收稿日期Received:2023-03-25""" 修回日期Accepted:2023-11-12
基金項(xiàng)目:江蘇省科技計(jì)劃(資金)項(xiàng)目(BE2021367);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)。
第一作者:王改萍(wanggaiping@njfu.edu.cn),副教授。
*通信作者:曹福亮(fuliangcaonjfu@163.com),教授,院士。
引文格式:
王改萍,章雷,曹福亮,等. 紅藍(lán)光質(zhì)對(duì)銀杏苗木生長(zhǎng)生理特性及黃酮積累的影響. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(2):105-112.
WANG G P, ZHANG L, CAO F L, et al. Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(2):105-112.
DOI:10.12302/j.issn.1000-2006.202303030.
摘要:【目的】探究紅、藍(lán)光質(zhì)對(duì)銀杏(Ginkgo biloba) 苗木生長(zhǎng)特征、形態(tài)建成和次生代謝物積累的影響,為銀杏苗木選擇適宜光環(huán)境,提高葉用品質(zhì)研究提供理論依據(jù)。【方法】選擇1年生銀杏幼苗為材料,采用發(fā)光二極管(LED)調(diào)制光源,設(shè)置紅光(R)、藍(lán)光(B)和紅藍(lán)光度比1∶1的混光(M)3個(gè)處理,以白光(W)為對(duì)照,研究紅光和藍(lán)光對(duì)銀杏幼苗生長(zhǎng)生理、光合效能及黃酮等積累的影響?!窘Y(jié)果】B處理可顯著提高銀杏苗高(Plt;0.05),R、M處理下苗高低于W;R、B、M處理下,銀杏苗木葉生物量、總生物量及葉質(zhì)量比均低于W處理;R、M處理有利于銀杏生物量向根部分配,B處理則有利于生物量向莖部分配。R、B、M處理對(duì)銀杏葉片形態(tài)建成作用顯著,葉寬、葉面積均低于W處理;R處理促進(jìn)銀杏苗木葉柄顯著性伸長(zhǎng)(Plt;0.05)。M、B處理可顯著提高銀杏總?cè)~綠素及類(lèi)胡蘿卜素含量,且隨著光質(zhì)處理時(shí)間延長(zhǎng),葉片葉綠素含量呈增加趨勢(shì),R處理對(duì)光合色素積累起抑制作用;R、B、M處理下,銀杏苗木凈光合速率(Pn)、蒸騰速率(Tr)、氣孔導(dǎo)度(Gs)均在84 d時(shí)達(dá)到最大值,胞間CO2濃度(Ci)在不同處理下變化幅度較小。R、B、M處理下,銀杏Pn、Tr顯著低于W處理(Plt;0.05);Gs也在M、B處理下低于W處理。銀杏葉中總黃酮含量從大到小在不同處理時(shí)期均表現(xiàn)為:Bgt;Mgt;Wgt;R,且B、M顯著高于W,R則相反(Plt;0.05);對(duì)銀杏單株黃酮產(chǎn)量的測(cè)定,也發(fā)現(xiàn)B處理下黃酮產(chǎn)量相對(duì)W的提高了75.65%?!窘Y(jié)論】光質(zhì)處理影響銀杏生長(zhǎng),顯著提高黃酮積累,藍(lán)、紅藍(lán)混光是較為理想的光質(zhì)。研究結(jié)果可為光質(zhì)在葉用銀杏栽培上的推廣應(yīng)用提供理論依據(jù)。
關(guān)鍵詞:銀杏;光質(zhì);生長(zhǎng)特征;形態(tài)建成;光合特性;總黃酮
中圖分類(lèi)號(hào):S722;Q945""""" 文獻(xiàn)標(biāo)志碼:A開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
文章編號(hào):1000-2006(2024)02-0105-08
Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings
WANG Gaiping1, ZHANG Lei1, CAO Fuliang1,2*, DING Yanpeng1,3, ZHAO Qun1,ZHAO Huiqin1,WANG Zheng1
(1.Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China;2. Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China;3. Fujian Forestry Prospect and Design Institute, Fuzhou 350001, China)
Abstract: 【Objective】This research aims to explore the effects of red and blue light quality on growth characteristics, morphogenesis and accumulation of secondary metabolites of Ginkgo biloba seedlings, in order to provide theoretical basis for selecting suitable light environment and improving leaf quality of G. biloba seedlings.【Method】Taking 1-year-old seedlings of G. biloba as materials, under LED conditions,three different light qualities were set, namely red light(R), multiple light (light intensity ratio of red to blue is 1∶1, M) and blue light(B),and white light(W) was used as control to explore the dynamic change rule of growth physiology, photosynthetic capacity and flavonoids accumulation.【Result】B treatment significantly increased the seedling height(Plt;0.05), and which of the R and M treatment was lower than W(CK). The leaves biomass, total biomass and leaves mass ratio of G. biloba seedlings under different light quality were lower than W(CK). R and M treatment were beneficial to the distribution of the biomass to the root, while B treatment was beneficial to the distribution of biomass to the stem. The leaves morphogenesis was significantly affected by different light quality, and the leaves width and area were lower than W(CK). R treatment significantly extended the petiole (Plt;0.05). M and B treatment significantly increased the contents of total chlorophyll and carotenoid, while R treatment had the opposite effect, and chlorophyll content increased with the extension of light treatment time. Under different light quality, net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of G.boloba seedling reached the maximum value at 84 days, and intercellular CO2 concentration(Ci) changed little under different treatments.In the same treatment group,Pn and Tr were significantly lower than W(Plt;0.05), Gs" under M and B treatment is also lower than that under W treatment.The contents of total flavonoids in G. biloba leaves were B, M, W, R treatment from high to low,and contents of total flavonoids under B and M treatment were significantly higher than that under W treatment, while contents under R treatment were on the contrary(Plt;0.05). The flavonoid yield of G. biloba single plant was also determined, and it was found that the falvonoid yield under B treatment was increased 75.65% than that under W treatment.【Conclusion】Light quality treatment affects the growth and significant increase the accumulation of flavonoids of G. biloba, B and M treatment are ideal light quality. The results can provide theoretical basis for the application of light quality in the cultivation of G. biloba.
Keywords:Ginkgo biloba; light quality; growth characteristics; morphogenesis; photosynthetic characteristics; total flavonoid
光不僅是光合作用的能量來(lái)源,也是影響植物萌發(fā)、幼苗脫黃化、莖伸長(zhǎng)、葉形態(tài)建成、開(kāi)花等發(fā)育過(guò)程的主要環(huán)境信號(hào)。相關(guān)研究表明,紅光(波長(zhǎng)600~700 nm)在控制細(xì)胞呼吸、調(diào)節(jié)晝夜節(jié)律、促進(jìn)植物有機(jī)物積累、種子萌發(fā)和根系發(fā)育方面作用突出;而藍(lán)光(波長(zhǎng)400~500 nm)在葉綠體的發(fā)育以及次生代謝物的合成和積累中起著重要作用。發(fā)光二極管(LED)是近年發(fā)展起來(lái)的新型節(jié)能光源,光譜精準(zhǔn)、光利用效率高,已廣泛應(yīng)用于人工補(bǔ)光。紅光和藍(lán)光是人工栽培中應(yīng)用最多的光源,在縮短育苗周期、壯苗、提高抗逆能力、促進(jìn)內(nèi)含物積累、提高果實(shí)品質(zhì)等方面有著較廣泛的應(yīng)用。
銀杏(Ginkgo biloba)是我國(guó)重要的孑遺植物,具有特殊的經(jīng)濟(jì)價(jià)值和重要的科學(xué)研究?jī)r(jià)值。近年來(lái),銀杏葉提取物已應(yīng)用于臨床治療,其藥用價(jià)值也得到了世界范圍內(nèi)研究人員的關(guān)注,葉用銀杏成為我國(guó)銀杏產(chǎn)業(yè)的重要發(fā)展方向之一。前人已較為深入地研究了不同生境下銀杏形態(tài)、生理、藥用、活性成分等特點(diǎn),同時(shí)利用人工或天然覆蓋遮陰網(wǎng)等改變光環(huán)境,對(duì)銀杏幼苗生長(zhǎng)生理開(kāi)展了初步研究,認(rèn)為光周期、光強(qiáng)等對(duì)銀杏生物量及黃酮類(lèi)次生代謝物的積累有明顯的影響。但光質(zhì)對(duì)銀杏生長(zhǎng)及代謝物積累具體效應(yīng)的研究報(bào)道還很少。為此,利用LED燈嚴(yán)格控制光照條件,研究光質(zhì)對(duì)銀杏幼苗生長(zhǎng)、光合特性及次生代謝物積累的影響,篩選適合定向培育銀杏的光環(huán)境,以期為利用LED光源進(jìn)行木本植物資源化培育提供參考。
1" 材料與方法
1.1" 試驗(yàn)材料
試驗(yàn)材料為1年生銀杏實(shí)生苗。種子于2020年10月采自南京林業(yè)大學(xué)下蜀林場(chǎng)(119°13′E,32°7′N(xiāo))。種子經(jīng)處理后沙藏于4 ℃恒溫室內(nèi),翌年3月催芽,定植于無(wú)紡布袋中,基質(zhì)為草炭、蛭石、珍珠巖的體積比為1∶1∶1的混合基質(zhì)。6月初,將銀杏幼苗移至南京林業(yè)大學(xué)人工氣候室,適應(yīng)培養(yǎng)20 d左右,選擇已長(zhǎng)出3~5片成熟葉、健康且長(zhǎng)勢(shì)一致的幼苗進(jìn)行試驗(yàn)。
1.2" 試驗(yàn)設(shè)計(jì)
在實(shí)驗(yàn)中,設(shè)置了3種光質(zhì),即紅光(R)、藍(lán)光(B)、混光(紅、藍(lán)光照度比為1∶1,M),以白光(W)作為對(duì)照(圖1)。采用完全隨機(jī)試驗(yàn)設(shè)計(jì),每處理20株幼苗,設(shè)3個(gè)重復(fù)。試驗(yàn)共處理84 d,并在光質(zhì)處理第21、42、63、84天測(cè)定銀杏葉片的光合色素及光合特征參數(shù)。
光源選擇LED燈(由廈門(mén)三農(nóng)卉光電科技有限公司提供)。光源的藍(lán)光波長(zhǎng)為460~465 nm,紅光波長(zhǎng)為660~665 nm,光量子通量密度為250 μmol/(m2·s)。氣候室環(huán)境為光暗周期16 h/8 h,培養(yǎng)溫度為25 ℃,相對(duì)濕度為80%。處理期間,每隔3~5 d澆水1次,并移動(dòng)幼苗位置,防止邊緣效應(yīng)。
1.3" 試驗(yàn)方法
1.3.1" 生長(zhǎng)指標(biāo)測(cè)定
光質(zhì)處理84 d時(shí),隨機(jī)選取各處理未經(jīng)采樣破壞的幼苗10株,作為10個(gè)生物學(xué)重復(fù),用卷尺及游標(biāo)卡尺(Mitutoyo公司,日本三豐)測(cè)量其苗高、地徑。從中隨機(jī)選取3株幼苗,記錄其葉片數(shù),每株幼苗選取3片成熟葉,拍照比較其形態(tài)差異。用葉面積測(cè)量?jī)x(浙江托普云農(nóng)科技有限公司)測(cè)量其葉長(zhǎng)、葉寬、葉柄長(zhǎng)及葉面積,計(jì)算其葉形指數(shù)。之后將其分成根、莖、葉3部分,洗凈后烘至質(zhì)量恒定,分別稱量其質(zhì)量,參照文獻(xiàn)[16]計(jì)算質(zhì)量指數(shù)、葉形指數(shù)、葉片含水率等相應(yīng)指標(biāo)。
1.3.2 "葉綠素含量和光合特征參數(shù)測(cè)定
參照李合生的方法,利用UVmini-1240紫外-可見(jiàn)分光光度計(jì)(江蘇省科學(xué)儀器有限公司)測(cè)定葉綠素a(Chla)、葉綠素b (Chlb)、類(lèi)胡蘿卜素(Car)含量,并計(jì)算總?cè)~綠素(ChlT)。光合參數(shù)測(cè)定采用Li-6400光合儀(Licor公司,USA),測(cè)定時(shí)間為8:30—10:30。選擇苗木中、上部生長(zhǎng)良好、長(zhǎng)勢(shì)一致的成熟葉片進(jìn)行測(cè)定。測(cè)定指標(biāo)包括:凈光合速率(Pn)、蒸騰速率(Tr)、氣孔導(dǎo)度(Gs)及胞間CO2濃度(Ci)。每個(gè)處理3株重復(fù),分別在光質(zhì)處理第21、42、63、84天進(jìn)行。
1.3.3" 黃酮含量及單株黃酮產(chǎn)量測(cè)定
光質(zhì)處理84 d時(shí),參照相關(guān)方法測(cè)定黃酮含量。總黃酮的含量為槲皮素、山柰酚與異鼠李素含量之和乘2.51之積;單株葉黃酮產(chǎn)量為單株葉生物量與總黃酮含量之積。
1.4" 數(shù)據(jù)處理
采用Excel 2016、Origin 2021、SPSS 24對(duì)數(shù)據(jù)進(jìn)行分析,Duncan檢驗(yàn)法進(jìn)行雙因素方差分析和LSD多重比較(顯著性水平設(shè)置為0.05)。
2" 結(jié)果與分析
2.1" 光質(zhì)對(duì)銀杏幼苗主要形態(tài)特征的影響
2.1.1" 對(duì)銀杏幼苗生長(zhǎng)及生物量分配的影響
由不同光質(zhì)處理下銀杏生長(zhǎng)及生物量分配情況(表1)可知,不同光質(zhì)處理下,銀杏苗高從高到低的順序?yàn)樗{(lán)光(B)、白光(W)、紅光(R)、紅藍(lán)混光(M),且B處理顯著高于其他處理(Plt;0.05)。不同光質(zhì)對(duì)銀杏苗木地徑的影響相對(duì)較小,M處理達(dá)到最大值(4.94 mm),但與其他處理間未達(dá)顯著水平(Pgt;0.05)。總生物量、葉質(zhì)量比均表現(xiàn)為W處理高于其他處理,且W處理的葉質(zhì)量比顯著高于其他光質(zhì)處理(Plt;0.05)。根質(zhì)量比、根冠比則表現(xiàn)為R、M處理要顯著高于B和W處理(Plt;0.05)。莖質(zhì)量比表現(xiàn)為B處理顯著高于其他處理(Plt;0.05)??傮w而言,B處理有利于苗高生長(zhǎng)及生物量向莖部的分配,R、M處理略有下降;而地徑在不同光質(zhì)下變化不明顯。W處理有利于銀杏總生物量的積累,提高了其葉質(zhì)量比;R、M處理有利于銀杏生物量向根部分配。不同光質(zhì)顯著影響銀杏苗木的生長(zhǎng),除地徑、總生物量外,均達(dá)到極顯著差異(Plt;0.01)。
2.1.2" 對(duì)銀杏幼苗主要形態(tài)特征的影響
研究發(fā)現(xiàn),不同光質(zhì)對(duì)銀杏葉片形態(tài)也產(chǎn)生了顯著影響(表2)。葉寬、葉數(shù)、葉面積、葉生物量在W處理下出現(xiàn)最大值,葉長(zhǎng)、葉寬、葉數(shù)、葉面積在R處理時(shí)出現(xiàn)最小值,且R與W處理間存在顯著差異(Plt;0.05),R處理下葉面積相較于W處理下降了約35%;而葉生物量表現(xiàn)為W處理顯著高于其他3個(gè)光質(zhì)處理,B處理最小,僅為W處理的70%左右。而葉柄長(zhǎng)、葉形指數(shù)則表現(xiàn)為W處理時(shí)最小,顯著低于R、B處理(Plt;0.05)??傮w而言,相較于W處理,3種光質(zhì)處理會(huì)對(duì)葉面伸展有影響,葉寬、葉面積存在不同程度的減小,葉生物量也顯著降低,R處理下葉形指數(shù)達(dá)到最大值(0.82),葉片趨于方正。方差分析結(jié)果表明,特定光質(zhì)對(duì)葉片形態(tài)有明顯的影響,葉寬、葉數(shù)、葉面積、葉生物量達(dá)到顯著水平(Plt;0.05)。
2.2" 光質(zhì)及處理時(shí)間對(duì)銀杏幼苗葉片光合特征的影響
2.2.1" 對(duì)光合色素的影響
隨著處理時(shí)間延長(zhǎng),銀杏幼苗光合色素含量總體呈升高趨勢(shì),大多在84 d時(shí)達(dá)到最大值(圖2)???cè)~綠素(ChlT)、葉綠素a(Chla)含量隨處理時(shí)間增加,第84天時(shí)顯著高于第21、42天(Plt;0.05)。而Chlb在R、B處理下、Car在W、M處理下,均在42 d出現(xiàn)最小值,之后明顯上升。在63、84 d時(shí),B、M處理下Chla、ChlT含量顯著高于同時(shí)間段的W和R處理(Plt;0.05),且B處理在84 d時(shí),ChlT、Chla、葉綠素b(Chlb)、類(lèi)胡蘿卜素(Car)均達(dá)到最大值,分別為2.06、1.61、0.45、0.41 mg/g。R處理下,Chlb、ChlT以及Chla(42、84 d除外)均低于W處理。總體上表現(xiàn)為B、M處理有利于光合色素的積累,R處理下光合色素含量處于較低水平。雙因素方差分析表明,光質(zhì)、處理時(shí)間及其交互作用極顯著影響光合色素含量(Plt;0.01)。
2.2.2" 光質(zhì)及處理時(shí)間對(duì)銀杏幼苗葉片光合特性的影響
經(jīng)分析(圖3)可知,隨處理時(shí)間的延長(zhǎng),銀杏幼苗葉片凈光合速率(Pn)呈先降再升趨勢(shì),除B處理外,均在42 d時(shí)出現(xiàn)最小值,在84 d時(shí)達(dá)到最大值。除21、42 d外,其他時(shí)間段均表現(xiàn)為R處理高于其他處理,在處理63、84 d時(shí),R處理顯著高于B處理。在不同處理時(shí)間段,蒸騰速率(Tr)、氣孔導(dǎo)度(Gs)均在處理63 d時(shí)降到最低,至84 d時(shí)達(dá)到最大值。Tr在B處理下普遍低于W、R、M處理;Gs在63、84 d時(shí)表現(xiàn)為W、R處理顯著高于M、B處理。胞間CO2濃度(Ci)隨處理時(shí)間呈現(xiàn)出升高—降低—再升高趨勢(shì),最大值出現(xiàn)在42 d,最小值出現(xiàn)在63 d,在所有光質(zhì)處理下,42 d時(shí)Ci值顯著高于其他階段(Plt;0.05),但在光質(zhì)處理的同一時(shí)間,Ci變動(dòng)幅度較小,各處理間差異不顯著。雙因素方差分析也表明,光質(zhì)、處理時(shí)間及其交互作用極顯著影響Pn、Gs、Ci(Plt;0.01),而Tr在光質(zhì)與處理時(shí)間交互作用下達(dá)到顯著差異(Plt;0.05)。
2.3" 光質(zhì)對(duì)銀杏葉黃酮含量的影響
由不同光質(zhì)處理下銀杏葉黃酮含量情況(表3)可知,不同光質(zhì)下,黃酮含量在處理42 d時(shí)達(dá)到最大值,R、M、B處理顯著高于其他時(shí)間段;63 d與84 d明顯降低,兩者間差異較小。而在同一時(shí)間段,銀杏葉片總黃酮含量表現(xiàn)為B>M>W(wǎng)>R,B處理顯著高于其他光質(zhì)處理,M處理顯著高于W、R處理;相較于W處理,在處理21、42、63、84 d時(shí),B處理分別提高了67.1%、266.0%、190.0%、151.0%;M處理則分別提高了29.1%、117.0%、122.0%、88.9%,B處理在42 d時(shí)達(dá)到最大值??傮w來(lái)說(shuō),B、M可以顯著提高其總黃酮含量,而R處理則相反。雙因素方差分析表明,光質(zhì)、處理時(shí)間及其交互作用均極顯著影響光合色素含量(Plt;0.01)。
單株產(chǎn)量的測(cè)定是在銀杏幼苗基本停止生長(zhǎng)(84 d)后進(jìn)行的。W、R、M、B處理下產(chǎn)量分別為5.75、2.05、7.84、10.10 mg/g,且W與B、R處理間均達(dá)到顯著差異(Plt;0.05),B處理顯著提高了銀杏葉單株黃酮產(chǎn)量,比對(duì)照(W)提高了75.65%;R處理則顯著降低其產(chǎn)量,其產(chǎn)量比對(duì)照(W)降低了64.35%;而M處理與W處理間差異不顯著(Pgt;0.05)。
3" 討" 論
光質(zhì)對(duì)植物生長(zhǎng)、葉形態(tài)建成影響顯著。銀杏苗高在藍(lán)光下明顯增加,地徑則對(duì)紅、藍(lán)光質(zhì)不敏感。施杰等在藍(lán)莓(Vaccinium australe)的紅、藍(lán)光質(zhì)處理中發(fā)現(xiàn)類(lèi)似結(jié)果,但蘇建榮等認(rèn)為紅光也顯著促進(jìn)了云南紅豆杉(Taxus yunnanensis)苗高、地徑生長(zhǎng);說(shuō)明不同樹(shù)種對(duì)光質(zhì)反應(yīng)存在差異。光質(zhì)抑制銀杏的生物量積累,并影響生物量的分配方向。桑樹(shù)(Morus alba)在白光下生物量顯著高于其他光質(zhì)處理,生物分配方面,發(fā)現(xiàn)冬青(Ilex chinensis)與銀杏有相似結(jié)果,即紅光促進(jìn)生物量向根部轉(zhuǎn)移,藍(lán)光下地上部分干物質(zhì)明顯增加。銀杏葉片形態(tài)也受光質(zhì)影響,其葉長(zhǎng)、葉寬、葉面積在紅藍(lán)混光時(shí)增加,與Lee等研究結(jié)果相似,但葉片數(shù)量、葉生物量受光質(zhì)抑制,與楊超等研究結(jié)果一致。由這些分析可知,相較于白光,其他光質(zhì)處理抑制銀杏生物量積累,紅光也對(duì)銀杏葉長(zhǎng)、葉寬、葉面積有明顯抑制,但藍(lán)光能夠促進(jìn)銀杏的苗高生長(zhǎng)。
植物光合特性與光質(zhì)間關(guān)系緊密。山白蘭(Paramichelia baillonii)在紅光下Chla、Car含量明顯增加,Chlb含量則僅在藍(lán)光下增加;但香樟(Cinnamomum camphora)則與上述不同,ChlT、Car含量在紅光下降低;這與本研究結(jié)果較為一致。光質(zhì)對(duì)植物光合作用的影響因樹(shù)種、環(huán)境而不同。紅、藍(lán)光質(zhì)均抑制金秋砂糖橘(Citrus reticulata ‘Jinqiu Shatangju’)的Tr、Gs;而油茶(Camellia oleifera)的Tr、Gs僅受藍(lán)光抑制,紅、紅藍(lán)混光不利于Pn、Ci增加。銀杏則表現(xiàn)為藍(lán)光抑制Pn、Tr,紅光對(duì)Pn、Gs有明顯促進(jìn)。本研究還發(fā)現(xiàn),銀杏光合特征參數(shù)隨光質(zhì)處理時(shí)間延長(zhǎng)而增加,推測(cè)光質(zhì)對(duì)銀杏光合作用的影響需要一定時(shí)間積累。黃酮類(lèi)化合物積累受光質(zhì)影響,藍(lán)光、紫光提高了紅花檵木(Loroopetalum chinense)葉片愈傷組織黃酮含量,紅光下明顯下降;竹葉蘭(Arundina graminifolia)在紅藍(lán)混光下類(lèi)黃酮含量明顯增加,有助于其他林產(chǎn)品中黃酮物質(zhì)的積累與提取應(yīng)用;Wu等、Zheng等通過(guò)分析光質(zhì)與轉(zhuǎn)錄因子的關(guān)系,認(rèn)為藍(lán)光、紫外光上調(diào)了關(guān)鍵轉(zhuǎn)錄因子,從而有利于黃酮的積累,從分子學(xué)角度解釋了黃酮積累的機(jī)制。本試驗(yàn)中銀杏也有類(lèi)似規(guī)律,短波促進(jìn)黃酮積累,而長(zhǎng)波抑制。本研究表明,銀杏光合色素含量和光合能力總體上表現(xiàn)為隨光質(zhì)處理時(shí)間的延長(zhǎng)而上升,且藍(lán)光、紅藍(lán)混光有利于光合色素的積累,也顯著提高了銀杏總黃酮及單株黃酮含量。但本試驗(yàn)中選擇的光質(zhì)處理組合較少,今后研究中需要增加光質(zhì)組合類(lèi)型及比例,系統(tǒng)研究光質(zhì)與銀杏生長(zhǎng)及黃酮積累的關(guān)系及機(jī)制,從而推動(dòng)銀杏葉用林的科學(xué)管理。
參考文獻(xiàn)(reference):
[1]MARMIROLI M,IMPERIALE D,PAGANO L,et al.The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots,and its correlation with the transcriptomic response.Front Plant Sci,2015,6:1104.DOI:10.3389/fpls.2015.01104.
[2]YANG Z C,KUBOTA C,CHIA P L,et al.Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation.Sci Hortic,2012,136:81-86.DOI: 10.1016/j.scienta.2011.12.023.
[3]王小娟,李國(guó)強(qiáng),苗洪利.單色光對(duì)小麥草生長(zhǎng)速率的影響研究.激光生物學(xué)報(bào),2015,24(2):165-169.WANG X J,LI G Q,MIAO H L.Effect of the monochromatic light on the growth rate of wheatgrass.Acta Laser Biol Sin,2015,24(2):165-169.DOI: 10.3969/j.issn.1007-7146.2015.02.009.
[4]LI Y,LIU C,SHI Q H,et al.Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content.Environ Exp Bot,2021,185:104407.DOI: 10.1016/j.envexpbot.2021.104407.
[5]LI Y,XIN G F,WEI M,et al.Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities.Sci Hortic,2017,225:490-497.DOI: 10.1016/j.scienta.2017.07.053.
[6]MASSA G D,KIM H H,WHEELER R M,et al.Plant productivity in response to LED lighting.Hort" Science,2008,43(7):1951-1956.DOI: 10.21273/hortsci.43.7.1951.
[7]LI Y,LIU Z L,SHI Q H,et al.Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy,photosynthesis,CO2 assimilation and endogenous hormones.Sci Hortic,2021,290:110500.DOI: 10.1016/j.scienta.2021.110500.
[8]屈成,劉芬,陳光輝,等.LED紅藍(lán)光質(zhì)對(duì)水稻幼苗生長(zhǎng)及生理特性的影響.核農(nóng)學(xué)報(bào),2020,34(9):2095-2102.QU C,LIU F,CHEN G H,et al.Effects of LED red and blue light ratio on growth and physiological characteristics of rice seedlings.J Nucl Agric Sci,2020,34(9):2095-2102.DOI: 10.11869/j.issn.100-8551.2020.09.2095.
[9]任海英,甘振,戚行江,等.補(bǔ)光對(duì)設(shè)施栽培楊梅營(yíng)養(yǎng)生長(zhǎng)和果實(shí)品質(zhì)的影響.果樹(shù)學(xué)報(bào),2022,39(6):1072-1080.REN H Y,GAN Z,QI X J,et al.Effects of light supplement on vegetative growth and fruit quality of bayberry(Myrica rubra) in facility cultivation.J Fruit Sci,2022,39(6):1072-1080.DOI: 10.13925/j.cnki.gsxb.20210453.
王改萍,丁延朋,曹福亮,等.金葉銀杏雜交F1代苗木生長(zhǎng)和葉色變化分析.植物資源與環(huán)境學(xué)報(bào),2023,32(4):1-11.WANG G P,DING Y P,CAO F L,et al.Analysis on growth and leaf color variation of hybrid F1 generation seedlings of Ginkgo biloba ‘Golden leaves’.J Plant Resour Environ,2023,32(4):1-11.DOI: 10.3969/j.issn.1674-7895.2023.04.01.
ZHANG W W,XU F,CHENG H A,et al.Effect of chlorocholine chloride on chlorophyll,photosynthesis,soluble sugar and flavonoids of Ginkgo biloba.Not Bot Hort Agrobot Cluj,2013,41(1):97.DOI: 10.15835/nbha4118294.
王孟珂,國(guó)穎,汪貴斌,等.不同生境對(duì)銀杏雌、雄株嫁接苗葉中聚戊烯醇等成分積累的影響.南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(1):121-128.WANG M K,GUO Y,WANG G B,et al.Effects of habitat on the synthesis and accumulation of primary metabolites in Ginkgo biloba leaves.J Nanjing For Univ (Nat Sci Ed),2023,47(1):121-128.DOI: 10.12302/j.issn.1000-2006.202104037.
PEREIRA E,BARROS L,DUEAS M,et al.Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L..Ind Crops Prod,2015,74:144-149.DOI: 10.1016/j.indcrop.2015.04.039.
錢(qián)龍梁,李佳佳,曹福亮,等.生物遮陰對(duì)銀杏幼苗次生代謝的影響.南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,43(3):189-194.QIAN L L,LI J J,CAO F L,et al.Effect of biological shading on secondary metabolism of ginkgo seedlings.J Nanjing For Univ (Nat Sci Ed),2019,43(3):189-194.DOI: 10.3969/j.issn.1000-2006.201809029.
謝寶東,王華田.光質(zhì)和光照時(shí)間對(duì)銀杏葉片黃酮、內(nèi)酯含量的影響.南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,30(2):51-54.XIE B D,WANG H T.Effects of light spectrum and photoperiod on contents of flavonoid and terpene in leaves of Ginkgo biloba L..J Nanjing For Univ (Nat Sci Ed),2006,30(2):51-54.DOI: 10.3969/j.issn.1000-2006.2006.02.012.
付志高,李蓮芳,王凱,等.緩釋肥及氮和磷肥配施對(duì)滇油杉野生移栽苗木生長(zhǎng)和生物量的影響.四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,39(2):212-219.FU Z G,LI L F,WANG K,et al.Effects of slow-release fertilizer matching N and P fertilizer on growth and biomass for wild transplanted seedlings of Keteleeria evelyniana.J Sichuan Agric Univ,2021,39(2):212-219.DOI: 10.16036/j.issn.1000-2650.2021.02.011.
李合生.植物生理生化實(shí)驗(yàn)原理和技術(shù).北京:高等教育出版社,2000.LI H S.Principles and techniques of plant physiological biochemical experiment.Beijing:Higher Education Press,2000.
葉威,李強(qiáng),陳穎,等.雌、雄株和金葉銀杏光合生理及黃酮成分年動(dòng)態(tài)變化研究.南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,46(4):77-86.YE W,LI Q,CHEN Y,et al.Annual dynamic changes in photosynthetic physiology and flavonoid components in female,male and golden-leaf Ginkgo biloba trees.J Nanjing For Univ (Nat Sci Ed),2022,46(4):77-86.DOI: 10.12302/j.issn.1000-2006.202112011.
METALLO R M,KOPSELL D A,SAMS C E,et al.Influence of blue/red vs.white LED light treatments on biomass,shoot morphology,and quality parameters of hydroponically grown kale.Sci Hortic,2018,235:189-197.DOI: 10.1016/j.scienta.2018.02.061.
劉曉英,張珂,束勝,等.設(shè)施栽培光照關(guān)聯(lián)溫度調(diào)控的潛在優(yōu)勢(shì)和理論基礎(chǔ).南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,46(5):823-832.LIU X Y,ZHANG K,SHU S,et al.Potential advantages and theoretical basis of light associated temperature regulation in protected cultivation.J Nanjing Agric Univ,2023,46(5):823-832.DOI: 10.7685/jnau.202210007.
施杰,楊海燕,吳文龍,等.不同光質(zhì)對(duì)藍(lán)莓生長(zhǎng)發(fā)育及生理特性的影響.北方園藝,2022(6):15-23.SHI J,YANG H Y,WU W L,et al.Effects of different light quality on the growth and physiological characteristics of blueberry.North Hortic,2022(6):15-23.DOI: 10.11937/bfyy.20213160.
蘇建榮,臧傳富,劉萬(wàn)德,等.光質(zhì)對(duì)云南紅豆杉生長(zhǎng)及紫杉烷含量影響的研究.林業(yè)科學(xué)研究,2012,25(4):419-424.SU J R,ZANG C F,LIU W D,et al.Effect of light quality on growth and taxanes contents of Taxus yunnanensis.For Res,2012,25(4):419-424.DOI: 10.13275/j.cnki.lykxyj.2012.04.008.
胡舉偉,代欣,宋濤,等.不同光質(zhì)對(duì)桑樹(shù)幼苗生長(zhǎng)和光合特性的影響.植物研究,2019,39(4):481-489.HU J W,DAI X,SONG T,et al.Effects of different light qualities on growth and photosynthetic characteristics of mulberry seedlings.Bull Bot Res,2019,39(4):481-489.DOI: 10.7525/j.issn.1673-5102.2019.04.001.
邸秀茹,崔瑾,徐志剛,等.不同光譜能量分布對(duì)冬青試管苗生長(zhǎng)的影響.園藝學(xué)報(bào),2008,35(9):1339-1344.DI X R,CUI J,XU Z G,et al.Effects of light spectral energy distribution on growth of Ilex chinensis sims plantlets in vitro.Acta Hortic Sin,2008,35(9):1339-1344.DOI: 10.16420/j.issn.0513-353x.2008.09.016.
LEE H,HAN G,CHEONG E J.Effect of different treatments and light quality on Ulmus pumila L.germination and seedling growth.For Sci Technol,2021,17(3):162-168.DOI: 10.1080/21580103.2021.1968960.
楊超,劉敏竹,李強(qiáng),等.發(fā)光二極管(LED)光質(zhì)對(duì)金秋砂糖橘幼苗生長(zhǎng)發(fā)育和光合特性的影響.浙江農(nóng)業(yè)學(xué)報(bào),2022,34(1):89-97.YANG C,LIU M Z,LI Q,et al.Effects of different light-emitting diode (LED) light quality on growth,development and photosynthetic characteristics of Jinqiu Shatangju seedlings.Acta Agric Zhejiangensis,2022,34(1):89-97.DOI: 10.3969/j.issn.1004-1524.2022.01.11.
吳芳蘭,李書(shū)玲,楊梅,等.LED光質(zhì)及光周期對(duì)香子含笑幼苗生長(zhǎng)和光合特性的影響.廣西植物,2022,42(12):2167-2177.WU F L,LI S L,YANG M,et al.Effects of LED light qualities and photoperiods on growth and photosynthetic characteristics of Michelia gioii.Guihaia,2022,42(12):2167-2177.DOI: 10.11931/guihaia.gxzw202106035.
ZHOU H A,LIU S J,YANG Y F,et al.Effect of light quality on the growth and photosynthetic characteristics of Cinnamomum camphora rooted cuttings.Scand J For Res,2021,36(7/8):532-538.DOI: 10.1080/02827581.2021.1996627.
汪鳳林,曹光球,葉義全,等.不同光質(zhì)下杉木幼苗葉片光合作用的光響應(yīng).森林與環(huán)境學(xué)報(bào),2017,37(3):366-371.WANG F L,CAO G Q,YE Y Q,et al.Light response of photosynthesis in Cunninghamia lanceolata under different light qualities.J For Environ,2017,37(3):366-371.DOI: 10.13324/j.cnki.jfcf.2017.03.020.
龔洪恩,丁怡飛,姚小華,等.LED光質(zhì)對(duì)油茶苗生長(zhǎng)和光合特性的影響.林業(yè)科學(xué)研究,2018,31(2):176-182.GONG H E,DING Y F,YAO X H,et al.Effects of light qualities on growth and photosynthetic characteristics of Camellia oleifera cutting stocks.For Res,2018,31(2):176-182.DOI: 10.13275/j.cnki.lykxyj.2018.02.025.
OUZOUNIS T,PARJIKOLAEI B R,F(xiàn)RETT X,et al.Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSⅡ and enhances the amount of phenolic acids,flavonoids,and pigments in Lactuca sativa.Front Plant Sci,2015,6:19.DOI: 10.3389/fpls.2015.00019.
郭佩瑤,鄧斯穎,張藝帆,等.不同光質(zhì)對(duì)紅花檵木愈傷組織生長(zhǎng)及黃酮類(lèi)物質(zhì)含量的影響.西北植物學(xué)報(bào),2022,42(1):118-126.GUO P Y,DENG S Y,ZHANG Y F,et al.Effect of different light quality on callus growth and flavonoids content of two Loropetalum chinense plants.Acta Bot Boreali Occidentalia Sin,2022,42(1):118-126.DOI: 10.7606/j.issn.1000-4025.2022.01.0118.
郭阿瑾,楊鳳璽,王亞琴,等.不同光質(zhì)LED對(duì)竹葉蘭酚類(lèi)物質(zhì)及抗氧化性的影響.熱帶作物學(xué)報(bào),2018,39(7):1318-1323.GUO A J,YANG F X,WANG Y Q,et al.Effect of different LED light qualities on phenolic substances and oxygen metabolism of Arundina graminifolia.Chin J Trop Crops,2018,39(7):1318-1323.DOI: 10.3969/j.issn.1000-2561.2018.07.009.
益莎,楊波,楊光,等.竹產(chǎn)品加工剩余物有效成分的生物活性及應(yīng)用研究進(jìn)展. 生物加工過(guò)程,2022,20(3):244-250.YI S, YANG B, YANG G, et al. Progress on bioactivity and application of effective components from processing residues of bamboo products. Chi J Bio Eng, 2022,20(3):244-250.DOI:10.3969/j.issn.1672-3678.2022.03.002.
WU W X,LUO X M,WANG Y,et al.Combined metabolomics and transcriptomics analysis reveals the mechanism underlying blue light-mediated promotion of flavones and flavonols accumulation in Ligusticum chuanxiong Hort.microgreens.J Photochem Photobiol B,2023,242:112692.DOI: 10.1016/j.jphotobiol.2023.112692.
ZHENG L A,HE H M,SONG W T.Application of light-emitting diodes and the effect of light quality on horticultural crops:a review.HortScience,2019,54(10):1656-1661.DOI: 10.21273/hortsci14109-19.
(責(zé)任編輯" 王國(guó)棟)