收稿日期Received:2023-02-14""" 修回日期Accepted:2023-03-23
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31971642,32271959);江蘇省重點(diǎn)研發(fā)計(jì)劃(現(xiàn)代農(nóng)業(yè))重點(diǎn)項(xiàng)目(BE2019388)。
第一作者:宋子琪(2632583724@qq.com)。
*通信作者:尚旭嵐(shangxulan@njfu.edu.cn),副教授。
引文格式:
宋子琪,卞國(guó)良,林峰,等. 流式細(xì)胞儀鑒定青錢(qián)柳倍性方法的建立及其應(yīng)用. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(2):61-68.
SONG Z Q,BIAN G L,LIN F, et al. Establishment and application of a flow cytometry method for chromosome ploidy identification of Cyclocarya paliurus. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(2):61-68.
DOI:10.12302/j.issn.1000-2006.202302014.
摘要:【目的】利用流式細(xì)胞儀檢測(cè)青錢(qián)柳(Cyclocarya paliurus)的染色體倍性,為青錢(qián)柳種質(zhì)鑒定及遺傳育種研究提供技術(shù)支持和基礎(chǔ)數(shù)據(jù)?!痉椒ā恳郧噱X(qián)柳葉片為材料,比較了裂解液種類(lèi)、離心處理和葉片保存方式對(duì)倍性檢測(cè)效果的影響。建立的青錢(qián)柳流式細(xì)胞分析倍性的方法為:取參照樣本和待測(cè)樣本葉片各0.50~1.00 cm2,加入1 mL的mGb裂解液中快速切碎,過(guò)濾后加入20 μL的碘化丙啶(PI)染色1 min即可上機(jī)檢測(cè)。利用建立的方法對(duì)1 395份青錢(qián)柳種質(zhì)資源的倍性進(jìn)行檢測(cè)?!窘Y(jié)果】mGb裂解液的裂解效果最好,峰圖質(zhì)量最優(yōu)。細(xì)胞核懸浮液過(guò)濾后可無(wú)需離心而直接染色并進(jìn)行測(cè)定。4" ℃冷藏葉片的測(cè)定效果最佳,保存時(shí)間以7 d為宜。硅膠干燥樣本測(cè)定效果優(yōu)于冷凍,硅膠干燥保存時(shí)間以150 d為宜。100份試驗(yàn)樣本的DNA含量峰值的變異系數(shù)(CV)值為2.13%~5.04%,倍性估算值為1.80~2.40的樣本判斷為二倍體,倍性估算值為3.60~4.20的樣本判斷為四倍體。倍性估算值為3.00±0.40時(shí),需采用與初判倍性相同的參照樣本進(jìn)行第2次標(biāo)定。對(duì)1 395份青錢(qián)柳種質(zhì)資源進(jìn)行倍性鑒定,共檢測(cè)出二倍體104份,四倍體1 291份?!窘Y(jié)論】對(duì)于倍性估算值異常的樣本,采用二次標(biāo)定法可快速確定其倍性。該方法操作簡(jiǎn)單,高效準(zhǔn)確,為青錢(qián)柳種質(zhì)倍性鑒定提供了有效方法。
關(guān)鍵詞:青錢(qián)柳;倍性鑒定;流式細(xì)胞術(shù);細(xì)胞核裂解液;內(nèi)標(biāo)法
中圖分類(lèi)號(hào):S722""""""" 文獻(xiàn)標(biāo)志碼:A開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
文章編號(hào):1000-2006(2024)02-0061-08
Establishment and application of a flow cytometry method for chromosome ploidy identification" of Cyclocarya paliurus
SONG Ziqi1,2, BIAN Guoliang1, LIN Feng3, HU Fengrong4, SHANG Xulan1*
(1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; 2. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China; 3. Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China; 4. College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)
Abstract: 【Objective】 In order to provide a technical support and basic data for germplasm identification and genetic breeding of C. paliurus, this study determined the chromosome ploidy by using flow cytometry. 【Method】 Leaves of C. paliurus were used as materials to compare the ploidy detection effects of nuclei isolation buffers, centrifugation treatments and preserved ways of leaves, and the ploidy of 1395 C.paliurus germplasm resources was determined by the established method. 【Results】 mGb buffer was the best for nuclei isolation, and the nucleus suspension prepared by it has the clearest peak. Nuclear suspensions could be directly stained after filtration without centrifugation treatment. The detection effect of leaves preserved at 4" ℃ was the best, and the suitable storage time was 7 d. The test effect of dried leaves by silica gel was better than that by freezing, and the suitable storage time by silica gel drying was 150 d. CV values of 100 test samples ranged from 2.13% to 5.04%. If the estimated value of ploidy was 1.80~2.40, and this sample was identified as diploid. If the estimated value of ploidy was 3.60~4.20, and this sample was identified as tetraploid. When the estimated value of ploidy was 3.00±0.40, the reference sample with the same ploidy as the initial judgment should be used for the second detection. By using the above established method for ploidy identification of 1395 germplasm resources 104 diploids and 1291 tetraploids were detected. 【Conclusion】 The ploidy identification of C. paliurus by using flow cytometry was as follows: 0.50~1.00 cm2 leaves of the reference sample and the test sample were mixed and chopped with 1 mL of mGb buffer. After filtration, 20 μL PI was added for staining for 1 min. For the samples with abnormal estimated value of ploidy, they could be identified quickly by the second detection" with the same ploidy standard together. The method is simple, efficient and accurate, which provides an effective method for ploidy identification of C. paliurus germplasm.
【Objective】 To provide technical support and basic data for the germplasm identification and genetic breeding of Cyclocarya paliurus, this study determined the chromosome ploidy using flow cytometry. 【Method】 C. paliurus leaves were used as study materials to compare the ploidy detection effects of different nuclei isolation buffers, centrifugation treatments, and leaf preservation methods. The ploidy identification method for C. paliurus using flow cytometry was as follows: 0.50-1.00 cm2 leaves of the reference sample and the test sample were mixed and chopped with 1 mL of mGb buffer. After filtration, 20 μL PI was added for staining for 1 min. The ploidy of 1 395 C. paliurus germplasm resources was determined by the established method. 【Result】 The optimal choice for isolating nuclei and achieving a clear peak in the resulting nucleus suspension was the use of Modified Gitschier buffer (mGb). Nuclear suspensions could be directly stained after filtration without centrifugation treatment. The optimal detection effect was obtained for leaves preserved at 4 ℃, and the most suitable storage time was 7 d. Drying leaves with silica gel yielded superior test results compared to freezing them, and the most suitable storage time for silica gel drying was 150 d. The coefficients of variation of 100 test samples ranged from 2.13% to 5.04%. If the estimated value of ploidy was 1.80-2.40, the sample was identified as diploid. If the estimated value of ploidy was 3.60-4.20, the sample was identified as tetraploid. When the estimated value of ploidy was 3.00 ± 0.40, the reference sample with the same ploidy as the initial judgment was used for the second detection. Using this method for the ploidy identification of 1 395 germplasm resources 104 diploids and 1 291 tetraploids were detected. 【Conclusion】Samples with an abnormal estimated value of ploidy could be identified quickly by the second detection with the same ploidy standard. The method is simple, efficient, and accurate, and provides an effective method for ploidy identification of C. paliurus germplasm.
Keywords:Cyclocarya paliurus; ploidy identification; flow cytometry; nuclei isolation buffer; internal standard method
青錢(qián)柳(Cyclocarya paliurus)系胡桃科青錢(qián)柳屬,是我國(guó)特有的單種屬植物,廣泛分布于江西、福建、浙江、安徽、湖南、湖北、四川、貴州、廣東和廣西等亞熱帶地區(qū)。青錢(qián)柳是一種高大速生喬木,樹(shù)姿優(yōu)美,果似銅錢(qián),是優(yōu)良的觀(guān)賞綠化樹(shù)種;其木材強(qiáng)度大、紋理直、切面光滑,是家具良材。此外,青錢(qián)柳葉片中含有豐富的次生代謝產(chǎn)物,不僅具有抗氧化、增強(qiáng)免疫力和抗衰老等保健價(jià)值,還具有顯著的降血糖、降血壓和降血脂等藥用功效。Qu等研究發(fā)現(xiàn),青錢(qián)柳存在二倍體和四倍體兩種細(xì)胞型。這種多倍化現(xiàn)象通過(guò)基因組復(fù)制改變植物表型和生理生化特征,是植物進(jìn)化和物種形成的主要驅(qū)動(dòng)力。植物多倍體常表現(xiàn)出細(xì)胞體積增大、葉片增大變厚和代謝物含量增多等特征。有研究表明,杜仲(Eucommia ulmoides)、丹參(Salvia miltiorrhiza)、山茶(Camellia japonica)和紫雛菊(Echinacea purpurea)等多倍化植株的藥效成分含量均有大幅度提高,且四倍體青錢(qián)柳中的萜類(lèi)化合物含量高于二倍體。因此,在進(jìn)行青錢(qián)柳種質(zhì)資源選育與利用時(shí),其倍性鑒定非常重要。
染色體倍性鑒定方法包括形態(tài)學(xué)鑒定、細(xì)胞學(xué)鑒定和分子水平鑒定等。其中,染色體計(jì)數(shù)法是最直接且最準(zhǔn)確的鑒定方法,但過(guò)程比較復(fù)雜,對(duì)試驗(yàn)操作能力要求較高,耗時(shí)較長(zhǎng)。近年來(lái),使用熒光標(biāo)記細(xì)胞核懸浮液的流式細(xì)胞術(shù)鑒定倍性的方法被廣泛應(yīng)用,該方法對(duì)取樣時(shí)間和取樣技術(shù)要求較低,制備過(guò)程簡(jiǎn)單,是目前效率較高的倍性檢測(cè)方法。流式細(xì)胞分析成功的關(guān)鍵是制備出可供檢測(cè)的細(xì)胞核懸浮液,懸浮液質(zhì)量受到細(xì)胞核裂解液和制備方法的影響,常因物種不同而異。目前,對(duì)青錢(qián)柳的流式細(xì)胞術(shù)方法還缺乏系統(tǒng)研究。本研究以青錢(qián)柳葉片為材料,比較細(xì)胞核裂解液種類(lèi)、制備方法和葉片保存方式等對(duì)檢測(cè)效果的影響,建立了快速、準(zhǔn)確、高效的青錢(qián)柳倍性鑒定方法,并使用該方法對(duì)青錢(qián)柳種質(zhì)資源進(jìn)行鑒定,以期為青錢(qián)柳的倍性育種和開(kāi)發(fā)利用提供技術(shù)支撐。
1" 材料與方法
1.1" 試驗(yàn)材料
以南京林業(yè)大學(xué)青錢(qián)柳種質(zhì)資源庫(kù)中經(jīng)全基因組測(cè)序的二倍體(2n=2x=32)和四倍體(2n=4x=64)植株為參照樣本。以采自南京林業(yè)大學(xué)青錢(qián)柳種質(zhì)資源庫(kù)的安徽省清涼峰種源15年生四倍體植株幼葉用于青錢(qián)柳倍性鑒定方法的優(yōu)化;以100份采自南京林業(yè)大學(xué)溫室的湖北省五峰種源2根1干盆栽苗幼葉用于該方法的驗(yàn)證試驗(yàn)。1 395份倍性未知的種質(zhì)材料包括:1 087份(包含15個(gè)種源)采自南京林業(yè)大學(xué)青錢(qián)柳種質(zhì)資源庫(kù)的15年生植株,308份采自安徽、湖北、四川、江西和廣西等5個(gè)省/區(qū)的天然群落植株。
1.2" 流式細(xì)胞術(shù)方法的建立
1.2.1" 鑒定流程
參考Galbraith的測(cè)定方法并改進(jìn)。使用非生物標(biāo)準(zhǔn)樣本塑料微球在儀器中標(biāo)定參照二倍體和參照四倍體于峰值直方圖中橫坐標(biāo)的相對(duì)位置(相對(duì)熒光強(qiáng)度),隨后對(duì)待測(cè)樣本進(jìn)行單樣測(cè)定,通過(guò)出峰的相對(duì)位置初步判斷其倍性,再以與初判倍性不同的參照樣本為內(nèi)標(biāo)對(duì)待測(cè)樣本進(jìn)行混樣測(cè)定。
樣品制備和檢測(cè)過(guò)程為:分別取0.50~1.00 cm2的參照(CK)和待測(cè)(S)樣本葉片(避開(kāi)主脈),置于冰上的培養(yǎng)皿中,加入預(yù)冷的裂解液1 mL,用鋒利的雙面刀片快速垂直切碎葉片,此過(guò)程盡量將材料浸沒(méi)于裂解液中。吸取混合溶液經(jīng)孔徑0.04 mm濾網(wǎng)過(guò)濾,轉(zhuǎn)移至測(cè)定管內(nèi),得到細(xì)胞核懸浮液,加入20 μL的碘化丙啶(PI)染料,混勻后4" ℃避光染色1 min,隨后使用Influx流式細(xì)胞儀(BD,美國(guó))進(jìn)行檢測(cè)。染色的樣品經(jīng)488 nm波長(zhǎng)光激發(fā),收集FL2通道(670/30)的熒光,檢測(cè)PI發(fā)射的熒光強(qiáng)度。檢測(cè)過(guò)程中,對(duì)每個(gè)測(cè)試樣品低速收集5 000~10 000個(gè)細(xì)胞核。
1.2.2" 裂解液的篩選方法
分別取新鮮參照和待測(cè)樣本葉片0.50~1.00 cm2,參考不同細(xì)胞核裂解液配方及適用植物,選用LB01、GPB、mGb、Tris-MgCl2和WPB裂解液(均購(gòu)于北京雷根生物技術(shù)有限公司),每個(gè)處理重復(fù)3次,比較不同裂解液對(duì)檢測(cè)效果的影響。試驗(yàn)流程同1.2.1。
1.2.3" 離心方案的優(yōu)化
分別取新鮮的參照葉片和待測(cè)樣本葉片0.50~1.00 cm2,加入1 mL預(yù)冷的mGb裂解液快速切碎,過(guò)濾至1.50 mL的EP管中進(jìn)行4" ℃離心處理,離心結(jié)束后去上清,保留100 μL沉淀,加入100 μL預(yù)冷的裂解液,再加入20 μL預(yù)冷的PI染料,混勻后4" ℃避光染色1 min,上機(jī)檢測(cè)。共設(shè)置4個(gè)離心處理,分別為:以轉(zhuǎn)速1 000 r/min離心5 min(L1),以轉(zhuǎn)速1 000 r/min離心10 min(L2),以轉(zhuǎn)速2 000 r/min離心5 min(L3)和以轉(zhuǎn)速2 000 r/min離心10 min(L4)。以過(guò)濾后直接染色不離心的樣本作為對(duì)照(NL),每個(gè)處理重復(fù)3次。
1.2.4" 樣本保存方式的比較
按照1.2.1的試驗(yàn)流程,取冷藏(4" ℃)、冷凍(-20、-40和-80" ℃)和室溫硅膠干燥5種保存方式(均保存7 d)的葉片0.50~1.00 cm2,比較不同保存方式對(duì)檢測(cè)效果的影響。取硅膠干燥7、50、100、150和200 d的葉片0.50~1.00 cm2,比較硅膠干燥保存時(shí)間對(duì)檢測(cè)效果的影響。每個(gè)處理重復(fù)3次。
1.2.5" 方法驗(yàn)證
利用已經(jīng)優(yōu)化的流式細(xì)胞分析方法,以100株盆栽苗的幼葉進(jìn)行上機(jī)檢測(cè)。根據(jù)倍性估算公式,得出樣本的倍性。在取葉樣的同時(shí)取各植株側(cè)芽莖尖或幼葉參考韓杰等的常規(guī)染色體壓片法進(jìn)行制片,鏡檢計(jì)數(shù)確定樣本的倍性,以驗(yàn)證方法的可靠性。
1.3" 青錢(qián)柳種質(zhì)倍性鑒定
利用建立的方法對(duì)1 395份青錢(qián)柳種質(zhì)進(jìn)行檢測(cè),根據(jù)倍性計(jì)算公式,得出各種質(zhì)的染色體倍性,并采用染色體計(jì)數(shù)法確定樣本的倍性,方法同1.2.5。進(jìn)行染色體計(jì)數(shù)的樣本共458份。其中,采自南京林業(yè)大學(xué)青錢(qián)柳種質(zhì)資源庫(kù)的樣本按每個(gè)種源隨機(jī)抽10株進(jìn)行取樣,150份;采自天然群落的308份樣本全部進(jìn)行染色體計(jì)數(shù)。
1.4" 數(shù)據(jù)統(tǒng)計(jì)
使用FACSTM 1.0.0.650對(duì)流式細(xì)胞儀測(cè)定結(jié)果作圖分析,得出各樣品的峰值直方圖。參照任偉超等計(jì)算方法,將倍性公式中待測(cè)樣本與參照樣本相對(duì)熒光強(qiáng)度比值作為倍性系數(shù),進(jìn)而計(jì)算得到待測(cè)樣本的倍性估算值。以DNA含量峰值的變異系數(shù)(CV值)的大小作為評(píng)價(jià)流式測(cè)定結(jié)果的參數(shù)。使用SPSS 22.0進(jìn)行單因素方差分析與多重比較。倍性公式如下:
F=ISICK×n。
式中:F表示樣本倍性估算值;IS表示待測(cè)樣本相對(duì)熒光強(qiáng)度;ICK表示參照樣本相對(duì)熒光強(qiáng)度;n表示參照樣本倍性。
2" 結(jié)果與分析
2.1" 流式細(xì)胞分析方法的建立
2.1.1" 裂解液的篩選結(jié)果
2x-CK為二倍體參照樣本;S為四倍體待測(cè)樣本;CV為S峰圖變異系數(shù);不同小寫(xiě)字母表示處理間差異顯著(Plt;0.05)。下同。2x-CK indicates the diploidy standard sample; S indicates the tetriploidy test sample; CV indicates the coefficient of variation in S; The different letters indicate that the significant differences among treatments (Plt;0.05). The same below.
細(xì)胞核裂解液的正確選擇是流式細(xì)胞分析成功的前提,適宜的細(xì)胞核裂解液通過(guò)有效釋放樣本細(xì)胞核,可得到CV值較低、質(zhì)量較優(yōu)的峰圖。不同裂解液的檢測(cè)結(jié)果表明(圖1),Tris-MgCl2、LB01和WPB裂解液的噪音峰較多,影響相對(duì)熒光強(qiáng)度的比值,且峰圖CV值均高于5%。而mGb裂解液和GPB裂解液的峰圖質(zhì)量最優(yōu),所測(cè)樣本峰熒光信號(hào)更加集中,峰圖清晰,具有較少的噪音峰。GPB裂解液解離細(xì)胞核數(shù)量最多,但其CV值較高,且收集目標(biāo)細(xì)胞耗時(shí)較長(zhǎng),單個(gè)樣本需5 min左右,約為mGb裂解液所用時(shí)間的5倍。采用mGb裂解液的CV值顯著低于其他處理(Plt;0.05),為4.38%??梢?jiàn),mGb裂解液是青錢(qián)柳流式細(xì)胞分析的最適裂解液。
2.1.2" 離心方案的確定
對(duì)細(xì)胞核懸浮液分別進(jìn)行不離心和不同離心轉(zhuǎn)速和時(shí)間的處理。結(jié)果表明(圖2),不進(jìn)行離心處理的樣本其細(xì)胞核染色均勻,噪音峰少,相對(duì)熒光強(qiáng)度集中,CV值為4.47%,顯著低于其他處理(Plt;0.05)。而離心處理造成峰圖噪音峰較多,離心10 min處理的峰值降低最為明顯。因此,在制備細(xì)胞核懸浮液時(shí),過(guò)濾后無(wú)需離心,染色后直接上機(jī)測(cè)定效果最佳。
L1和L2分別為以轉(zhuǎn)速1 000 r/min離心5和10 min處理;L3和L4分別為以轉(zhuǎn)速2 000 r/min離心5和10 min處理;NL為不離心處理。L1 and L2 indicate that nuclei suspensions centrifuge at 1 000 r/min" for 5 and 10 min, respectively; L3 and L4 indicate that nuclei suspensions centrifuge at 2 000 r/min" for 5 and 10 min, respectively; NL indicates no centrifugal treatment.
2.1.3" 樣本保存方式和時(shí)間的確定
采用冷藏(4" ℃)、冷凍(-20、-40和-80" ℃)和室溫硅膠干燥方式保存樣本7 d后進(jìn)行測(cè)定,結(jié)果表明(圖3a),4" ℃冷藏樣本測(cè)定效果最佳,CV值為4.68%,顯著低于其他低溫冷凍處理。-40 ℃和-80" ℃冷凍造成峰圖噪音峰明顯增多,解離細(xì)胞核數(shù)減少,-20" ℃下冷凍處理對(duì)樣本的破壞性最小,樣本峰細(xì)胞核數(shù)最高,但冷凍處理的樣本峰CV值升高,均大于5%。硅膠干燥樣本峰圖具有少量噪音峰,其細(xì)胞核數(shù)較多,樣本峰CV值為4.79%。
為進(jìn)一步探究硅膠干燥樣本保存時(shí)間對(duì)測(cè)定效果的影響,將樣本分別保存7、50、100、150和200 d后進(jìn)行測(cè)定。隨著保存時(shí)間的延長(zhǎng),可檢測(cè)到的細(xì)胞核數(shù)量減少,保存50 d以上的樣本峰細(xì)胞核數(shù)明顯降低,樣本峰CV值也隨保存時(shí)間的增加逐漸升高,150 d時(shí)樣本峰CV值為8.55%,峰圖噪音最多(圖3b)。保存200 d時(shí),葉片無(wú)法分離出有效細(xì)胞核,因此使用硅膠干燥法保存葉片的最長(zhǎng)時(shí)間以150 d為宜。
2.1.4" 青錢(qián)柳倍性檢測(cè)方法的驗(yàn)證
利用建立的流式細(xì)胞分析方法,對(duì)100份試驗(yàn)樣本進(jìn)行處理后上機(jī)檢測(cè),結(jié)果見(jiàn)表1。
CV值為2.13%~5.04%。其中,34份樣品倍性系數(shù)為0.45~0.60,倍性估算值為1.80~2.40,判斷為二倍體(圖4a);58份樣品倍性系數(shù)為1.80~2.10,倍性估算值為3.60~4.20,判斷為四倍體(圖4b)。另有8份待測(cè)樣本出現(xiàn)偏峰的現(xiàn)象,導(dǎo)致待測(cè)樣本與參照樣本的出峰間距較?。▓D4c和4e)。其中,3份待測(cè)樣本峰位于參照樣本峰前(圖4c),初步判斷為二倍體,但其倍性系數(shù)為0.65~0.70,倍性估算值為2.60~2.80;5份待測(cè)樣本峰位于參照樣本峰后(圖4e),初步判斷為四倍體,但其倍性系數(shù)為1.50~1.70,倍性估算值為3.00~3.40,按倍性估算結(jié)果來(lái)看,這8份樣本應(yīng)判斷為三倍體。但經(jīng)染色體計(jì)數(shù)發(fā)現(xiàn),這8份樣本的倍性均與初判倍性相同,為此進(jìn)行第2次標(biāo)定,即在圖4c的待測(cè)樣本(初判倍性為二倍體)中加入二倍體參照樣本,若混樣測(cè)定所得峰圖為單峰,則確定為二倍體(圖4d);在圖4e的待測(cè)樣本(初判倍性為四倍體)中加入四倍體參照樣本后,若混樣測(cè)定所得峰圖為單峰,則確定為四倍體(圖4f)。通過(guò)對(duì)有疑問(wèn)的樣本進(jìn)行二次標(biāo)定,最終從100份待測(cè)樣本中鑒定出二倍體37株,四倍體63株,與染色體計(jì)數(shù)結(jié)果結(jié)果一致(圖5)。
2.2" 青錢(qián)柳種質(zhì)資源倍性檢測(cè)結(jié)果
基于優(yōu)化后的流式細(xì)胞分析法對(duì)1 395份青錢(qián)柳種質(zhì)資源進(jìn)行倍性測(cè)定,結(jié)果(表2)表明,流式分析的CV值為2.05%~6.08%。其中,66份樣本倍性系數(shù)為0.45~0.60,倍性估算值為1.80~2.40,判斷為二倍體;1 206份樣本倍性系數(shù)為1.80~2.10,倍性估算值為3.60~4.20,判斷為四倍體。38份樣本倍性系數(shù)為0.65~0.70,二次標(biāo)定后判斷為二倍體,85份樣本倍性系數(shù)為1.50~1.70,進(jìn)行二次標(biāo)定后判斷為四倍體。對(duì)458份種質(zhì)材料進(jìn)行染色體計(jì)數(shù),結(jié)果與流式鑒定法相一致,由此得出1 395份青錢(qián)柳種質(zhì)資源的倍性結(jié)果:種質(zhì)資源庫(kù)中二倍體為44份,四倍體為1 043份;安徽和湖北二倍體分別為29份和31份,四倍體分別為46份和42份;四川、江西和廣西共160份種質(zhì)資源均為四倍體。總體來(lái)看,二倍體樣本共104份,占比為7.46%,四倍體樣本共1 291份,占比為92.54%。
3" 討" 論
由于不同植物的組織結(jié)構(gòu)和化學(xué)成分存在差異,選擇合適的裂解液是獲得理想細(xì)胞核懸液的關(guān)鍵,但目前沒(méi)有一種普遍適用的裂解液。檸檬酸鈉能起到消除懸浮液中RNA影響的作用,該成分僅在mGb和GPB裂解液中存在,本研究中,這2種裂解液的峰圖質(zhì)量最佳,進(jìn)一步說(shuō)明該成分對(duì)青錢(qián)柳葉片的適用性。TritonX-100能夠提取細(xì)胞膜蛋白,有效釋放細(xì)胞核,并具有防止核粘連、維持核完整性的作用。Xu等認(rèn)為,在LB01裂解液中提高TritonX-100濃度,能夠有效增加南五味子屬(Kadsura)植物內(nèi)細(xì)胞核的釋放量。GPB裂解液中含有比mGb裂解液更高濃度的TritonX-100,使得本研究青錢(qián)柳樣品解離細(xì)胞核較多,但采用GPB裂解液的樣本測(cè)定時(shí)間較長(zhǎng),且CV值較高,這可能與較高濃度的TritonX-100導(dǎo)致細(xì)胞碎片增加有關(guān)。mGb裂解液中除含有檸檬酸鈉和TritonX-100,還含有PVP和β-巰基乙醇,通常認(rèn)為后兩種成分能夠消除多酚和其他次生代謝物質(zhì)對(duì)其染色的影響,可提高測(cè)定效率和測(cè)定結(jié)果的準(zhǔn)確性。因此,綜合分析后認(rèn)為,mGb裂解液是最適合青錢(qián)柳葉片的裂解液。
一般認(rèn)為,離心處理可減少細(xì)胞核懸浮液中的雜質(zhì)成分。張桂芳等比較了不同離心時(shí)間對(duì)鐵皮石斛(Dendrobium officinale)倍性檢測(cè)效果的影響,認(rèn)為轉(zhuǎn)速為2 000 r/min離心8 min后峰圖效果最佳;于紅梅等在草莓(Fragaria × ananassa)倍性檢測(cè)中發(fā)現(xiàn),轉(zhuǎn)速1 000 r/min離心5 min,且離心漂洗3次的效果最好;楊靜等比較了不離心、離心漂洗1~2次對(duì)桑樹(shù)(Morus alba)倍性檢測(cè)效果的影響,認(rèn)為離心對(duì)懸浮液質(zhì)量無(wú)顯著影響。本研究中,對(duì)青錢(qián)柳細(xì)胞核懸浮液進(jìn)行離心處理可能使細(xì)胞核DNA鏈斷裂,導(dǎo)致碎片增加,熒光信號(hào)分散,峰圖質(zhì)量差,CV值升高,因此在制備青錢(qián)柳細(xì)胞核懸浮液時(shí)過(guò)濾后即可直接染色測(cè)定,無(wú)需離心,操作簡(jiǎn)單,可明顯縮短制備樣品的時(shí)間,提高測(cè)定效率。
青錢(qián)柳資源主要分布在偏遠(yuǎn)山區(qū),從野外到實(shí)驗(yàn)室測(cè)定的過(guò)程中,樣本保存是一個(gè)關(guān)鍵環(huán)節(jié),因此對(duì)保存方式和時(shí)間的探討十分必要。保存樣本的原則是保護(hù)細(xì)胞核內(nèi)DNA的完整性,以確保細(xì)胞懸浮液的有效制備。因此,新鮮葉片或冷藏?cái)?shù)日的葉片使用最廣泛。由于實(shí)際測(cè)定時(shí)間受到多方面因素影響,對(duì)于部分無(wú)法在數(shù)日內(nèi)檢測(cè)的樣本,可對(duì)葉片采用低溫、干燥和制作標(biāo)本的方式進(jìn)行保存。低溫會(huì)對(duì)細(xì)胞造成機(jī)械損傷,增加細(xì)胞內(nèi)溶質(zhì)化合物的含量,對(duì)測(cè)定結(jié)果的影響大于硅膠干燥法。對(duì)冷藏(4" ℃)、冷凍(-20、-40和-80" ℃)和室溫硅膠干燥保存的青錢(qián)柳樣本檢測(cè)效果比較后可看出,4" ℃冷藏效果最佳,其次為硅膠干燥法,冷凍保存效果較差。由于青錢(qián)柳葉片富含多糖、多酚、色素及其他次生代謝物質(zhì),隨著冷藏保存時(shí)間延長(zhǎng),材料逐漸褐化,因此,幼嫩葉片冷藏保存時(shí)間以7 d內(nèi)為宜,成熟葉保存時(shí)間可適當(dāng)延長(zhǎng)。本研究認(rèn)為,在遠(yuǎn)距離長(zhǎng)時(shí)間野外資源調(diào)查收集時(shí),硅膠干燥為青錢(qián)柳葉片的最佳保存方式,但保存200 d后葉片難以分離出有效細(xì)胞核而無(wú)法檢測(cè),因此硅膠干燥最長(zhǎng)保存時(shí)間在150 d以?xún)?nèi)為宜。需要注意的是,制備細(xì)胞核懸浮液時(shí)新鮮幼葉取0.50 cm2左右即可,但老葉和硅膠干燥保存的樣本用量需增加。
對(duì)100份試驗(yàn)樣本進(jìn)行倍性檢測(cè)后,發(fā)現(xiàn)CV值為2.13%~5.04%,說(shuō)明本試驗(yàn)建立的前處理和檢測(cè)方法是可靠的。其中,34份待測(cè)樣本的倍性系數(shù)為0.45~0.60,其倍性估算值為1.80~2.40,可直接判斷為二倍體,58份待測(cè)樣本的倍性系數(shù)為1.80~2.10,其倍性估算值為3.60~4.20,可直接判斷為四倍體。但有8份待測(cè)樣本的倍性系數(shù)為0.65~0.70或1.50~1.70,倍性估算值為2.60~2.80或3.00~3.40,疑似為三倍體。倍性系數(shù)異常是由于待測(cè)樣本偏峰所致,對(duì)于這種流式檢測(cè)過(guò)程中常見(jiàn)的現(xiàn)象,Castro等認(rèn)為可采用多次重復(fù)檢測(cè)樣品和縮短樣品染色后放置時(shí)間的方法消除。楊靜等在保證樣品放置適宜時(shí)間的基礎(chǔ)上,采取每檢測(cè)1組樣本后用二倍體對(duì)照樣本調(diào)整位置的方法,來(lái)減少偏峰現(xiàn)象的出現(xiàn)。鑒于以上方法較為繁瑣且無(wú)法保證測(cè)定結(jié)果,本研究對(duì)于出現(xiàn)偏峰的待測(cè)樣本,采用與初判倍性相同的參照樣本進(jìn)行第2次標(biāo)定,若待測(cè)樣本與參照樣本呈單峰,則可快速確定待測(cè)樣本的倍性;若采用二倍體和四倍體參照樣本分別標(biāo)定后均呈現(xiàn)雙峰,說(shuō)明樣本并非整二倍體或整四倍體,此時(shí)需采用染色體計(jì)數(shù)法予以確定。但據(jù)文獻(xiàn)檢索和本課題組前期研究結(jié)果來(lái)看,天然青錢(qián)柳尚無(wú)其他倍性植株存在。
采用優(yōu)化的流式細(xì)胞分析法對(duì)1 395份的青錢(qián)柳種質(zhì)資源進(jìn)行倍性測(cè)定,測(cè)定CV值均低于6.08%。其中,采自南京林業(yè)大學(xué)種質(zhì)資源庫(kù)的樣本均為新鮮幼葉,因此CV值相對(duì)較低。而采自天然林的樣本,因其幼嫩程度和保存方法不一致,CV值波動(dòng)范圍較大。CV值是判斷倍性檢測(cè)結(jié)果可靠與否的關(guān)鍵指標(biāo),一般研究認(rèn)為,CV值小于5.00%時(shí)結(jié)果最可靠。Georgiev等認(rèn)為,流式細(xì)胞儀檢測(cè)的CV值在9.00%以?xún)?nèi),其檢測(cè)結(jié)果就比較可靠。呂順等也認(rèn)為,對(duì)于含有較多酚類(lèi)物質(zhì)的植物,CV值小于10.00%可達(dá)到理想結(jié)果。另外,對(duì)于1 395份種質(zhì)材料中倍性系數(shù)值異常的123份樣本,采用二次標(biāo)定法可快速確定其倍性。
參考文獻(xiàn)(reference):
[1]方升佐. 青錢(qián)柳產(chǎn)業(yè)發(fā)展歷程及資源培育研究進(jìn)展. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 46(6): 115-126. FANG S Z. A review on the development history and the resource silviculture of Cyclocarya paliurus industry. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 115-126. DOI: 10.12302/j.issn.1000-2006.202206019.
[2]洪俊溪. 青錢(qián)柳人工林材性試驗(yàn)研究. 福建林學(xué)院學(xué)報(bào), 1997, 17(3): 214-217. HONG J X. Experimental study on wood properties of Cyclocarya paliurus artificial forest. J Fujian Coll For, 1997, 17(3): 214-217.
[3]ZHOU M M, LIN Y, FANG S Z, et al. Phytochemical content and antioxidant activity in aqueous extracts of Cyclocarya paliurus leaves collected from different populations. Peer J, 2019, 7: e6492. DOI: 10.7717/peerj.6492.
[4]YANG H M, YIN Z Q, ZHAO M G, et al. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells. Phytochemistry, 2018, 151: 119-127. DOI: 10.1016/j.phytochem.2018.03.010.
[5]FU X X, ZHOU X D, DENG B, et al. Seasonal and genotypic variation of water-soluble polysaccharide content in leaves of Cyclocarya paliurus. South For, 2015, 77(3): 231-236. DOI: 10.2989/20702620.2015.1010698.
[6]QU Y Q, SHANG X L, ZENG Z Y, et al. Whole-genome duplication reshaped adaptive evolution in a relict plant species, Cyclocarya paliurus. Genomics Proteomics Bioinformatics,2023:S1672-229(23)00033.DOI: 10.1016/j.gpb.2023.02.001.
[7]SOLTIS P S, SOLTIS D E. The role of hybridization in plant speciation. Annu Rev Plant Biol, 2009, 60(1): 561-588. DOI: 10.1146/annurev.arplant.043008.092039.
[8]PIKAARD C S. Genomic change and gene silencing in polyploids. Trends Genet, 2001, 17(12): 675-677. DOI: 10.1016/s0168-9525(01)02545-8.
9〗何法慧,左倩倩,于景金,等.35份狗牙根種質(zhì)材料指紋圖譜構(gòu)建及染色體倍性鑒定.南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,46(1):42-54.HE F H,ZUO Q Q,YU J J,et al.Fingerprint construction and chromosome ploidy identification of 35 germplasms in bermudagrass.J Nanjing Agric Univ,2023,46(1):42-54.DOI: 10.7685/jnau.202201035.
趙帥琪, 張偉偉, 牛俊芳, 等. 森林草莓和栽培草莓在果實(shí)發(fā)育和成熟過(guò)程中細(xì)胞壁變化的比較. 植物生理學(xué)報(bào), 2021, 57(12): 2323-2336. ZHAO S Q, ZHANG W W, NIU J F, et al. Comparison of cell wall changes of Fragaria vesca and Fragaria × ananassa during fruit development and ripening. Plant Physiol J, 2021, 57(12): 2323-2336. DOI: 10.13592/j.cnki.ppj.2021.0053.
康向陽(yáng). 杜仲良種選育研究現(xiàn)狀及展望. 北京林業(yè)大學(xué)學(xué)報(bào), 2017, 39(3): 1-6. KANG X Y. Status and prospect of improved variety selection in Eucommia ulmoides. J Beijing For Univ, 2017, 39(3): 1-6. DOI: 10.13332/j.1000-1522.20160377.
李秀蘭, 陳力. 三倍體丹參的培育及其可持續(xù)利用研究. 中草藥, 2012, 43(2): 375-379. LI X L, CHEN L. Breeding for triploids of Salvia miltiorrhiza and its sustainable utilization. Chin Tradit Herb Drugs, 2012, 43(2): 375-379. DOI: 10.7501/j.issn.0253-2670.
DAS S K, SABHAPONDIT S, AHMED G, et al. Biochemical evaluation of triploid progenies of diploid×tetraploid breeding populations of Camellia for genotypes rich in catechin and caffeine. Biochem Genet, 2013, 51: (5/6). DOI: 10.1007/s10528-013-9569-x.
XU C G, TANG T X, CHEN R, et al. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tiss Organ Cult, 2014, 116(3): 323-332. DOI: 10.1007/s11240-013-0406-z.
陶抵輝, 李小紅, 王利群, 等. 植物染色體倍性鑒定方法研究進(jìn)展. 生命科學(xué)研究, 2009, 13(5): 453-458. TAO D H, LI X H, WANG L Q, et al. Progresses on determination of cell chromosome ploidy level of plants. Life Sci Res, 2009, 13(5): 453-458. DOI: 10.16605/j.cnki.1007-7847.2009.05.011.
SCHWARZACHER T, WANG, M L, LEITCH A R, et al. Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theor Appl Genet, 1997, 94(1): 91-97. DOI: 10.1007/s001220050386.
SLIWINSKA E. Flow cytometry:a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic, 2018, 30(1): 103-128. DOI: 10.2478/fhort-2018-0011.
金亮, 徐偉韋, 李小白, 等. DNA流式細(xì)胞術(shù)在植物遺傳及育種中的應(yīng)用. 中國(guó)細(xì)胞生物學(xué)學(xué)報(bào), 2016, 38(2): 225-234. JIN L, XU W W, LI X B, et al. Application of DNA flow cytometry to plant genetics and breeding. Chin J Cell Biol, 2016, 38 (2): 225-234. DOI: 10.11844/cjcb.2016.02.0308.
宮雅昕, 岳涵,向宇, 等. GABA代謝負(fù)調(diào)控葉片細(xì)胞內(nèi)復(fù)制發(fā)生的機(jī)制研究. 植物生理學(xué)報(bào), 2020, 56(2): 235-246. GONG Y X, YUE H, XIANG Y, et al. Mechanism study of negative regulation of GABA metabolism on endoreplication in Arabidopsis thaliana leaf development. Plant Physiol J, 2020, 56(2): 235-246. DOI: 10.13592/j.cnki.ppj.2019.0452.
GALBRAITH D W. Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytometry A, 2009, 75(8): 692-698. DOI: 10.1002/cyto.a.20760.
田新民, 周香艷, 弓娜. 流式細(xì)胞術(shù)在植物學(xué)研究中的應(yīng)用檢測(cè)植物核DNA含量和倍性水平. 中國(guó)農(nóng)學(xué)通報(bào), 2011,27(9): 21-27. TIAN X M, ZHOU X Y, GONG N, et al. Applications of flow cytometry in plant research-analysis of nuclear DNA content and ploidy level in plant cells. Chin Agric Sci Bull, 2011, 27(9): 21-27.
韓杰, 沈海萍, 儲(chǔ)冬生, 等. 4個(gè)薄殼山核桃品種核型分析. 分子植物育種, 2018, 16(17): 5704-5711. HAN J, SHEN H P, CHU D S, et al. Karyotype analysis of four pecan cultivars. Mol Plant Breed, 2018, 16(17): 5704-5711. DOI: 10.13271/j.mpb.016.005704.
任偉超,徐姣,樊銳鋒, 等. 應(yīng)用流式細(xì)胞術(shù)對(duì)柳屬染色體倍性與基因組大小測(cè)定. 東北林業(yè)大學(xué)學(xué)報(bào), 2021, 49(4): 56-61. REN W C, XU J, FAN R F, et al. Chromosome ploidy and genome size determination of Salix using flow cytometry. J Northeast For Univ, 2021, 49(4):56-61. DOI: 10.13759/j.cnki.dlxb.2021.04.010.
PELLICER J, LEITCH I J. The application of flow cytometry for estimating genome size and ploidy level in plants//Molecular Plant Taxonomy. Totowa, NJ: Humana Press, 2014: 279-307. DOI: 10.1007/978-1-62703-767-9_14.
DPOOLEEL J, BINAROV P, LCRETTI S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant, 1989, 31(2): 113-120. DOI: 10.1007/BF02907241.
XU J, WEI X P, LIU J S, et al. Genome sizes of four important medicinal species in Kadsura by flow cytometry. Chin Herb Med, 2021, 13(3): 416-420. DOI: 10.1016/j.chmed.2021.05.002.
SONG P, WANG X F, CAI M, et al. Research on identification of polyploids by flow cytometry in Lagerstroemia indica and Lagerstroemia subcostata. Acta Hortic, 2012 (935): 207-212. DOI: 10.17660/actahortic.2012.935.29.
LOUREIRO J, RODRIGUEZ E, DOLEZEL J, et al. Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot-London, 2006, 98(3): 515-527. DOI: 10.1093/aob/mcl140.
張桂芳, 王艷, 閆小巧, 等. 流式細(xì)胞儀檢測(cè)鐵皮石斛核DNA初探. 現(xiàn)代中藥研究與實(shí)踐, 2017, 31(1): 16-19. ZHANG G F, WANG Y, YAN X Q, et al. Study on flow cytometer for detecting nuclear DNA contents in Dendrobium officinal. Res Pract Chin Med, 2017, 31(1): 16-19. DOI: 10.13728/j.1673-6427.2017.01.005.
于紅梅, 王靜, 趙密珍, 等. 利用流式細(xì)胞儀檢測(cè)草莓倍性方法的優(yōu)化. 南方農(nóng)業(yè)學(xué)報(bào), 2012, 43(10): 1530-1533. YU H M, WANG J, ZHAO M Z, et al. Optimization of strawberry ploidy identification method using flow cytometry. J South Agric, 2012, 43(10): 1530-1533. DOI: 10.3969/j.issn.2095-1191.2012.10.1530.
楊靜,宋勤霞,寧軍權(quán), 等. 利用流式細(xì)胞術(shù)鑒定桑樹(shù)染色體倍性的方法. 蠶業(yè)科學(xué), 2017, 43(1): 8-17. YANG J, SONG Q X, NING J Q, et al. Establishment of Morus L. chromosome ploidy identification method using flow cytometry. Sci Seric, 2017, 43(1): 8-17. DOI: 10.13441/j.cnki.cykx.2017.01.002.
何婷,郭桂梅,陸瑞菊, 等. 兩份大麥材料小孢子誘導(dǎo)愈傷及再生植株的倍性研究. 植物生理學(xué)報(bào), 2021, 57(8): 1708-1714. HE T, GUO G M, LU R J, et al. Study on the ploidy of microspore-derived calli and regenerated plants of two barley materials. Plant Physiol J, 2021, 57(8): 1708-1714. DOI: 10.13592/j.cnki.ppj.2021.0100.
REUTEMANN A V, HONFI A I, KARUNARATHNE P, et al. Variation of residual sexuality rates along reproductive development in apomictic tetraploids of Paspalum. Plants, 2022, 11(13): 1639. DOI: 10.3390/plants11131639.
PLASCHIL S, ABEL S, KLOCKE E. The variability of nuclear DNA content of different Pelargonium species estimated by flow cytometry. PLoS One, 2022, 17(4): e0267496. DOI: 10.1371/journal.pone.0267496.
VIRUEL J, CONEJERO M, HIDALGO O, et al. A target capture-based method to estimate ploidy from herbarium specimens. Front Plant Sci, 2019, 10: 937. DOI: 10.3389/fpls.2019.00937.
TOMASZEWSKA P, PELLNY T K, HERNNDEZ L M, et al. Flow cytometry-based determination of ploidy from dried leaf specimens in genomically complex collections of the tropical forage grass Urochloas L.. Genes, 2021, 12(7): 957. DOI: 10.3390/genes12070957.
李雯雯, 劉立強(qiáng), 帕米爾·艾尼, 等. 利用流式細(xì)胞術(shù)鑒定新疆野杏染色體倍性和DNA含量. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2019, 27(3): 542-550. LI W W, LIU L Q, AINI P M E, et al. Identification of chromosomal ploidy and DNA content in Xinjiang Armeniaca vulgaris by flow cytometry. J Agric Biotechnol, 2019, 27(3):542-550. DOI: 10.3969/j.issn.1674-7968.2019.03.019.
CASTRO S, LOUREIRO J, RODRIGUEZ E, et al. Evaluation of polysomaty and estimation of genome size in Polygala vayredae and P. calcarea using flow cytometry. Plant Sci, 2007, 172(6): 1131-1137. DOI: 10.1016/j.plantsci.2007.03.002.
GEORGIEV V,WEBER J,BLEY T, et al. Improved procedure for nucleus extraction for DNA measurements by flow cytometry of red beet (Beta vulgaris L.) hairy roots. J Biosci Bioeng, 2009, 107(4): 439-441. DOI: 10.1016/j.jbiosc.2008.12.023.
呂順, 任毅, 王芳, 等. 利用流式細(xì)胞術(shù)快速鑒定169份香蕉種質(zhì)資源的染色體倍性. 果樹(shù)學(xué)報(bào), 2018, 35(6): 668-684. L S, REN Y, WANG F, et al. Ploidy identification of 169 Musa germplasms by flow cytometry. J Fruit Sci, 2018, 35(6): 668-684. DOI: 10.13925/j.cnki.gsxb.20170419.
(責(zé)任編輯" 李燕文)