国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

肝巨噬細(xì)胞調(diào)控肝癌癌前病變惡變的研究進(jìn)展

2024-06-06 13:50:32閆瑞娟焦俊喆黃玉閆曙光魏海梁常占杰郭英君李京濤
臨床肝膽病雜志 2024年5期
關(guān)鍵詞:肝細(xì)胞

閆瑞娟 焦俊喆 黃玉 閆曙光 魏海梁 常占杰 郭英君 李京濤

摘要: 肝巨噬細(xì)胞是肝臟中重要的免疫細(xì)胞, 其通過極化為M1型和M2型, 分別表達(dá) “促炎因子” 和 “抑炎因子”, 進(jìn)而發(fā)揮調(diào)控炎癥損傷反應(yīng)的作用。肝祖細(xì)胞惡變是肝癌癌前病變惡性進(jìn)展的核心機(jī)制, 其發(fā)生的關(guān)鍵因素是炎癥損傷微環(huán)境的持續(xù)刺激, 與M1/M2巨噬細(xì)胞極化密切相關(guān)。本綜述主要圍繞 “巨噬細(xì)胞極化-慢性炎癥-肝祖細(xì)胞惡變” 關(guān)系進(jìn)行探討, 為肝癌癌前病變的預(yù)防和治療提供重要的理論依據(jù)。

關(guān)鍵詞: 癌, 肝細(xì)胞; 肝巨噬細(xì)胞; 肝祖細(xì)胞惡變

基金項(xiàng)目: 國(guó)家自然科學(xué)基金 (82174330); 陜西省科技廳科研基金 (2022JQ-965, 2020ZDLSF05-15); 陜西省科技廳創(chuàng)新團(tuán)隊(duì) (2022TD-55); 陜西省中管局創(chuàng)新團(tuán)隊(duì) (2022-SLRH-LJ-002); 咸陽(yáng)市科技局科研基金 (L2022ZDYFSF007); 寧夏自然科學(xué)基金 (2023AAC03510); 陜西中醫(yī)藥大學(xué)學(xué)科創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目 (2019-YL05)

Research advances in liver macrophages regulating malignant transformation of hepatic precancerous lesions

YAN Ruijuan1, JIAO Junzhe1, HUANG Yu2, YAN Shuguang2, WEI Hailiang1, CHANG Zhanjie1, GUO Yingjun3, LI Jingtao1. (1. Liver Disease Hospital Ward One, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, China; 2. First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, China; 3. Department of Infectious Diseases, People s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, China)

Corresponding authors: ?LI Jingtao, ?lijingtao555@163.com ?(ORCID: ?0000-0003-0417-9821) ; ?GUO Yingjun, ?510410652@qq.com?(ORCID: ?0009-0007-9766-5955)

Abstract:

Liver macrophages are important immune cells in the liver, and they express proinflammatory factors and anti-inflammatory factors through polarization into M1 type and M2 type, respectively, thereby playing a role in regulating inflammatory damage response. The malignant transformation of hepatic progenitor cells is the core mechanism of the malignant progression of hepatic precancerous lesions, and its key factor is the continuous stimulation of inflammatory microenvironment, which is closely associated with M1/M2 macrophage polarization. This review mainly focuses on the association between macrophage polarization, chronic inflammation, and malignant transformation of hepatic progenitor cells, so as to provide a theoretical basis for the prevention and treatment of hepatic precancerous lesions.

Key words: ?Carcinoma, ?Hepatocellular; ?Liver Macrophage; ?Hepatic Progenitor Cell Malignant Transformation

Research funding: National Natural Science Foundation of China (82174330); Science and Technology Department of Shaanxi Research Fund (2022JQ-965,

2020ZDLSF05-15); Innovation Team of Science and Technology Department of Shaanxi Province (2022TD-55); Innovation Team of TCM Administration of Shaanxi Province (2022-SLRH-LJ-002); Science and Technology Administration of Xianyang City Scientific Research Fund (L2022ZDYFSF007); Natural Science Foundation of Ningxia (2023AAC03510); Discipline Innovation Team Building Project of Shaanxi University of Chinese Medicine (2019-YL05)

肝細(xì)胞癌是全球癌癥死亡的第三大原因, 5年生存率約為18%[1] 。肝細(xì)胞癌 (以下簡(jiǎn)稱肝癌) 的發(fā)生發(fā)展呈現(xiàn)多階段過程: 肝炎-肝硬化-肝癌癌前病變-肝癌[2] 。肝癌癌前病變是良性病變向惡性病變過渡的移行階段, 是一類具有細(xì)胞不典型性和分化異常的增生性病變, 持續(xù)時(shí)間較長(zhǎng)[3-4] 。肝癌癌前病變與肝癌的病因大致相同,各種原因?qū)е率軗p的肝細(xì)胞在修復(fù)與再生過程中, 產(chǎn)生了增殖和衰亡的不均衡, 同時(shí)引起促癌基因的表達(dá)增強(qiáng)以及抑癌基因的抑制失活, 慢性炎癥及纖維化過程中活躍的肝竇毛細(xì)血管化和異常的血管增生, 為肝結(jié)節(jié)的異型增生和惡變提供了條件。肝癌癌前病變的惡性進(jìn)展導(dǎo)致肝癌發(fā)生, 及時(shí)去除病因或適當(dāng)治療可阻止肝癌癌前病變的惡性進(jìn)展。我國(guó) 《原發(fā)性肝癌的分層篩查與監(jiān)測(cè)指南 (2020版)》 [5] , 將肝癌癌前疾病及癌前病變的演變規(guī)律, 列為尚待研究和解決的首要問題。因此, 肝癌癌前病變是肝癌防治關(guān)卡前移的關(guān)鍵環(huán)節(jié), 研究其深層的發(fā)病機(jī)制, 為肝癌的防治奠定理論基礎(chǔ)和提供藥物靶標(biāo), 具有重大的科學(xué)價(jià)值和臨床價(jià)值。

1 肝祖細(xì)胞惡變與肝癌癌前病變

肝癌癌前病變是指在慢性肝病背景下, 肝臟出現(xiàn)一定的組織結(jié)構(gòu)和細(xì)胞形態(tài)上的異型性, 形成具有潛在惡變風(fēng)險(xiǎn)的異型增生結(jié)節(jié), 異型增生結(jié)節(jié)主要分為大細(xì)胞和小細(xì)胞兩種類型, 按病理形態(tài)又可分為低度異型增生結(jié)節(jié)和高度異型增生結(jié)節(jié), 后者癌變風(fēng)險(xiǎn)更高[4, 6] 。肝癌癌前病變發(fā)生發(fā)展的核心機(jī)制是肝祖細(xì)胞惡變[6-7] 。肝祖細(xì)胞又稱卵圓細(xì)胞、 肝前體細(xì)胞, 主要位于Herring小管區(qū), 可以雙向分化為肝細(xì)胞和膽管細(xì)胞[7] 。經(jīng)研究[8-9] 證實(shí), 在急性肝損傷時(shí), 成熟的肝細(xì)胞增殖完成肝再生修復(fù); 但在慢性、 廣泛性肝損傷中, 肝祖細(xì)胞分化為成熟的肝細(xì)胞和膽管細(xì)胞以修復(fù)受損肝組織[10] 。在慢性炎癥的持續(xù)刺激下, 肝祖細(xì)胞可惡變?yōu)楦伟└杉?xì)胞, 成為肝癌癌前病變發(fā)生發(fā)展的起始細(xì)胞[11-13] 。肝祖細(xì)胞惡變促進(jìn)肝癌癌前病變發(fā)展的主要機(jī)制為: 在肝癌癌前病變階段,肝細(xì)胞大量受損, 在慢性炎癥反應(yīng)的持續(xù)刺激下, 被激活的部分肝祖細(xì)胞遷移至肝實(shí)質(zhì)中, 為了適應(yīng)持續(xù)存在的惡劣環(huán)境, 肝祖細(xì)胞快速異常增殖, 通過改變自身形態(tài)、性狀、 超微結(jié)構(gòu)、 酶學(xué)、 表面標(biāo)志物等, 異常分化為具有癌細(xì)胞特點(diǎn)的肝癌干細(xì)胞。肝癌干細(xì)胞進(jìn)一步增殖、 分化為細(xì)胞形態(tài)改變的肝癌癌前病變細(xì)胞 (大細(xì)胞改變和小細(xì)胞改變), 繼之肝癌癌前病變細(xì)胞聚集形成異型增生灶, 而異型增生灶膨脹性生長(zhǎng)成為低度異型增生結(jié)節(jié), 之后逐漸發(fā)展為高度異型增生結(jié)節(jié), 加速惡化形成早期小肝癌。由此可見, 肝祖細(xì)胞惡變是肝癌癌前病變發(fā)生發(fā)展的核心機(jī)制[14-16] 。巨噬細(xì)胞是肝祖細(xì)胞增殖分化的重要因素之一。研究[17-18] 表明, 靜脈注射巨噬細(xì)胞會(huì)導(dǎo)致巨噬細(xì)胞植入肝臟生態(tài)位, 通過旁分泌Wnt信號(hào)通路控制肝祖細(xì)胞增殖和細(xì)胞命運(yùn), 隨后肝祖細(xì)胞激活并改變肝臟結(jié)構(gòu)和功能。

2 肝巨噬細(xì)胞參與肝癌癌前病變

巨噬細(xì)胞是存在于組織中的一種防御細(xì)胞, 也是固有免疫系統(tǒng)中最重要的一員, 依據(jù)其不同的激活階段,既可提前感知疾病發(fā)生, 又可加重疾病進(jìn)展。它與各種肝臟疾病有關(guān), 如肝臟炎癥、 纖維化、 肝硬化以及肝癌等[19] 。巨噬細(xì)胞是維持肝臟穩(wěn)態(tài)的重要因素之一[20] ,其由組織常駐的Kupffer細(xì)胞和從體循環(huán)募集的單核細(xì)胞衍生的巨噬細(xì)胞組成[21-22] 。其中Kupffer細(xì)胞占單核巨噬細(xì)胞系總數(shù)的80%~90%。肝Kupffer細(xì)胞位于肝血竇周圍, 通過胞質(zhì)突起附著于內(nèi)皮細(xì)胞的竇側(cè)或內(nèi)皮細(xì)胞之間, 有的突起穿過內(nèi)皮細(xì)胞間隙或窗孔進(jìn)入竇周間隙, 與肝祖細(xì)胞直接接觸發(fā)生相互作用[8] 。肝Kupffer細(xì)胞是肝臟內(nèi)參與炎癥反應(yīng)最主要的免疫細(xì)胞, 可以表達(dá)TNF-α、 IL-6、 IL-10、 HGF、 TGF-α、 TGF-β等多種炎癥因子和細(xì)胞因子[21] 。在肝癌癌前病變組織中, 活化的Kupffer細(xì)胞分泌大量炎癥因子調(diào)控肝內(nèi)炎癥反應(yīng), 炎癥持續(xù)刺激導(dǎo)致肝祖細(xì)胞惡變[23-24] 。研究[25] 也證實(shí), 肝祖細(xì)胞與巨噬細(xì)胞共培養(yǎng)可以使其獲得肝癌干細(xì)胞的特性, 而在體內(nèi)拮抗肝Kupffer細(xì)胞后可一定程度地減少肝祖細(xì)胞向肝癌干細(xì)胞的惡性轉(zhuǎn)變。

3 肝巨噬細(xì)胞對(duì)肝癌癌前病變的雙重作用

成熟的巨噬細(xì)胞在各種因素誘導(dǎo)下可以出現(xiàn)表型、功能及形態(tài)的分化, 即極化現(xiàn)象, 又被稱為巨噬細(xì)胞的表型轉(zhuǎn)換或重編程[23] 。巨噬細(xì)胞的極化狀態(tài)可分為兩型[26] , M1型 (經(jīng)典活化型巨噬細(xì)胞) 和M2型 (替代性活化巨噬細(xì)胞)。M1基因群具有明顯的 “促炎”、 促進(jìn)肝癌癌前病變發(fā)生的作用; M2基因群普遍具有 “抑炎”、 抑制肝癌癌前病變發(fā)生的作用, 如圖1所示。

3. 1 肝巨噬細(xì)胞M1型與M2型 巨噬細(xì)胞的極化狀態(tài)具有極強(qiáng)的可變性[27] 。在免疫應(yīng)答或病理過程中, 巨噬細(xì)胞會(huì)根據(jù)特定微環(huán)境改變細(xì)胞表型和功能, 生物體內(nèi)的巨噬細(xì)胞可能經(jīng)常以不同比例的M1型和M2型兩種表型同時(shí)存在。M1型巨噬細(xì)胞, 可由IFN-γ、 LPS誘導(dǎo)刺激產(chǎn)生, 活化的細(xì)胞分泌大量促炎因子和趨化因子, 促進(jìn)炎癥反應(yīng), 殺傷微生物和腫瘤細(xì)胞, 強(qiáng)烈的炎癥反應(yīng)可以造成局部組織的損傷。其分子標(biāo)志物常采用TNF-α、IL-6、 iNOS、 MCP-1和CCL2。M2型巨噬細(xì)胞, 可由IL-4、IL-13刺激激活, 細(xì)胞活化后可大量釋放抑炎癥因子和趨化因子, 在血管生成、 抑制炎癥反應(yīng)、 促進(jìn)組織修復(fù)和傷口愈合以及促進(jìn)腫瘤進(jìn)展等方面起到重要作用。其分子標(biāo)志物常采用TGF-β、 PDGF、 IL-10、 Arg1、 CD206等[28] 。M1型和M2型巨噬細(xì)胞中,“促炎” 基因和 “抗炎” 基因同時(shí)表達(dá), 適度的 “促炎” 因子促進(jìn)炎癥反應(yīng), 殺傷腫瘤細(xì)胞, 同時(shí),“抗炎” 基因的激活將抑制炎癥反應(yīng), 促進(jìn)腫瘤細(xì)胞存活[26, 29] 。肝巨噬細(xì)胞M1型和M2型之間的動(dòng)態(tài)平衡可以調(diào)控肝臟的慢性炎癥反應(yīng), 從而影響肝病的進(jìn)程[30] 。通過調(diào)控肝臟M1型、 M2型巨噬細(xì)胞的相互轉(zhuǎn)化, 對(duì)肝癌的預(yù)后及轉(zhuǎn)歸起著關(guān)鍵作用。如甘草酸[31]可以通過 JNK 和 NF-κB 通路, 上調(diào) CCR7 表達(dá), 促進(jìn)TNF-α、 IL-12、 IL-6和NO的產(chǎn)生 (M1型標(biāo)志物), 并且下調(diào)MR、 Ym1、 Arg1表達(dá) (M2型標(biāo)志物)。IFN基因刺激物拮抗劑、 DMXAA、 2'3'-cGAMP均可促進(jìn)M2型向M1型巨噬細(xì)胞復(fù)極化, 而復(fù)極化的巨噬細(xì)胞可以抑制腫瘤生長(zhǎng), 如DMXAA處理的M2型巨噬細(xì)胞向M1型轉(zhuǎn)化后有抗腫瘤效應(yīng)[32] 。CENDE可以通過促進(jìn)巨噬細(xì)胞的M2極化間接調(diào)節(jié)腫瘤血管生成[33] 。IL4R-Exo (si/mi) 通過將TAM重編程為M1樣巨噬細(xì)胞并增加抗腫瘤免疫力來抑制腫瘤生長(zhǎng)[34] 。

3. 2 肝巨噬細(xì)胞極化失衡與肝祖細(xì)胞惡變 巨噬細(xì)胞在各種病理過程中極化和可塑性是其關(guān)鍵特征。因?yàn)榫奘杉?xì)胞憑借極化的可塑性改變其表型, 這種可塑性可以整合來自病原體、 受傷組織和正常組織環(huán)境的各種信號(hào)[20] 。巨噬細(xì)胞在肝臟的炎癥反應(yīng)和組織修復(fù)中發(fā)揮著促炎和抗炎的雙重作用, M1型與M2型巨噬細(xì)胞的失衡[35] 介導(dǎo)了肝炎-肝硬化-肝癌癌前病變-肝癌的進(jìn)展。在炎癥過程中, M1型巨噬細(xì)胞極化是造成慢性炎癥的 “罪魁禍?zhǔn)住?。慢性炎癥的產(chǎn)生, 是由于各種損傷因素 (病毒、 致癌物等) 造成了肝臟免疫反應(yīng)、 氧化應(yīng)激、 肝細(xì)胞壞死及凋亡等, 繼而發(fā)生慢性彌漫性炎癥、 壞死和纖維化[36] 。臨床證實(shí)80%~90%的肝癌發(fā)生在慢性肝臟炎癥和肝硬化背景下, 而肝癌癌前病變組織則分布于慢性炎癥或硬化的肝組織中[4, 37] 。在慢性炎癥中肝祖細(xì)胞明顯增殖, 并部分惡性轉(zhuǎn)變?yōu)楦伟└杉?xì)胞[25] 。肝祖細(xì)胞的活化、 增殖和分化受到多種細(xì)胞炎癥因子的調(diào)控[38-39] , 包括TNF-α、 IL-6、 iNOS、 MCP-1等, 而這些炎癥因子都主要來源于M1型巨噬細(xì)胞。肝Kupffer細(xì)胞通過釋放上述炎癥因子來調(diào)節(jié)慢性炎癥反應(yīng), 從而調(diào)節(jié)肝祖細(xì)胞的活化、 增殖和分化。在膽堿缺乏/乙硫氨酸補(bǔ)充飲食 (CDE) 誘導(dǎo)的肝損傷模型中, 肝祖細(xì)胞自身就能充當(dāng)CX (3) CR1 (high) CCR2 (high) 等趨化因子的來源, 用以邀請(qǐng)Kupffer細(xì)胞的浸潤(rùn), M1型Kupffer細(xì)胞數(shù)量增加,持久性分泌高水平的TNF-α、 Tweak、 IL-6等, 特別是Tweak因子能以NF-κB依賴性方式誘導(dǎo)肝祖細(xì)胞增殖, 還能影響肝祖細(xì)胞介導(dǎo)的炎癥細(xì)胞和白細(xì)胞的募集, 進(jìn)一步加重慢性肝損傷中炎癥反應(yīng)和肝纖維化, 刺激肝祖細(xì)胞活化增殖和分化[40] 。

在肝癌癌前病變階段, 肝組織結(jié)構(gòu)的改變、 相對(duì)缺氧的環(huán)境, 以及M1型Kupffer細(xì)胞浸潤(rùn)并分泌大量的促炎因子[38, 41] , 導(dǎo)致慢性炎癥持續(xù)存在。研究[42] 發(fā)現(xiàn), 制瘤素M通過激活巨噬細(xì)胞, 進(jìn)而釋放TNF-α促進(jìn)肝祖細(xì)胞異常增殖與活化。M1型巨噬細(xì)胞異常分泌TNF-α可引起UBD和CHK2表達(dá)下調(diào)導(dǎo)致肝祖細(xì)胞的染色體不穩(wěn)定性, 同時(shí)可通過TNFR-1/Src/STAT3通路加快肝祖細(xì)胞自我更新, 兩者協(xié)同作用促進(jìn)肝祖細(xì)胞向肝癌干細(xì)胞惡性轉(zhuǎn)化[25] 。TNF-α可以激活NF-κB, 繼之NF-κB通過活化胞嘧啶脫氨酶, 直接將DNA大分子上的胞嘧啶 (C) 變?yōu)槟蜞奏?(U) 造成DNA突變[40] ; NF-κB也可以通過激活I(lǐng)L-6/STAT3通路促進(jìn)肝癌癌前病變細(xì)胞生長(zhǎng)[43]。而IL-6/Stat3信號(hào)通路上調(diào)和TGF-β信號(hào)通路下調(diào)可導(dǎo)致肝祖細(xì)胞惡變[44] 。同時(shí), 上述的促炎因子又可以刺激肝損傷組織中的基質(zhì)細(xì)胞, 產(chǎn)生多種生長(zhǎng)因子及趨化因子, 募集并 “馴化” 巨噬細(xì)胞及中性粒細(xì)胞等, 加重免疫損傷和氧化損傷, 釋放血管內(nèi)皮生長(zhǎng)因子和活性氧等, 再次造成DNA損傷, 促進(jìn)細(xì)胞惡變[45] 。由此可見, 肝癌癌前病變時(shí), M1型巨噬細(xì)胞極化失衡是造成慢性炎癥進(jìn)一步導(dǎo)致“肝祖細(xì)胞惡變” 進(jìn)而發(fā)生肝癌癌前病變的關(guān)鍵所在 (圖2)。另外一項(xiàng)關(guān)于肝損傷的研究[46] 表明, 由于M1型巨噬細(xì)胞相關(guān)的炎癥因子TNF-α的表達(dá)缺陷, 僅在損傷肝組織的門靜脈區(qū)域觀察到肝祖細(xì)胞的聚集, 而肝祖細(xì)胞向肝實(shí)質(zhì)的遷移卻被顯著破壞。M2型巨噬細(xì)胞極化可促進(jìn) “抑炎” 因子的表達(dá), 這也說明向M2型巨噬細(xì)胞極化可抑制肝祖細(xì)胞的活化、 增殖和分化甚至細(xì)胞遷移,進(jìn)而阻止肝癌癌前病變惡變[38] 。

4 總結(jié)與展望

總之, 肝巨噬細(xì)胞在肝癌癌前病變中起關(guān)鍵作用。當(dāng)損傷肝組織中浸潤(rùn)的M1/M2巨噬細(xì)胞發(fā)生極化失衡,增多的M1型巨噬細(xì)胞分泌較多的炎癥因子 (如TNF-α、IL-6、 iNOS、 MCP-1等) 加重炎癥反應(yīng)、 免疫損傷、 氧化損傷進(jìn)展, 進(jìn)而促進(jìn)肝祖細(xì)胞的快速異常增殖和分化。異常增殖、 分化的肝祖細(xì)胞惡變?yōu)楦伟└杉?xì)胞, 并導(dǎo)致隨后肝癌癌前病變細(xì)胞 (大細(xì)胞改變和小細(xì)胞改變) 的出現(xiàn), 肝癌癌前病變細(xì)胞聚集形成異型增生灶以及異型增生結(jié)節(jié), 最終致肝癌癌前病變的發(fā)生。目前關(guān)于肝癌癌前病變的治療國(guó)內(nèi)外的相關(guān)文獻(xiàn)報(bào)道較少, 關(guān)于本病的臨床治療仍以隨訪監(jiān)測(cè)為主, 隨著肝癌癌前病變機(jī)制的進(jìn)一步研究, 肝巨噬細(xì)胞M1/M2極化失衡可能成為理想切入點(diǎn), 通過研究對(duì)于巨噬細(xì)胞M1/M2的極化狀態(tài)的調(diào)整, 影響 “促炎因子” 和 “抑炎因子” 的表達(dá), 改善慢性炎癥反應(yīng), 從而抑制肝祖細(xì)胞惡變, 為臨床肝癌癌前病變的防治提供重要思路。

利益沖突聲明: 本文不存在任何利益沖突。

作者貢獻(xiàn)聲明: 閆瑞娟負(fù)責(zé)構(gòu)思文章思路, 設(shè)計(jì)文章結(jié)構(gòu)并撰寫文章; 焦俊喆、 黃玉、 魏海梁負(fù)責(zé)研究文獻(xiàn), 更新、 補(bǔ)充相關(guān)內(nèi)容; 閆曙光負(fù)責(zé)設(shè)計(jì)并討論文章構(gòu)架; 常占杰負(fù)責(zé)基礎(chǔ)理論指導(dǎo); 郭英君負(fù)責(zé)修改文章, 設(shè)計(jì)文章結(jié)構(gòu)并參與部分文章撰寫; 李京濤負(fù)責(zé)審核文章思路并修改。

參考文獻(xiàn):

[1] VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/S0140-6736(22)01200-4.

[2] WANG C, VEGNA S, JIN HJ, et al. Inducing and exploiting vulnerabili?ties for the treatment of liver cancer[J]. Nature, 2019, 574(7777): 268-272. DOI: 10.1038/s41586-019-1607-3.

[3] RENZULLI M, BISELLI M, BROCCHI S, et al. New hallmark of hepato?cellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: A new diagnostic algorithm[J]. Gut, 2018, 67(9): 1674-1682. DOI: 10.1136/gutjnl-2017-315384.

[4] JIAO JZ, LI JT, YAN SG, et al. Current research status of precancerous dysplastic nodules in hepatocellular carcinoma[J]. J Clin Hepatol, 2017, 33(5): 974-978. DOI: 10.3969/j.issn.1001-5256.2017.05.039.

焦俊喆, 李京濤, 閆曙光, 等. 肝細(xì)胞癌癌前異型增生結(jié)節(jié)的研究現(xiàn)狀[J]. 臨床肝膽病雜志, 2017, 33(5): 974-978. DOI: 10.3969/j.issn.1001-5256.2017.05.039.

[5] Professional Committee for Prevention and Control of Hepatobiliary and Pancreatic Diseases of Chinese Preventive Medicine Associa?tion; Professional Committee for Hepatology, Chinese Research Hospital Association; Chinese Society of Hepatology, Chinese Medi?cal Association, et al. Guideline for stratified screening and surveil?lance of primary liver cancer (2020 edition) [J]. J Clin Hepatol, 2021, 37(2): 286-295. DOI: 10.3969/j.issn.1001-5256.2021.02.009.

中華預(yù)防醫(yī)學(xué)會(huì)肝膽胰疾病預(yù)防與控制專業(yè)委員會(huì), 中國(guó)研究型醫(yī)院學(xué)會(huì)肝病專業(yè)委員會(huì), 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì), 等. 原發(fā)性肝癌的分層篩查與監(jiān)測(cè)指南(2020版)[J]. 臨床肝膽病雜志, 2021, 37(2): 286-295. DOI: 10.3969/j.issn.1001-5256.2021.02.009.

[6] MARQUARDT JU, ANDERSEN JB, THORGEIRSSON SS. Functional and genetic deconstruction of the cellular origin in liver cancer[J]. Nat Rev Cancer, 2015, 15(11): 653-667. DOI: 10.1038/nrc4017.

[7] ZHU LQ, FINKELSTEIN D, GAO CL, et al. Multi-organ mapping of cancer risk[J]. Cell, 2016, 166(5): 1132-1146. DOI: 10.1016/j.cell.2016.07.045.

[8] MIYAJIMA A, TANAKA M, ITOH T. Stem/progenitor cells in liver de?velopment, homeostasis, regeneration, and reprogramming[J]. Cell Stem Cell, 2014, 14(5): 561-574. DOI: 10.1016/j.stem.2014.04.010.

[9] BRIA A, MARDA J, ZHOU JM, et al. Hepatic progenitor cell activa?tion in liver repair[J]. Liver Res, 2017, 1(2): 81-87. DOI: 10.1016/j.livres.2017.08.002.

[10] WU CC, LIN CJ, KUO KK, et al. Correlation between cancer stem cells, inflammation and malignant transformation in a DEN-induced model of hepatic carcinogenesis[J]. Curr Issues Mol Biol, 2022, 44(7): 2879-2886. DOI: 10.3390/cimb44070198.

[11] PU WJ, ZHU H, ZHANG MJ, et al. Bipotent transitional liver progenitor cells contribute to liver regeneration[J]. Nat Genet, 2023, 55(4): 651-664. DOI: 10.1038/s41588-023-01335-9.

[12] LIU WT, GAO L, HOU XJ, et al. TWEAK signaling-induced ID1 expres?sion drives malignant transformation of hepatic progenitor cells during hepatocarcinogenesis[J]. Adv Sci, 2023, 10(18): e2300350. DOI: 10.1002/advs.202300350.

[13] NIO K, YAMASHITA T, KANEKO S. The evolving concept of liver cancer stem cells[J]. Mol Cancer, 2017, 16(1): 4. DOI: 10.1186/s12943-016-0572-9.

[14] THAN NN, NEWSOME PN. Stem cells for liver regeneration[J]. QJM, 2014, 107(6): 417-421. DOI: 10.1093/qjmed/hcu013.

[15] YAN ZJ, CHEN L, WANG HY. To be or not to be: The double-edged sword roles of liver progenitor cells[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188870. DOI: 10.1016/j.bbcan.2023.188870.

[16] SIA D, VILLANUEVA A, FRIEDMAN SL, et al. Liver cancer cell of ori?gin, molecular class, and effects onPatient prognosis[J]. Gastroen?terology, 2017, 152(4): 745-761. DOI: 10.1053/j.gastro.2016.11.048.

[17] HAIDERI SS, MCKINNON AC, TAYLOR AH, et al. Injection of embry?onic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury[J]. NPJ Regen Med, 2017, 2: 14. DOI: 10.1038/s41536-017-0017-0.

[18] ZENG JX, JING YY, WU QL, et al. Autophagy is required for hepatic dif?ferentiation of hepatic progenitor cells via Wnt signaling pathway[J]. Biomed Res Int, 2021, 2021: 6627506. DOI: 10.1155/2021/6627506.

[19] NATI M, CHUNG KJ, CHAVAKIS T. The role of innate immune cells in nonalcoholic fatty liver disease[J]. J Innate Immun, 2022, 14(1): 31-41. DOI: 10.1159/000518407.

[20] KHURANA A, NAVIK U, ALLAWADHI P, et al. Spotlight on liver mac?rophages for halting liver disease progression and injury[J]. Expert Opin Ther Targets, 2022, 26(8): 707-719. DOI: 10.1080/14728222.2022.2133699.

[21] SOUCIE EL, WENG ZM, GEIRSD?TTIR L, et al. Lineage-specific en?hancers activate self-renewal genes in macrophages and embryonic stem cells[J]. Science, 2016, 351(6274): aad5510. DOI: 10.1126/science.aad5510.

[22] BL?RIOT C, DUPUIS T, JOUVION G, et al. Liver-resident macro?phage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection[J]. Im?munity, 2015, 42(1): 145-158. DOI: 10.1016/j.immuni.2014.12.020.

[23] VANNELLA KM, WYNN TA. Mechanisms of organ injury and repair by macrophages[J]. Annu Rev Physiol, 2017, 79: 593-617. DOI: 10.1146/annurev-physiol-022516-034356.

[24] LUO Y, XIAO JH. Inflammatory auxo-action in the stem cell division theory of cancer[J]. PeerJ, 2023, 11: e15444. DOI: 10.7717/peerj.15444.

[25] LI XF, CHEN C, XIANG DM, et al. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical signifi?cance[J]. Hepatology, 2017, 66(6): 1934-1951. DOI: 10.1002/hep.29372.

[26] SICA A, INVERNIZZI P, MANTOVANI A. Macrophage plasticity and polarization in liver homeostasis and pathology[J]. Hepatology, 2014, 59(5): 2034-2042. DOI: 10.1002/hep.26754.

[27] MURRAY PJ, ALLEN JE, BISWAS SK, et al. Macrophage activation and polarization: Nomenclature and experimental guidelines[J]. Im?munity, 2014, 41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.

[28] SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and dis?ease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.

[29] JIN K, LI T, S?NCHEZ-DUFFHUES G, et al. Involvement of inflamma?tion and its related microRNAs in hepatocellular carcinoma[J]. Onco?target, 2017, 8(13): 22145-22165. DOI: 10.18632/oncotarget.13530.

[30] YANG L, ZHANG Y. Tumor-associated macrophages: From basic re?search to clinical application[J]. J Hematol Oncol, 2017, 10(1): 58. DOI: 10.1186/s13045-017-0430-2.

[31] MAO YL, WANG BK, XU X, et al. Glycyrrhizic acid promotes M1 macrophage polarization in murine bone marrow-derived macro?phages associated with the activation of JNK and NF-κB[J]. Media?tors Inflamm, 2015, 2015: 372931. DOI: 10.1155/2015/372931.

[32] TANG Y, KITISIN K, JOGUNOORI W, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling[J]. Proc Natl Acad Sci U S A, 2008, 105(7): 2445-2450. DOI: 10.1073/pnas.0705395105.

[33] HAN CY, YANG Y, SHENG YJ, et al. The mechanism of lncRNA-CRNDE in regulating tumour-associated macrophage M2 polariza?tion and promoting tumour angiogenesis[J]. J Cellular Molecular Medi, 2021, 25(9): 4235-4247. DOI: 10.1111/jcmm.16477.

[34] GUNASSEKARAN GR, POONGKAVITHAI VADEVOO SM, BAEK MC, et al. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages[J]. Bioma?terials, 2021, 278: 121137. DOI: 10.1016/j.biomaterials.2021.121137.

[35] ORECCHIONI M, GHOSHEH Y, PRAMOD AB, et al. Macrophage po?larization: Different gene signatures in M1(LPS+ ) vs. classically and M2(LPS- ) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.

[36] RINGELHAN M, PFISTER D, O CONNOR T, et al. The immunology of hepatocellular carcinoma[J]. Nat Immunol, 2018, 19(3): 222-232. DOI: 10.1038/s41590-018-0044-z.

[37] Bureau of Medical Administration, National Health Commission of the People s Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition) [J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.

中華人民共和國(guó)國(guó)家衛(wèi)生健康委員會(huì)醫(yī)政醫(yī)管局. 原發(fā)性肝癌診療規(guī)范(2019年版)[J]. 臨床肝膽病雜志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.

[38] CHEN JM, CHEN L, ZERN MA, et al. The diversity and plasticity of adult hepatic progenitor cells and their niche[J]. Liver Int, 2017, 37(9): 1260-1271. DOI: 10.1111/liv.13377.

[39] HOU XJ, YE F, LI XY, et al. Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigen?esis[J]. Cell Immunol, 2018, 326: 52-59. DOI: 10.1016/j.cellimm.2017.08.004.

[40] KAUR S, SIDDIQUI H, BHAT MH. Hepatic progenitor cells in action: Liver regeneration or fibrosis?[J]. Am J Pathol, 2015, 185(9): 2342-2350. DOI: 10.1016/j.ajpath.2015.06.004.

[41] ALEKSANDROVA K, BOEING H, N?THLINGS U, et al. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer[J]. Hepatology, 2014, 60(3): 858-871. DOI: 10.1002/hep.27016.

[42] YANG X, SHAO CC, DUAN LX, et al. Oncostatin M promotes hepatic progenitor cell activation and hepatocarcinogenesis via macrophage-derived tumor necrosis factor-Α[J]. Cancer Lett, 2021, 517: 46-54. DOI: 10.1016/j.canlet.2021.05.039.

[43] LI L, CUI L, LIN P, et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from in?jury-specific enhancers[J]. Cell Stem Cell, 2023, 30(3): 283-299. e9. DOI: 10.1016/j.stem.2023.01.009.

[44] GALDIERO MR, BONAVITA E, BARAJON I, et al. Tumor associated macrophages and neutrophils in cancer[J]. Immunobiology, 2013, 218(11): 1402-1410. DOI: 10.1016/j.imbio.2013.06.003.

[45] GOSWAMI KK, GHOSH T, GHOSH S, et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment[J]. Cell Immu?nol, 2017, 316: 1-10. DOI: 10.1016/j.cellimm.2017.04.005.

[46] van HUL N, LANTHIER N, ESPA?OL SU?ER R, et al. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver in?jury[J]. Am J Pathol, 2011, 179(4): 1839-1850. DOI: 10.1016/j.aj?path.2011.06.042.

收稿日期:2023-08-15; 錄用日期:2023-09-12

本文編輯:王瑩

猜你喜歡
肝細(xì)胞
肝臟脾植入誤診為肝細(xì)胞癌1例
傳染病信息(2022年6期)2023-01-12 08:58:54
16排螺旋CT在肝細(xì)胞癌診斷中的應(yīng)用分析
外泌體miRNA在肝細(xì)胞癌中的研究進(jìn)展
鋅指蛋白與肝細(xì)胞癌的研究進(jìn)展
乙型肝炎病毒與肝細(xì)胞癌微血管侵犯的相關(guān)性
磷脂酰肌醇蛋白聚糖3在肝細(xì)胞癌組織中的表達(dá)及臨床意義
肝細(xì)胞程序性壞死的研究進(jìn)展
肝細(xì)胞癌診斷中CT灌注成像的應(yīng)用探析
肝細(xì)胞癌患者血清趨化因子CXCR12和SA的表達(dá)及臨床意義
SIAh2與Sprouty2在肝細(xì)胞癌中的表達(dá)及臨床意義
双江| 茶陵县| 金塔县| 锦州市| 巴彦淖尔市| 华蓥市| 大埔县| 女性| 德安县| 乌苏市| 北海市| 孝义市| 罗定市| 兴海县| 太仓市| 郎溪县| 永顺县| 禹州市| 扶沟县| 云梦县| 黄梅县| 长汀县| 东台市| 娄烦县| 麦盖提县| 香格里拉县| 玉田县| 额敏县| 靖西县| 惠安县| 拉萨市| 普陀区| 宣汉县| 和顺县| 泸定县| 调兵山市| 兴化市| 龙游县| 新余市| 德安县| 虞城县|