng)力機(jī)整體力矩波動(dòng)范圍小且無(wú)反向啟動(dòng)力矩;端板的存在改變了葉片端部的流動(dòng)情況和壓力分布,葉片個(gè)數(shù)不同影響規(guī)律也不同.研究結(jié)果可以為Savonius風(fēng)力機(jī)的結(jié)構(gòu)設(shè)計(jì)提供參考.
關(guān)鍵詞: Savonius風(fēng)力機(jī);端板;風(fēng)洞試驗(yàn);數(shù)值模擬;啟動(dòng)性能
中圖分類號(hào): S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2024)05-0463-07
DOI:10.3969/j.issn.1674-8530.22.0205
李巖,鄧晴月,楊勝兵,等. 端板對(duì)Savonius風(fēng)力機(jī)啟動(dòng)性能的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(5):463-469.
LI Yan, DENG Qingyue, YANG Shengbing,et al. Influence of end plate on starting performance of Savonius wind turbines[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2024, 42(5): 463-469.(in Chinese)
Influence of end plate on starting performance
of Savonius wind turbines
LI Yan1,2*, DENG Qingyue1, YANG Shengbing1, TONG Guoqiang1, FENG Fang2,3
(1. College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; 2. Heilongjiang Province Key Laboratory of Technology and Equipment for Utilization of Agricultural Renewable Resources in Cold Region, Harbin, Heilongjiang 150030, China; 3. College of Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China)
Abstract: In order to explore the effect of the end plate on the starting performance of Savonius wind turbines, the static starting performance of the end plate on a two-blade and a three-blade Savonius wind turbines operating at different wind speeds was compared and studied by using the method of numerical simulation and wind tunnel test, and the flow field was analyzed. The results show that for the two-blade Savonius wind turbine, the average starting torque of the wind turbine with end plate is 85.4%(u=8 m/s) higher than that of the wind turbine without end plates, and the reverse starting torque is small, but the starting torque fluctuation range of the wind turbines without end plates is smaller than that of the wind turbines with end plate. For the three-blade Savonius wind turbine, the average starting torque of the wind turbine with end plate is 17.9%(u=8 m/s) higher than that of the wind turbine without an end plate, but the wind turbines with end plates have a reverse torque, and the overall torque fluctuation range of the wind turbines without end plates is smaller than that of the wind turbines with end plates and there is no reverse starting torque. The existence of the end plate changes the flow conditions and pressure distribution at the blade end, and the influence law is diffe-rent with the number of blades. The obtained research results can provide a reference for the structural design of Savonius wind turbines.
Key words: Savonius wind turbine;end plate;wind tunnel test;numerical simulation;starting performance
近年來(lái),為推動(dòng)高質(zhì)量發(fā)展,中國(guó)做出了實(shí)現(xiàn)“碳達(dá)峰,碳中和”目標(biāo)的重要戰(zhàn)略決策,推進(jìn)清潔能源高效利用關(guān)乎國(guó)家的前途和命運(yùn)[1].風(fēng)能作為重要的清潔能源之一,將繼續(xù)高速發(fā)展.風(fēng)力機(jī)[2]是將風(fēng)能轉(zhuǎn)化為其他形式能源的重要裝備,主要分為水平軸風(fēng)力機(jī)和垂直軸風(fēng)力機(jī).Savonius風(fēng)力機(jī)是阻力型垂直軸風(fēng)力機(jī)的一種,由芬蘭工程師Savonius發(fā)明[3-4].由于Savonius風(fēng)輪結(jié)構(gòu)簡(jiǎn)單、自啟動(dòng)性好、回轉(zhuǎn)力矩高等優(yōu)點(diǎn),近年來(lái)在中小型風(fēng)能領(lǐng)域受到了國(guó)內(nèi)外廣泛關(guān)注,常被用于農(nóng)村中小型風(fēng)能攪拌制熱系統(tǒng)或風(fēng)力提水系統(tǒng)中[5-7].
國(guó)內(nèi)外學(xué)者為提高其性能對(duì)Savonius風(fēng)力機(jī)的結(jié)構(gòu)進(jìn)行了大量研究.李巖等[8]探究了葉片與轉(zhuǎn)軸間隙大小對(duì)兩葉片Savonius風(fēng)力機(jī)啟動(dòng)性能影響,并對(duì)流場(chǎng)進(jìn)行了PIV可視化試驗(yàn).王偉等[9]改變了Savonius風(fēng)力機(jī)葉輪雙側(cè)外形,對(duì)傳統(tǒng)的Savonius弧形葉片進(jìn)行優(yōu)化.RAMADAN等[10]利用遺傳算法對(duì)Savonius葉片形狀進(jìn)行了優(yōu)化和數(shù)值分析,得到了最佳葉片形狀.SAAD等[11]設(shè)計(jì)了一種在多級(jí)Savonius風(fēng)輪中使用扭曲葉片的風(fēng)輪,提高了Savonius風(fēng)輪的自啟動(dòng)性和輸出功率.CHEN等[12]對(duì)具有兩、三葉片Savonius風(fēng)力機(jī)進(jìn)行了風(fēng)洞試驗(yàn).結(jié)果表明在一定結(jié)構(gòu)參數(shù)條件下,三葉片Savonius風(fēng)力機(jī)的反向力矩可以被消除,且力矩波動(dòng)范圍較兩葉片Savonius風(fēng)力機(jī)小.KAMOJI等[13]設(shè)計(jì)了不同相位角的兩段、三段Savonius風(fēng)力機(jī),結(jié)果表明多段Savonius風(fēng)力機(jī)可以有效消除力矩波動(dòng).然而,端板作為Savonius風(fēng)力機(jī)縱向流動(dòng)的重要結(jié)構(gòu),目前國(guó)內(nèi)外對(duì)Savonius風(fēng)力機(jī)端板的研究還相對(duì)較少.
為探明端板對(duì)Savonius風(fēng)力機(jī)啟動(dòng)性能的影響,利用風(fēng)洞試驗(yàn)與數(shù)值模擬相結(jié)合的方法,以兩葉片、三葉片Savonius為研究對(duì)象,揭示端板對(duì)Savonius風(fēng)力機(jī)啟動(dòng)性能的影響規(guī)律,為研究Savonius風(fēng)力機(jī)氣動(dòng)性能以及結(jié)構(gòu)設(shè)計(jì)提供參考.
1 模型與研究方法
1.1 風(fēng)力機(jī)模型
建立了如圖1所示的兩葉片、三葉片、有端板和無(wú)端板4種Savonius風(fēng)力機(jī)模型.圖中h為風(fēng)輪高度,D為風(fēng)輪直徑,a為旋轉(zhuǎn)軸直徑,θ為方位角,u為來(lái)流風(fēng)速,ω為風(fēng)輪旋轉(zhuǎn)方向,L為端板厚度.
如圖1c所示,當(dāng)速度為u的水平方向來(lái)流從左側(cè)吹入,風(fēng)輪順時(shí)針旋轉(zhuǎn),D=450 mm,h=450 mm,a=45 mm,L=3 mm.在試驗(yàn)中,為監(jiān)測(cè)有、無(wú)端板風(fēng)輪的靜態(tài)啟動(dòng)力矩,確保風(fēng)輪啟動(dòng)力矩傳動(dòng)到中心軸上,因此葉片與轉(zhuǎn)軸貼合,風(fēng)輪凈重疊比為0[8].
1.2 數(shù)值模擬
利用CFD軟件進(jìn)行三維數(shù)值模擬,圖2為三維計(jì)算域示意圖,選取長(zhǎng)×寬×高為10.0D×5.0D×5.0D的計(jì)算域.風(fēng)輪中心在距計(jì)算域左側(cè)邊界3.5D、右側(cè)邊界6.5D、上下中心處.計(jì)算域入口為速度入口,出口為零壓力出口.為減少計(jì)算域壁面對(duì)工質(zhì)產(chǎn)生流動(dòng)干擾,設(shè)置為對(duì)稱邊界Symmetry.
網(wǎng)格劃分如圖3所示,在葉片附近劃分邊界層網(wǎng)格,確保y+≈1[14].湍流模型[15]采用SST k-ω,N-S方程數(shù)值解法采用SIMPLE算法,收斂誤差設(shè)置為1.0×10-5,數(shù)值離散選用二階迎風(fēng)格式[16].
為保證數(shù)值模擬結(jié)果的準(zhǔn)確性,對(duì)兩葉片無(wú)端板風(fēng)力機(jī)和三葉片有端板風(fēng)力機(jī)計(jì)算域設(shè)置不同數(shù)量的網(wǎng)格[17]并在相同條件下進(jìn)行了網(wǎng)格無(wú)關(guān)性驗(yàn)證[18-19],如圖4所示.當(dāng)網(wǎng)格數(shù)量N達(dá)到450萬(wàn)以上,風(fēng)力機(jī)靜態(tài)力矩系數(shù)Cts趨于穩(wěn)定.為節(jié)約計(jì)算成本,后續(xù)的模擬均采用475萬(wàn)的網(wǎng)格數(shù)量進(jìn)行數(shù)值模擬研究.
1.3 風(fēng)洞試驗(yàn)
試驗(yàn)在東北農(nóng)業(yè)大學(xué)風(fēng)能實(shí)驗(yàn)室開口射流風(fēng)洞進(jìn)行.試驗(yàn)系統(tǒng)如圖5所示,由風(fēng)洞、風(fēng)輪、扭矩傳感器、三相異步電動(dòng)機(jī)、風(fēng)速傳感器等組成.低速風(fēng)洞長(zhǎng)9.1 m,寬2.3 m,出口尺寸為1 m×1 m,可輸出1~20 m/s的均勻風(fēng)速.風(fēng)力機(jī)模型安裝于距風(fēng)洞出口1.5 m處,模型幾何中心與風(fēng)洞出口中心保持水平.風(fēng)力機(jī)旋轉(zhuǎn)軸通過扭矩儀與電動(dòng)機(jī)相連,風(fēng)速、扭矩試驗(yàn)參數(shù)由風(fēng)速傳感器和扭矩傳感器實(shí)時(shí)傳輸?shù)接?jì)算機(jī)上.風(fēng)力機(jī)葉片模型采用光敏樹脂材料3D打印制作完成,如圖6所示.風(fēng)洞試驗(yàn)每間隔10°方位角進(jìn)行一組數(shù)據(jù)采樣.
1.4 試驗(yàn)值驗(yàn)證
為驗(yàn)證試驗(yàn)結(jié)果的可靠性,每組試驗(yàn)重復(fù)進(jìn)行3次,并求出均值和標(biāo)準(zhǔn)差.以兩葉片無(wú)端板風(fēng)力機(jī)和三葉片有端板風(fēng)力機(jī)模型為例,在u為8 m/s時(shí)進(jìn)行了數(shù)值模擬驗(yàn)證,如圖7所示.由圖可知,試驗(yàn)值與模擬值力矩系數(shù)曲線變化趨勢(shì)相同且數(shù)值接近,僅在部分方位角附近有差異,這是由復(fù)雜的試驗(yàn)環(huán)境等不可控因素所導(dǎo)致.對(duì)比結(jié)果說明了風(fēng)洞試驗(yàn)較為準(zhǔn)確,且驗(yàn)證了研究方法的可行性.
2 試驗(yàn)結(jié)果與分析
2.1 端板對(duì)兩葉片Savonius啟動(dòng)力矩的影響
圖8為風(fēng)洞試驗(yàn)得到的u=4,8 m/s條件下兩葉片Savonius風(fēng)力機(jī)在有、無(wú)端板時(shí)靜態(tài)力矩系數(shù)Cts與旋轉(zhuǎn)方位角之間的關(guān)系曲線.
兩葉片Savonius風(fēng)力機(jī)旋轉(zhuǎn)1周Cts呈現(xiàn)2個(gè)周期變化,因此取方位角0°~180°進(jìn)行分析.Cts的計(jì)算公式[20]為
Cts=T12ρAu2Dt,(1)
式中:T為靜態(tài)力矩,N·m;ρ為來(lái)流密度,kg/m3;A為風(fēng)輪掃掠面積,m2;Dt為風(fēng)輪特征長(zhǎng)度,m.
由風(fēng)洞試驗(yàn)結(jié)果可知,不同風(fēng)速下同一風(fēng)力機(jī)模型靜態(tài)啟動(dòng)力矩系數(shù)基本保持一致,且端板對(duì)兩葉片Savonius風(fēng)力機(jī)的Cts產(chǎn)生了影響.有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)波動(dòng)較大,兩風(fēng)力機(jī)的靜態(tài)力矩系數(shù)曲線在0°~180°方位角內(nèi)均呈現(xiàn)“上升—下降—上升”的趨勢(shì).有端板風(fēng)力機(jī)比無(wú)端板風(fēng)力機(jī)平均力矩系數(shù)Cts高出85.4%(u=8 m/s),如圖9所示.
Cts計(jì)算式為
Cts=∑ni=1Ctsin.(2)
在0°~90°方位角附近,有端板風(fēng)力機(jī)Cts大于無(wú)端板風(fēng)力機(jī),在θ=30°時(shí)有端板風(fēng)力機(jī)靜態(tài)力矩系數(shù)較無(wú)端板風(fēng)力機(jī)高97.4%.在100°~140°方位角附近,兩風(fēng)力機(jī)靜態(tài)力矩系數(shù)基本一致,端板對(duì)兩葉片Savonius風(fēng)力機(jī)的Cts影響較小.在140°~170°方位角附近,兩風(fēng)力機(jī)均產(chǎn)生了負(fù)向啟動(dòng)力矩,且無(wú)端板風(fēng)力機(jī)較有端板風(fēng)力機(jī)產(chǎn)生更大的負(fù)向力矩.無(wú)端板風(fēng)力機(jī)的極大值點(diǎn)產(chǎn)生在θ=50°附近,隨著方位角增大,靜態(tài)力矩系數(shù)曲線開始不斷下降,直到θ=160°產(chǎn)生拐點(diǎn)力矩系數(shù)曲線上升.兩靜態(tài)力矩系數(shù)曲線極值點(diǎn)產(chǎn)生相位偏移,有端板風(fēng)力機(jī)的極大值點(diǎn)發(fā)生在θ=30°附近,極小值在θ=170°附近.
2.2 兩葉片Savonius風(fēng)力機(jī)流場(chǎng)分析
為了探究端板對(duì)Savonius風(fēng)力機(jī)靜態(tài)力矩系數(shù)產(chǎn)生影響的原因,圖10給出了在風(fēng)速u=8 m/s、方位角θ=30°時(shí)兩葉片有、無(wú)端板風(fēng)力機(jī)在橫向和縱向的靜態(tài)壓力云圖.由圖可知,端板對(duì)流場(chǎng)中的壓力分布和氣流流動(dòng)方向均產(chǎn)生了影響.有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)在Blade1凹面處產(chǎn)生更大正壓,Blade1凸面處產(chǎn)生更大負(fù)壓,推動(dòng)風(fēng)力機(jī)正向運(yùn)動(dòng),同時(shí)無(wú)端板風(fēng)力機(jī)凹面處有渦旋產(chǎn)生,這表明無(wú)端板風(fēng)輪的展向不穩(wěn)定性始于渦旋形成區(qū).由縱向壓力云圖可知,由于端板的作用,部分來(lái)流的氣流方向發(fā)生改變,增大了流進(jìn)風(fēng)輪內(nèi)部的氣流,促使風(fēng)輪內(nèi)部正向壓強(qiáng)上升.
2.3 端板對(duì)三葉片Savonius啟動(dòng)力矩的影響
圖11為風(fēng)洞試驗(yàn)得到的u=4,8 m/s條件下三葉片Savonius風(fēng)力機(jī)在有無(wú)端板時(shí)靜態(tài)力矩系數(shù)Cts與方位角之間的關(guān)系曲線.三葉片Savonius風(fēng)力機(jī)旋轉(zhuǎn)1周,Cts呈現(xiàn)3個(gè)周期變化,因此取方位角0°~120°進(jìn)行分析.
由風(fēng)洞試驗(yàn)結(jié)果可知,三葉片Savonius風(fēng)力機(jī)在不同風(fēng)速下相同模型靜態(tài)啟動(dòng)力矩系數(shù)基本保持一致,且端板對(duì)三葉片Savonius風(fēng)力機(jī)的Cts產(chǎn)生了影響.
有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)Cts波動(dòng)更大,2種風(fēng)力機(jī)靜態(tài)力矩系數(shù)曲線在0°~120°方位角均呈現(xiàn)“下降—上升”的趨勢(shì).有端板風(fēng)力機(jī)的平均力矩系數(shù)高出無(wú)端板風(fēng)力機(jī)17.9%(u=8 m/s),如圖12所示.在0°~60°方位角內(nèi),有端板風(fēng)力機(jī)靜態(tài)力矩系數(shù)高于無(wú)端板風(fēng)力機(jī),在θ=10°附近有端板風(fēng)力機(jī)靜態(tài)力矩系數(shù)高出無(wú)端板風(fēng)力機(jī)52.6%.在70°~100°方位角附近,無(wú)端板風(fēng)力機(jī)靜態(tài)力矩系數(shù)高于有端板風(fēng)力機(jī),在θ=80°附近無(wú)端板風(fēng)力機(jī)高出有端板風(fēng)力機(jī)258.7%.在80°方位角之后,靜態(tài)力矩系數(shù)有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)增大趨勢(shì)增強(qiáng),在θ=110°附近有端板風(fēng)力機(jī)Cts優(yōu)于無(wú)端板風(fēng)力機(jī).兩風(fēng)力機(jī)力矩系數(shù)均在θ=10°時(shí)達(dá)到最大值,其中無(wú)端板風(fēng)力機(jī)較有端板風(fēng)力機(jī)在θ=60°先達(dá)到最小值拐點(diǎn),有端板風(fēng)力機(jī)在θ=80°達(dá)到最小值,并在θ=80°附近產(chǎn)生了負(fù)向力矩.無(wú)端板風(fēng)力機(jī)在整個(gè)周期內(nèi)靜態(tài)力矩系數(shù)均為正值,沒有產(chǎn)生負(fù)向力矩,啟動(dòng)性能更為穩(wěn)定.
2.4 三葉片Savonius風(fēng)力機(jī)流場(chǎng)分析
為了探明端板對(duì)三葉片Savonius風(fēng)力機(jī)靜態(tài)力矩系數(shù)產(chǎn)生影響的原因,圖13給出了在風(fēng)速u=8 m/s條件下,θ=10°,80°時(shí)三葉片有、無(wú)端板風(fēng)力機(jī)的靜態(tài)壓力云圖.
由圖13可知,在θ=10°時(shí),無(wú)端板Blade1,Blade2凹面處均產(chǎn)生低壓渦旋,端板的尺寸剛好足夠覆蓋葉片的渦旋形成區(qū)域,渦旋的產(chǎn)生阻礙了無(wú)端板風(fēng)力機(jī)的正向旋轉(zhuǎn).而有端板風(fēng)力機(jī)在Blade1凹面處渦旋消失且存在較大正壓區(qū),這推動(dòng)了風(fēng)力機(jī)正向運(yùn)動(dòng).從該方位角的展向壓力云圖中可以發(fā)現(xiàn),端板促使流入風(fēng)輪的正向氣壓增大,推動(dòng)有端板風(fēng)力機(jī)正向運(yùn)動(dòng).因此在θ=10°附近有端板風(fēng)力機(jī)Cts優(yōu)于無(wú)端板風(fēng)力機(jī).
而在θ=80°時(shí),有端板風(fēng)力機(jī)與無(wú)端板風(fēng)力機(jī)在Blade3凹面處的壓力流場(chǎng)形成明顯對(duì)比,無(wú)端板風(fēng)力機(jī)Blade3凹面處較有端板風(fēng)力機(jī)負(fù)壓減小,有端板風(fēng)力機(jī)在Blade3凹面處存在較大負(fù)壓,使葉片產(chǎn)生較大反向力矩.從縱向氣壓分布可以看出,由于端板的影響,無(wú)端板風(fēng)力機(jī)Blade3內(nèi)的渦旋向風(fēng)輪外流動(dòng),且有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)Blade3產(chǎn)生更大阻力,因此在θ=80°附近無(wú)端板風(fēng)力機(jī)Cts大于有端板風(fēng)力機(jī).
3 結(jié) 論
建立了有端板和無(wú)端板的兩葉片、三葉片Savonius風(fēng)力機(jī)模型,并通過風(fēng)洞試驗(yàn)和數(shù)值模擬研究方法對(duì)比研究了在不同風(fēng)速下端板對(duì)兩葉片、三葉片Savonius風(fēng)力機(jī)的靜態(tài)力矩系數(shù)影響,并對(duì)壓力流場(chǎng)進(jìn)行了分析.得出如下結(jié)論:
1) 對(duì)于兩葉片Savonius風(fēng)力機(jī),有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)平均啟動(dòng)力矩提升85.4%(u=8 m/s),有端板風(fēng)力機(jī)較無(wú)端板風(fēng)力機(jī)產(chǎn)生了更小負(fù)向啟動(dòng)力矩,但無(wú)端板風(fēng)力機(jī)較有端板風(fēng)力機(jī)啟動(dòng)力矩波動(dòng)范圍更小.
2) 對(duì)于三葉片Savonius風(fēng)力機(jī),有端板風(fēng)力機(jī)平均靜態(tài)力矩較無(wú)端板風(fēng)力機(jī)提升17.9%(u=8 m/s).但有端板風(fēng)力機(jī)產(chǎn)生負(fù)向力矩,無(wú)端板風(fēng)力機(jī)不存在負(fù)向啟動(dòng)力矩且較有端板風(fēng)力機(jī)在一個(gè)旋轉(zhuǎn)周期內(nèi)獲得了更為平穩(wěn)的啟動(dòng)力矩.
3) 通過風(fēng)力機(jī)流場(chǎng)的流動(dòng)分析可知,端板的存在改變了葉片端部的流動(dòng)情況和壓力分布,葉片個(gè)數(shù)不同則影響規(guī)律也不同,且端板對(duì)Savonius風(fēng)力機(jī)風(fēng)輪內(nèi)部渦旋的形成及葉片附近的壓差均產(chǎn)生了影響.
參考文獻(xiàn)(References)
[1] 朱漢雄,王一,茹加,等.“雙碳”目標(biāo)下推動(dòng)能源技術(shù)區(qū)域綜合示范的路徑思考[J].中國(guó)科學(xué)院院刊,2022,37(4):559-566.
ZHU Hanxiong, WANG Yi, RU Jia, et al. Thoughts on regional path of promoting comprehensive demonstration of low-carbon energy technology under ″dual carbon″ goals[J]. Bulletin of Chinese Academy of Sciences, 2022,37(4):559-566.(in Chinese)
[2] 楊從新,劉文杰,李壽圖,等.山區(qū)湍流特征及其對(duì)風(fēng)力機(jī)功率的影響[J].西華大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,42(2):28-38.
YANG Congxin, LIU Wenjie, LI Shoutu, et al. Characteristics of turbulence in mountainous areas and its effect on the power of wind turbines[J]. Journal of Xihua University(natural science edition), 2023,42(2):28-38.(in Chinese)
[3] JAOHINDY P, MCTAVISH S, GARDE F, et al. An analysis of the transient forces acting on Savonius rotors with different aspect ratios[J]. Renewable energy, 2013,55:286-295.
[4] MARZEC L, BULINSKI Z, KRYSINSKI T. Fluid structure interaction analysis of the operating Savonius wind turbine[J]. Renewable energy, 2020,164:272-284.
[5] 高禎,丁昀,王飛,等. 風(fēng)制熱技術(shù)發(fā)展及在分散式建筑供熱中應(yīng)用可行性探討[J]. 節(jié)能, 2019,38(12):33-36.
GAO Zhen, DING Yun, WANG Fei, et al. The wind heating technology development and applied in the distributed architecture heating feasibility study[J]. Energy conservation, 2019,38(12):33-36.(in Chinese)
[6] 楊光波,曾云,張記坤,等.水輪發(fā)電機(jī)組軸系剛度近似計(jì)算方法[J].排灌機(jī)械工程學(xué)報(bào),2020,38(8):787-793.
YANG Guangbo, ZENG Yun, ZHANG Jikun, et al. Approximate calculation method for shafting stiffness of hydroelectric generating unit[J]. Journal of drainage and irrigation machinery engineering, 2020,38(8):787-793.(in Chinese)
[7] 李巖. 垂直軸風(fēng)力機(jī)技術(shù)講座(二) 阻力型垂直軸風(fēng)力機(jī)[J]. 可再生能源, 2009,27(2):119-121.
LI Yan. The vertical axis wind turbine technology lecture Ⅱ—resistance type vertical axis wind turbine[J]. Renewable energy resources, 2009,27(2):119-121.(in Chinese)
[8] 李巖,趙守陽(yáng),曲春明,等.Savonius風(fēng)力機(jī)靜態(tài)流場(chǎng)PIV可視化試驗(yàn)研究[J].排灌機(jī)械工程學(xué)報(bào),2018,36(2):159-165.
LI Yan, ZHAO Shouyang, QU Chunming, et al. PIV visualization experiment on static flow field of Savonius wind turbine[J]. Journal of drainage and irrigation machinery engineering, 2018,36(2):159-165.(in Chinese)
[9] 王偉,宋保維,毛昭勇,等.Savonius風(fēng)機(jī)葉輪雙側(cè)外形優(yōu)化設(shè)計(jì)[J].哈爾濱工程大學(xué)學(xué)報(bào),2019,40(2):254-259.
WANG Wei, SONG Baowei, MAO Zhaoyong, et al. Optimization of Savonius wind turbine impeller with bilateral contour[J]. Journal of Harbin Engineering University, 2019,40(2):254-259.(in Chinese)
[10] RAMADAN A, YOUSEF K, SAID M, et al. Shape optimization and experimental validation of a drag vertical axis wind turbine[J]. Energy, 2018,151:839-853.
[11] SAAD A, ELWARDANY A, EL-SHARKAWY I I, et al. Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors[J]. Energy conversion and management, 2021,235:114013.
[12] CHEN Liu, CHEN Jian, XU Hongtao, et al. Wind tunnel investigation on the two- and three-blade Savo-nius rotor with central shaft at different gap ratio[J]. Journal of renewable and sustainable energy, 2016,8(1):013303.
[13] KAMOJI M A, KEDARE S B, PRABHU S V. Experimental investigations on single stage, two stage and three stage conventional Savonius rotor[J]. International journal of energy research, 2008,32(10):877-895.
[14] REZAEIHA A,KALKMAN I,BLOCKEN B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine[J]. Applied energy, 2017,197:132-150.
[15] 陳盼陽(yáng),秦維彩,王寶坤.植保無(wú)人飛機(jī)施藥技術(shù)研究進(jìn)展[J].中國(guó)農(nóng)機(jī)化學(xué)報(bào),2022,43(1):67-79.
CHEN Panyang, QIN Weicai, WANG Baokun. Research progress on pesticide application technology of plant protection UAV[J]. Journal of Chinese agricultural mechanization, 2022,43(1):67-79.(in Chinese)
[16] SILVA-LLANCA L, INOSTROZA-LAGOS S. Optimum power generation assessment in an H-Darrieus vertical axis wind turbine via exergy destruction minimization[J]. Energy conversion and management, 2021,243:114312.
[17] 李昊,張猛強(qiáng),尹勇,等.流固耦合方法在農(nóng)業(yè)工程中的應(yīng)用[J].中國(guó)農(nóng)機(jī)化學(xué)報(bào),2023,44(2):20-28.
LI Hao, ZHANG Mengqiang, YIN Yong, et al. Application of fluid-solid coupling method in agricultural engineering[J]. Journal of Chinese agricultural mechanization, 2023,44(2):20-28.(in Chinese)
[18] GAO J, GRIFFITH D T, SAKIB S M, et al. A semi-coupled aero-servo-hydro numerical model for floating vertical axis wind turbines operating on TLPs[J]. Renewable energy, 2022,181:692-713.
[19] 李濤,王玉川,亢陽(yáng),等.橢圓柱繞流擺動(dòng)流固耦合的數(shù)值模擬[J].排灌機(jī)械工程學(xué)報(bào),2018,36(4):307-312.
LI Tao, WANG Yuchuan, KANG Yang, et al. Numerical simulation of fluid-solid rotating motion of rigid elliptic cylinder[J]. Journal of drainage and irrigation machinery engineering, 2018,36(4):307-312.(in Chinese)
[20] 李巖,佟國(guó)強(qiáng),曲春明,等.具有大實(shí)度直線翼垂直軸風(fēng)力機(jī)氣動(dòng)特性數(shù)值模擬[J].排灌機(jī)械工程學(xué)報(bào),2022,40(7):701-706.
LI Yan, TONG Guoqiang, QU Chunming, et al. Nume-rical simulation of aerodynamic characteristics of straight-bladed vertical axis wind turbine with large solidities[J]. Journal of drainage and irrigation machinery engineering, 2022,40(7):701-706.(in Chinese)
(責(zé)任編輯 張文濤)
收稿日期: 2022-08-30; 修回日期: 2023-03-10; 網(wǎng)絡(luò)出版時(shí)間: 2024-04-25
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240423.0949.006
基金項(xiàng)目: 西藏自治區(qū)重大科技專項(xiàng)(XZ201801-GA-03)
第一作者簡(jiǎn)介: 李巖(1972—),男,黑龍江賓縣人,教授,博士生導(dǎo)師(通信作者,liyanneau@163.com),主要從事風(fēng)能及可再生能源綜合利用研究.
第二作者簡(jiǎn)介: 鄧晴月(1997—),女,黑龍江寶清人,碩士研究生(543323245@qq.com),主要從事風(fēng)力機(jī)氣動(dòng)性能研究.