蔡浚哲 劉松柏 費(fèi)曉斌 劉鵬 朱昌毫 王興 潘耀振
摘要: 目的 探討錨蛋白重復(fù)序列22(ANKRD22)對(duì)人肝癌細(xì)胞增殖、 侵襲和遷移的影響及其分子機(jī)制。方法 通過TCGA數(shù)據(jù)庫分析正常肝組織及肝細(xì)胞癌組織中ANKRD22的表達(dá)水平及其與預(yù)后的關(guān)系。通過qRT-PCR和Western Blot檢測(cè)人正常肝細(xì)胞 (L-02) 和人肝癌細(xì)胞系 (Huh7、 Hep G2、 MHCC-97H、 SK-HEP-1、 SMMC-7721) 中ANKRD22的表達(dá)情況。通過CCK-8、 EdU、 劃痕實(shí)驗(yàn)及Transwell檢測(cè)ANKRD22對(duì)肝癌細(xì)胞增殖、 侵襲和遷移能力的影響。通過Western Blot檢測(cè)ANKRD22與細(xì)胞周期蛋白、 EMT相關(guān)蛋白之間的關(guān)系。通過KEGG、 ssGSEA分析進(jìn)一步探究ANKRD22在肝癌細(xì)胞中的作用機(jī)制, 并進(jìn)行實(shí)驗(yàn)驗(yàn)證。計(jì)量資料兩組間比較采用成組t檢驗(yàn), 多組間比較采用單因素方差分析, 進(jìn)一步兩兩比較采用LSD-t檢驗(yàn)。結(jié)果 TCGA數(shù)據(jù)庫中ANKRD22在肝細(xì)胞癌組織中較正常肝組織高表達(dá) (t=5. 083, P<0. 05), 且ANKRD22高表達(dá)患者的總生存期及疾病相關(guān)生存期均顯著低于ANKRD22低表達(dá)的患者 (P值均<0. 05)。肝癌細(xì)胞系中ANKRD22的表達(dá)量均高于正常肝細(xì)胞 (P值均<0. 05)。增殖實(shí)驗(yàn)結(jié)果提示, ANKRD22過表達(dá)組的EdU陽性率、 增殖速度均高于空載對(duì)照 (Vector) 組 (t值分別為19. 60、 6. 72, P值均<0. 001); si-ANKRD22#2組及si-ANKRD22#3組的EdU陽性率、 增殖速度較si-NC組均降低 (P值均<0. 001)。Cyclin E1、 Cyclin D1、 CDK7、 CDK4在過表達(dá)組中表達(dá)高于Vector組 (t值分別為3. 54、 4. 95、6. 34、 5. 19, P值均<0. 01); 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均低于si-NC組 (P值均<0. 001)。P27在過表達(dá)組中表達(dá)低于 Vector 組(t=6. 12, P<0. 001), 在 si-ANKRD22#2 組及 si-ANKRD22#3 組中表達(dá)均高于 si-NC 組(P 值均<0. 001)。侵襲、 遷移實(shí)驗(yàn)結(jié)果提示, ANKRD22過表達(dá)組的遷移速度、 穿膜數(shù)量 (遷移組和侵襲組) 均高于Vector組 (t值分別為5. 01、 25. 60、 3. 67, P值均<0. 05); si-ANKRD22#2組及si-ANKRD22#3組的遷移速度、 穿膜數(shù)量 (遷移組和侵襲組) 較si-NC組均降低 (P值均<0. 01)。N-cadherin、 Vimentin、 Snail在過表達(dá)組中表達(dá)高于Vector組 (t值分別為12. 13、 8. 85、 13. 97,P值均<0. 001), 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均低于si-NC組 (P值均<0. 001); E-cadherin在過表達(dá)組中表達(dá)低于Vector組 (t=4. 98, P<0. 01), 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均高于si-NC組 (P值均<0. 001)。KEGG富集分析及ssGSEA分析提示, ANKRD22在肝細(xì)胞癌中與PI3K/AKT/mTOR信號(hào)通路相關(guān), 在過表達(dá)組中, p-AKT/AKT、p-PI3K/PI3K、 p-mTOR/mTOR 均較 Vector 組升高(t 值分別為 12. 21、 3. 43、 9. 75, P 值均<0. 01); 在 si-ANKRD22#2 組及si-ANKRD22#3組中表達(dá)均低于si-NC組 (P值均<0. 001)。結(jié)論 ANKRD22在肝癌細(xì)胞中高表達(dá), 能促進(jìn)肝癌細(xì)胞的增殖、侵襲和遷移能力, 并且能促進(jìn)PI3K/AKT/mTOR信號(hào)通路的激活。
關(guān)鍵詞: ?癌, ?肝細(xì)胞; ?錨蛋白重復(fù); ?細(xì)胞增殖; ?細(xì)胞運(yùn)動(dòng)
基金項(xiàng)目: ?國家自然科學(xué)基金 (81960431, ?81960535); ?貴州省科技計(jì)劃項(xiàng)目 (黔科合支撐 〔2021〕 一般444)
Effect of ankyrin-repeat domain-containing protein 22 on human hepatoma cells and its mechanism
CAI Junzhe1, LIU Songbai2, FEI Xiaobin1, LIU Peng3, ZHU Changhao4, WANG Xing1, 4, PAN Yaozhen1, 4.(1. College of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China;2. Department of Hepatobiliary Surgery, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550000, China; 3. Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China; 4. Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550000, China)
Corresponding author: ?PAN Yaozhen, ?panyaozhen@gmc.edu.cn ?(ORCID: ?0000-0002-9300-382X)
Abstract:
ObjectiveTo investigate the effect of ankyrin-repeat domain-containing protein 22 (ANKRD22) on the proliferation, invasion, and migration of human hepatoma cells and its molecular mechanism. Methods The TCGA database was used to analyze the expression level of ANKRD22 in normal liver tissue and hepatocellular carcinoma tissue and its association with prognosis. Western Blot and qRT-PCR were used to measure the expression of ANKRD22 in human normal liver cells (L-02) and human hepatoma cells (Huh7, HepG2, MHCC-97H, SK-HEP-1, and SMMC-7721); CCK-8 assay, EdU, wound healing assay, and Transwell assay were used to observe the effect of ANKRD22 on the proliferation, invasion, and migration of hepatoma cells; Western Blot was used to investigate the association of ANKRD22 with cyclins and EMT-related proteins; KEGG and ssGSEA analyses were performed to investigate the mechanism of action of ANKRD22 in hepatoma cells, and related experiments were conducted for validation. The independent-samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results In the TCGA database, the expression level of ANKRD22 in hepatoma tissue was significantly higher than that in normal liver tissue (t=5.083, P<0.05), and the patients with a high expression level of ANKRD22 had longer overall survival and disease-related survival than those with a low expression level of ANKRD22 (P<0.05) . The expression level of ANKRD22 in various human hepatoma cell lines was higher than that in human normal liver cells (all P<0.05) . Cell proliferation assay showed that the ANKRD22 overexpression group had significantly higher EdU positive rate and proliferation rate than the Vector group (t=19.60 and 6.72, both P<0.001), and compared with the si-NC group, the si-ANKRD22#2 group and the si-ANKRD22#3 group had significantly lower EdU positive rate and proliferation rate (all P<0.001) . Compared with the Vector group, the overexpression group had significantly higher expression levels of Cyclin E1, Cyclin D1, CDK7, and CDK4 (t=3.54, 4.95, 6.34, and 5.19, all P<0.01), and the si-ANKRD22#2 group and the si-ANKRD22#3 group had significantly lower expression levels than the si-NC group (all P<0.001) . The overexpression group had a significantly lower expression level of P27 than the Vector group (t=6.12, P<0.001), and the si-ANKRD22#2 group and the si-ANKRD22#3 group had a significantly higher expression level than the si-NC group (both P<0.001) . Invasion and migration experiments showed that compared with the Vector group, the ANKRD22 overexpression group had significantly higher migration rate and number of crossings through the membrane (migration group and invasion group) (t=5.01,25.60, and 3.67, all P<0.05), and compared with the si-NC group, thesi-ANKRD22#2 group and the si-ANKRD22#3 group had significantly lower migration rate and number of crossings through the membrane (migration group and invasion group)(all P<0.01) . The overexpression group had significantly higher expression levels of N-cadherin, Vimentin, and Snail than the Vector group (t=12.13, 8.85, and 13.97, all P<0.001), and the si-ANKRD22#2 group and the si-ANKRD22#3 group had significantly lower expression levels than the si-NC group (all P<0.001); the overexpression group had a significantly lower expression level of E-cadherin than the Vector group (t=4.98, P<0.01), and the si-ANKRD22#2 group and the si-ANKRD22#3 group had a significantly higher expression level than the si-NC group (both P<0.001) . The KEGG enrichment analysis and the ssGSEA analysis showed that ANKRD22 was associated with the PI3K/AKT/mTOR signaling pathway in hepatocellular carcinoma, and the overexpression group had significantly higher expression levels of p-AKT/AKT, p-PI3K/PI3K, and p-mTOR/mTOR than the Vector group (t=12.21, 3.43, and 9.75, all P<0.01), and the si-ANKRD22#2 group and the si-ANKRD22#3 group had significantly lower expression levels than the si-NC group (all P<0.001) . Conclusion ANKRD22 is highly expressed in hepatoma cells and can promote the proliferation, invasion, and migration of hepatoma cells and the activation of the PI3K/AKT/mTOR signaling pathway.
Key words: ?Carcinoma, ?Hepatocellular; ?Ankyrin Repeat; ?Cell Proliferation; ?Cell Movement
Research funding: ? National Natural Science Foundation of China (81960431, ? 81960535); ?Science and Technology Fund of?Guizhou Province ?(QKHZC [2021] YB444)
肝細(xì)胞癌 (HCC) 是世界上第六常見的惡性腫瘤, 并且是全球癌癥死亡第四大相關(guān)因素[1] , 并逐漸呈現(xiàn)上升趨勢(shì)[2] 。HCC在早期可無癥狀, 確診時(shí)常已發(fā)展至中晚期[3] , 而晚期HCC患者可選擇的治療方案十分有限[4] 。尤其在我國, 相關(guān)藥物仍未能滿足臨床上的諸多需求[5] 。因此, 繼續(xù)尋找HCC相關(guān)的生物標(biāo)志物具有重要價(jià)值。
錨蛋白重復(fù)序列22 (ankyrin-repeat domain-containing protein 22, ANKRD22)屬于錨蛋白(ANK)重復(fù)序列家族[6] , 是一種人N-肉豆蔻酰化蛋白[7] , 含有4個(gè)重復(fù)的錨蛋白基序, 共有191個(gè)氨基酸, 并且在氨基酸87和109之間具有假定的單通道跨膜區(qū)域[8] 。ANKRD22在多種惡性腫瘤中高表達(dá), 但其在HCC中的作用尚不明確。本研究通過對(duì)ANKRD22進(jìn)行過表達(dá)或者敲低, 來分析其對(duì)人HCC細(xì)胞增殖、 侵襲和遷移的影響及其分子機(jī)制。
1 材料與方法
1. 1 實(shí)驗(yàn)材料 人正常肝細(xì)胞株L-02及肝癌細(xì)胞株Huh7、 Hep G2、 MHCC-97H、 SK-HEP-1和SMMC-7721均購于中國科學(xué)院上海分院細(xì)胞庫; DMEM培養(yǎng)基、 0. 25%胰蛋白酶、 10%胎牛血清等均購于美國Gibco公司; 過表達(dá)慢病毒購于中國上海吉?jiǎng)P基因公司; siRNA購于中國廣州銳博生物科技有限公司; Lipo3000 購于美國invitrogen公司; ANKRD22及相關(guān)抗體均購于中國武漢三鷹公司。
1. 2 生物信息學(xué)分析 在TCGA數(shù)據(jù)庫 (https: //portal.gdc. cancer. gov/) 中下載ANKRD22在正常肝組織及肝細(xì)胞癌組織中的相關(guān)數(shù)據(jù), 運(yùn)用R4. 2. 1軟件, 以 “l(fā)imma” 和“edgR” R包進(jìn)行差異表達(dá)分析, 以 “survival” 和 “survminer” R包進(jìn)行預(yù)后分析。然后將TCGA數(shù)據(jù)庫中篩選出的在HCC中與ANKRD22相關(guān)的基因進(jìn)行KEGG富集分析尋找較多富集的通路, 并通過ssGSEA進(jìn)行進(jìn)一步分析。
1. 3 細(xì)胞培養(yǎng) 所有細(xì)胞株均使用含10%胎牛血清的DMEM培養(yǎng)基來進(jìn)行培養(yǎng), 細(xì)胞培養(yǎng)的環(huán)境為恒溫37 ℃、含5% CO2的無菌培養(yǎng)箱, 待細(xì)胞培養(yǎng)至對(duì)數(shù)期生長時(shí)提取以進(jìn)行后續(xù)進(jìn)一步實(shí)驗(yàn)。
1. 4 細(xì)胞siRNA轉(zhuǎn)染 將對(duì)數(shù)期生長的細(xì)胞Huh7取2×105個(gè)接種于六孔板, 在細(xì)胞密度增至30%~40%時(shí)以Lipo3000為介質(zhì)開始siRNA轉(zhuǎn)染。先以無血清培養(yǎng)基將Lipo3000及siRNA分別孵育5 min, 然后進(jìn)行混合孵育15 min, 孵育結(jié)束后緩慢滴入六孔板中并搖勻, 放入培養(yǎng)箱培養(yǎng)6 h后更換培養(yǎng)基, 24~48 h后可提取RNA并通過qRT-PCR驗(yàn)證siRNA轉(zhuǎn)染效率, 48~72 h后可提取蛋白并通過Western Blot驗(yàn)證siRNA轉(zhuǎn)染效率。
1. 5 細(xì)胞慢病毒感染 將對(duì)數(shù)期生長的細(xì)胞MHCC-97H取1×105個(gè)接種于培養(yǎng)瓶內(nèi), 約24 h后開始病毒感染, 依照病毒的MOI值將病毒吸入培養(yǎng)瓶內(nèi)并搖勻, 放入培養(yǎng)箱24 h后更換培養(yǎng)基, 約48 h后可提取RNA并通過qRT-PCR驗(yàn)證病毒轉(zhuǎn)染效率, 約72 h后可提取蛋白并通過Western Blot驗(yàn)證病毒轉(zhuǎn)染效率。
1. 6 qRT-PCR實(shí)驗(yàn) 收集待處理的細(xì)胞, 使用Trizol試劑以提取細(xì)胞的總RNA, 使用PrimeScriptTM RT Reagent試劑盒進(jìn)行逆轉(zhuǎn)錄以得到cDNA, 使用SYBR?Premix Ex TaqTM試劑盒進(jìn)行qRT-PCR分析, 每組分別設(shè)置5個(gè)復(fù)孔,反應(yīng)條件為95 ℃、 30 s, 95 ℃、 5 s, 60 ℃、 30 s, 擴(kuò)增40個(gè)循環(huán), 得到的結(jié)果使用Bio-Rad CFX Manager進(jìn)行分析, 以GAPDH基因作為內(nèi)參, 使用公式2?ΔΔCt計(jì)算得到目的基因相對(duì)于GAPDH的表達(dá)量。
1. 7 Western Blot實(shí)驗(yàn) 收集待處理的細(xì)胞, 加入裂解液以提取細(xì)胞的總蛋白, 使用SDS-PAGE凝膠進(jìn)行電泳以分離蛋白, 在300 mA下轉(zhuǎn)膜至PVDF膜上, 用5%脫脂牛奶室溫封閉2 h, 放入一抗4 ℃孵育過夜, 第二天放入二抗中室溫孵育2 h, 滴加顯影液后在化學(xué)發(fā)光儀中顯影。
1. 8 劃痕實(shí)驗(yàn) 將對(duì)數(shù)期生長的細(xì)胞取5×105個(gè)接種于六孔板內(nèi), 待細(xì)胞覆蓋大于90%孔徑時(shí), 以200 ?L規(guī)格槍頭垂直劃線, 并用PBS清洗后置于顯微鏡下拍照,放入培養(yǎng)箱中培養(yǎng)48 h后再次拍照。
1. 9 CCK-8實(shí)驗(yàn) 將對(duì)數(shù)期生長的細(xì)胞取3×103個(gè)接種于96孔板內(nèi), 待細(xì)胞貼壁后加入CCK-8試劑, 計(jì)為0 h,并用酶標(biāo)儀檢測(cè)于450 nm處各孔吸光度值, 后分別于培養(yǎng)24 h、 48 h、 72 h、 96 h后重復(fù)檢測(cè)。
1. 10 EdU增殖實(shí)驗(yàn) 將對(duì)數(shù)期生長的細(xì)胞取3×104個(gè)細(xì)胞接種于24孔板內(nèi), 待細(xì)胞貼壁后加入EdU工作液于培養(yǎng)箱內(nèi)孵育2 h, 然后棄去培養(yǎng)基、 固定細(xì)胞, 用TritonX-100透膜后加入熒光染料進(jìn)行染色, 待染色結(jié)束后用熒光顯微鏡進(jìn)行觀察計(jì)數(shù)并計(jì)算陽性率。
1. 11 Transwell試驗(yàn) 將對(duì)數(shù)期生長的細(xì)胞懸浮于無血清培養(yǎng)基中, 將含3×104個(gè)細(xì)胞的細(xì)胞懸液滴加于含或不含基質(zhì)膠的上室內(nèi), 并將含20%胎牛血清的培養(yǎng)基滴加于下室內(nèi), 置于培養(yǎng)箱內(nèi)培養(yǎng)24~48 h后吸去培養(yǎng)基, 用PBS清洗后加入4%多聚甲醛固定, 固定完成后用PBS清洗, 再加入0. 3%結(jié)晶紫固定, 染色結(jié)束后用PBS清洗, 待烘干后置于顯微鏡下觀察細(xì)胞數(shù)量。
1. 12 統(tǒng)計(jì)學(xué)分析 使用SPSS 25. 0統(tǒng)計(jì)軟件進(jìn)行分析, 計(jì)量資料兩組間比較采用成組t檢驗(yàn), 多組間比較采用單因素方差分析, 進(jìn)一步兩兩比較使用LSD-t檢驗(yàn), P<0. 05為差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2. 1 ANKRD22在HCC中的表達(dá) 通過對(duì)TCGA數(shù)據(jù)庫進(jìn)行分析, 結(jié)果提示ANKRD22在HCC組織中較正常肝組織高表達(dá) (t=5. 083, P<0. 001)(圖1a), 且ANKRD22高表達(dá)患者的總生存期及疾病相關(guān)生存期均顯著低于低表達(dá)的患者 (P值均<0. 05)(圖1b、 c)。進(jìn)一步以qRT-PCR及Western Blot對(duì)肝癌細(xì)胞系中ANKRD22表達(dá)情況進(jìn)行檢測(cè), 結(jié)果提示肝癌細(xì)胞系中ANKRD22的表達(dá)量均高于正常肝細(xì)胞 (P值均<0. 05)(圖1d、 e); 其中Huh7的表達(dá)量最高, MHCC-97H的表達(dá)量次之, 故以此2種細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
2. 2 ANKRD22轉(zhuǎn)染后的表達(dá)情況 使用過表達(dá)慢病毒轉(zhuǎn)染 MHCC-97H, 使用 siRNA 轉(zhuǎn)染 Huh7, 并以 qRT-PCR 及 Western Blot 進(jìn)行驗(yàn)證。結(jié)果提示, 過表達(dá)組MHCC-97H的ANKRD22 mRNA (t=85. 21, P<0. 001) 及蛋白(t=35. 27, P<0. 001) 表達(dá)量均明顯高于空載對(duì)照組 (Vector組)(圖2a、 b); 3個(gè)敲低組Huh7的mRNA及蛋白表達(dá)量均較陰性對(duì)照組 (si-NC組) 降低 (P值均<0. 01), 其中si-ANKRD22#2組及si-ANKRD22#3組的敲低效果較為顯著(圖2c、 d), 故繼續(xù)以si-ANKRD22#2及si-ANKRD22#3完成后續(xù)實(shí)驗(yàn)。以上結(jié)果提示過表達(dá)組和敲低組均構(gòu)建成功。
2. 3 ANKRD22對(duì)肝癌細(xì)胞增殖能力的影響 EdU增殖實(shí)驗(yàn)結(jié)果提示, 過表達(dá)組的陽性率高于 Vector 組(t=19. 60, P<0. 001); si-ANKRD22#2組及si-ANKRD22#3組的陽性率較si-NC組均降低 (P值均<0. 001)(圖3a、 b)。CCK-8實(shí)驗(yàn)結(jié)果提示, 過表達(dá)組的增殖速度高于Vector組 (t=6. 72, P<0. 01); si-ANKRD22#2組及si-ANKRD22#3組的增殖速度均較si-NC組降低 (P值均<0. 05)(圖3c)。Western Blot結(jié)果提示, Cyclin E1、 Cyclin D1、 CDK7、 CDK4在過表達(dá)組中表達(dá)高于Vector組 (t值分別為3. 54、 4. 95、 6. 34、5. 19, P值均<0. 01); 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均低于si-NC組 (P值均<0. 001)。P27在過表達(dá)組中表達(dá)低于Vector組 (t=6. 12, P<0. 001), 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均高于si-NC組 (P值均<0. 001)(圖3d)。
2. 4 ANKRD22對(duì)肝癌細(xì)胞侵襲、 遷移能力的影響 劃痕實(shí)驗(yàn)結(jié)果提示, 過表達(dá)組MHCC-97H的遷移速度高于Vector組 (t=5. 01, P<0. 01); si-ANKRD22#2組及si-ANKRD22#3組的遷移速度均較si-NC組降低 (P值均<0. 01)(圖4a、b) 。Transwell實(shí)驗(yàn)結(jié)果提示, 過表達(dá)組的穿膜數(shù)量高于Vector組 (遷移組: t=25. 60, P<0. 001; 侵襲組: t=3. 67, P<0. 05); si-ANKRD22#2組及si-ANKRD22#3組的穿膜數(shù)量均較si-NC組降低 (P值均<0. 01)(圖4c~e)。進(jìn)一步通過Western Blot分別對(duì)Vector組、 過表達(dá)組、 si-NC組、 si-ANKRD22#2組、 si-ANKRD22#3組與EMT相關(guān)蛋白之間的關(guān)系進(jìn)行驗(yàn)證, 結(jié)果提示N-cadherin、 Vimentin、 Snail在過表達(dá)組中表達(dá)高于Vector組 (t值分別為12. 13、 8. 85、13. 97, P值均<0. 001), 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均低于si-NC組 (P值均<0. 001); E-cadherin在過表達(dá)組中表達(dá)低于Vector組 (t=4. 98, P<0. 01), 在si-ANKRD22#2組及si-ANKRD22#3組中表達(dá)均高于si-NC組 (P值均<0. 001)(圖4f)。
2. 5 ANKRD22在肝癌細(xì)胞中的作用機(jī)制 KEGG富集分析結(jié)果提示, ANKRD22在HCC組織中富集于PI3K/AKT/mTOR、 JAK/STAT、 NF-κB等多條信號(hào)通路, 其中在PI3K/AKT/mTOR信號(hào)通路上的富集最為顯著 (圖5a)。ssGSEA富集分析結(jié)果提示, ANKRD22在HCC組織中正向顯著富集于PI3K/AKT/mTOR信號(hào)通路 (圖5b)。通過Western Blot對(duì)ANKRD22在肝癌細(xì)胞中對(duì)AKT、 PI3K、mTOR的磷酸化水平進(jìn)行驗(yàn)證, 結(jié)果提示在過表達(dá)組中,p-AKT/AKT、 p-PI3K/PI3K、 p-mTOR/mTOR均較Vector組升高 (t值分別為12. 21、 3. 43、 9. 75, P值均<0. 01); 在si-ANKRD22#2 組及 si-ANKRD22#3 組中, p-AKT/AKT、 p-PI3K/PI3K、 p-mTOR/mTOR 均較 si-NC組降低(P值均<0. 001)(圖5c)。
3 討論
2021年統(tǒng)計(jì)數(shù)據(jù)[9] 顯示, 我國肝癌患者數(shù)量占全球近50%, 肝癌作為在我國惡性腫瘤中發(fā)病率第4位、 致死率第2位的疾病[10] , 仍需繼續(xù)高度關(guān)注。
ANK是自然界中最常見的蛋白質(zhì)基序之一, 廣泛參與多種細(xì)胞過程[11]。ANKRD22作為ANK家族中的一員, 可能與人體內(nèi)的多種生物學(xué)功能有關(guān)。當(dāng)前相關(guān)研究表明ANKRD22與多種惡性腫瘤相關(guān), 其中Liu等[12] 發(fā)現(xiàn)ANKRD22可以通過上調(diào)E2F1介導(dǎo)的MELK表達(dá)促進(jìn)膠質(zhì)瘤增殖、 遷移、 侵襲和上皮-間充質(zhì)轉(zhuǎn)化; Wu等[13] 發(fā)現(xiàn)ANKRD22可以通過調(diào)節(jié)NuSAP1表達(dá)激活Wnt/β-連環(huán)蛋白通路來促進(jìn)乳腺癌; Yin等[14] 發(fā)現(xiàn)ANKRD22可以通過上調(diào)E2F1的轉(zhuǎn)錄來促進(jìn)非小細(xì)胞肺癌的進(jìn)展; Wu等[15] 發(fā)現(xiàn)ANKRD22可以通過調(diào)節(jié)Wnt/β-連環(huán)蛋白信號(hào)通路從而影響甲狀腺癌細(xì)胞的生長和遷移。因此筆者假設(shè)ANKRD22在肝癌細(xì)胞中也能起到促癌作用, 并且通過相關(guān)驗(yàn)證發(fā)現(xiàn)ANKRD22的確對(duì)肝癌細(xì)胞的增殖、侵襲和遷移起促進(jìn)作用。但是, Pan等[16] 發(fā)現(xiàn)ANKRD22通過與E-syt1合作從而促進(jìn)結(jié)直腸癌的代謝重編程;Chen等[17]發(fā)現(xiàn)ANKRD22可以通過逆轉(zhuǎn)PMN-MDSC的免疫抑制作用從而成為卵巢癌治療的新靶點(diǎn); Qiu等[18]發(fā)現(xiàn)ANKRD22可能在前列腺癌的進(jìn)程中起負(fù)向作用。說明ANKRD22在人體中有著復(fù)雜的生物學(xué)功能, 在肝癌細(xì)胞中也有可能有著更多的生物學(xué)功能, 本研究發(fā)現(xiàn)ANKRD22與PI3K/AKT/mTOR信號(hào)通路相關(guān), 但具體作用方式尚不明確。
本研究通過TCGA數(shù)據(jù)庫發(fā)現(xiàn)ANKRD22在人HCC組織中高表達(dá)且與患者的生存時(shí)間呈負(fù)相關(guān)。隨后通過細(xì)胞實(shí)驗(yàn)發(fā)現(xiàn), 在肝癌細(xì)胞中, ANKRD22較正常肝細(xì)胞中高表達(dá)且ANKRD22的表達(dá)水平與肝癌細(xì)胞的增殖、 侵襲和遷移能力呈正相關(guān)。為進(jìn)一步探究ANKRD22在肝癌細(xì)胞中的作用機(jī)制, 通過富集分析發(fā)現(xiàn)其與PI3K/AKT/mTOR信號(hào)通路相關(guān), 并通過實(shí)驗(yàn)證明ANKRD22的表達(dá)量與AKT、 PI3K、 mTOR的磷酸化水平呈正相關(guān), 筆者推測(cè)ANKRD22通過影響PI3K/AKT/mTOR信號(hào)通路從而促進(jìn)肝癌的進(jìn)展。此外, PI3K/AKT/mTOR信號(hào)通路在肝癌中與代謝重編程[19] 、 上皮-間充質(zhì)轉(zhuǎn)化[20] 、 脂質(zhì)合成[21]等多種生物學(xué)功能相關(guān), ANKRD22具體如何作用于PI3K/AKT/mTOR信號(hào)通路影響肝癌細(xì)胞的增殖、 侵襲和遷移,ANKRD22是否通過其他機(jī)制調(diào)控肝癌細(xì)胞生長等方面尚不明確, 仍需繼續(xù)進(jìn)行后續(xù)研究進(jìn)一步探索。
利益沖突聲明: 本文不存在任何利益沖突。
作者貢獻(xiàn)聲明: 蔡浚哲、 劉松柏、 費(fèi)曉斌負(fù)責(zé)實(shí)驗(yàn)操作;劉鵬、 朱昌毫負(fù)責(zé)資料收集與數(shù)據(jù)分析; 王興負(fù)責(zé)課題設(shè)計(jì); 潘耀振指導(dǎo)撰寫論文并最后定稿。
參考文獻(xiàn):
[1] LLOVET JM, KELLEY RK, VILLANUEVA A, et al. Hepatocellular carci?noma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
[2] FOGLIA B, TURATO C, CANNITO S. Hepatocellular carcinoma: Lat?est research in pathogenesis, detection and treatment[J]. Int J Mol Sci, 2023, 24(15): 12224. DOI: 10.3390/ijms241512224.
[3] DING CM, HOU JF, TAO GW, et al. Early diagnosis and screening of hepatocellular carcinoma[J/OL]. Chin J Hepatic Surg Electron Ed, 2023, 12(1): 22-28. DOI: 10.3877/cma.j.issn.2095-3232.2023.01.005.
丁成明, 侯嘉豐, 陶光偉, 等. 肝細(xì)胞癌早期診斷和篩查[J/OL]. 中華肝臟外科手術(shù)學(xué)電子雜志, 2023, 12(1): 22-28. DOI: 10.3877/cma.j.issn.2095-3232.2023.01.005.
[4] KIM E, VIATOUR P. Hepatocellular carcinoma: Old friends and new tricks[J]. Exp Mol Med, 2020, 52(12): 1898-1907. DOI: 10.1038/s12276-020-00527-1.
[5] LIU XF, ZHANG J, YAO L, et al. Advances in targeted therapy com?bined with immunotherapy for advanced hepatocellular carcinoma[J]. J Clin Hepatol, 2022, 38(5): 992-997. DOI: 10.3969/j.issn.1001-5256.2022.05.004.
劉秀峰, 張玨, 姚琳, 等. 中晚期肝細(xì)胞癌靶向聯(lián)合免疫治療進(jìn)展[J]. 臨床肝膽病雜志, 2022, 38(5): 992-997. DOI: 10.3969/j.issn.1001-5256.2022.05.004.
[6] YANG SS. Evaluation of Clinical Significance of ANKRD22 in Colorec?tal Cancer[D]. Hangzhou: Zhejiang University, 2019. DOI: 10.27461/d.cnki.gzjdx.2019.001668.
楊賽賽. ANKRD22在結(jié)直腸癌細(xì)胞中表達(dá)意義的研究[D]. 杭州: 浙江大學(xué), 2019.
[7] UTSUMI T, HOSOKAWA T, SHICHITA M, et al. ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically local?ized to lipid droplets[J]. Sci Rep, 2021, 11(1): 19233. DOI: 10.1038/s41598-021-98486-8.
[8] WANG R, WU YH, ZHU Y, et al. ANKRD22 is a novel therapeutic tar?get for gastric mucosal injury[J]. Biomed Pharmacother, 2022, 147: 112649. DOI: 10.1016/j.biopha.2022.112649.
[9] ZHOU HN, LI YM. Conversion therapy for hepatocellular carcinoma[J/OL]. Chin J Hepatic Surg Electron Ed, 2022, 11(6): 542-547. DOI: 10.3877/cma.j.issn.2095-3232.2022.06.002.
周輝年, 李玉民. 肝癌轉(zhuǎn)化治療[J/OL]. 中華肝臟外科手術(shù)學(xué)電子雜志, 2022, 11(6): 542-547. DOI: 10.3877/cma.j.issn.2095-3232.2022.06.002.
[10] LU SL, YAO JN, YUAN GD, et al. Current status and prospect of clinical and basic research on conversion therapy for hepatocellular carcinoma[J]. Chin J Exp Surg, 2022, 39(10): 1837-1843. DOI: 10.3760/cma.j.cn421213-20220210-01043.
陸世鎏, 姚建妮, 袁觀斗, 等. 肝癌轉(zhuǎn)化治療臨床與基礎(chǔ)研究現(xiàn)狀與展望[J]. 中華實(shí)驗(yàn)外科雜志, 2022, 39(10): 1837-1843. DOI: 10.3760/cma.j.cn421213-20220210-01043.
[11] PARRA RG, ESPADA R, VERSTRAETE N, et al. Structural and en?ergetic characterization of the ankyrin repeat protein family[J]. PLoS Comput Biol, 2015, 11(12): e1004659. DOI: 10.1371/journal.pcbi.1004659.
[12] LIU X, ZHAO JL, WU Q, et al. ANKRD22 promotes glioma prolifera?tion, migration, invasion, and epithelial-mesenchymal transition by upregulating E2F1-mediated MELK expression[J]. J Neuropathol Exp Neurol, 2023, 82(7): 631-640. DOI: 10.1093/jnen/nlad034.
[13] WU YG, LIU HX, GONG YF, et al. ANKRD22 enhances breast can?cer cell malignancy by activating the Wnt/β -catenin pathway via modulating NuSAP1 expression[J]. Bosn J Basic Med Sci, 2021, 21(3): 294-304. DOI: 10.17305/bjbms.2020.4701.
[14] YIN J, FU WF, DAI L, et al. ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1[J]. Sci Rep, 2017, 7(1): 4430. DOI: 10.1038/s41598-017-04818-y.
[15] WU YG, CHEN WX, ZHANG B, et al. ANKRD22 knockdown sup?presses papillary thyroid cell carcinoma growth and migration and modulates the Wnt/β-catenin signaling pathway[J]. Tissue Cell, 2023, 84: 102193. DOI: 10.1016/j.tice.2023.102193.
[16] PAN TH, LIU JW, XU S, et al. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells[J]. Theranostics, 2020, 10(2): 516-536. DOI: 10.7150/thno.37472.
[17] CHEN HH, YANG KQ, PANG LX, et al. ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs in ovarian cancer[J]. J Immunother Cancer, 2023, 11(2): e005527. DOI: 10.1136/jitc-2022-005527.
[18] QIU YQ, YANG SS, PAN TH, et al. ANKRD22 is involved in the pro?gression of prostate cancer[J]. Oncol Lett, 2019, 18(4): 4106-4113. DOI: 10.3892/ol.2019.10738.
[19] TIAN LY, SMIT DJ, J?CKER M. The role of PI3K/AKT/mTOR signal?ing in hepatocellular carcinoma metabolism[J]. Int J Mol Sci, 2023, 24(3): 2652. DOI: 10.3390/ijms24032652.
[20] LI YH, YIN YL, HE Y, et al. SOS1 regulates HCC cell epithelial-mes?enchymal transition via the PI3K/AKT/mTOR pathway[J]. Biochem Biophys Res Commun, 2022, 637: 161-169. DOI: 10.1016/j.bbrc.2022.11.015.
[21] CHEN JX, CHEN JD, HUANG JX, et al. HIF-2α upregulation medi?ated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway[J]. Aging (Albany NY), 2019, 11(23): 10839-10860. DOI: 10.18632/aging.102488.
收稿日期:2023-10-13; 錄用日期:2023-11-17
本文編輯:王瑩