国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

甘草甜素調(diào)節(jié)HMGB1/RAGE信號(hào)通路對(duì)高糖誘導(dǎo)的心肌細(xì)胞凋亡和自噬的影響

2024-06-18 07:20:53潘娟王琪田艷妮
關(guān)鍵詞:高糖氧化應(yīng)激活力

潘娟 王琪 田艷妮

摘要? 目的:甘草甜素(Gly)調(diào)節(jié)高遷移率族蛋白(HMGB1)/晚期糖基化終產(chǎn)物受體(RAGE)信號(hào)通路對(duì)高糖誘導(dǎo)的心肌細(xì)胞凋亡和自噬的影響。方法:體外培養(yǎng)大鼠心肌細(xì)胞H9c2,將其分為7組:對(duì)照組、高糖組、高糖+Gly組、高糖+pcDNA3.1空載體組、高糖+pcDNA3.1-HMGB1組、高糖+Gly+pcDNA3.1空載體組、高糖+Gly+pcDNA3.1-HMGB1組。細(xì)胞計(jì)數(shù)試劑盒-8(CCK-8)法檢測(cè)細(xì)胞活力;V-異硫氰酸熒光素(Annexin V-FITC)/碘化丙啶(PI)法檢測(cè)細(xì)胞凋亡率;透射電鏡觀察細(xì)胞自噬;蛋白免疫印跡法(Western Blot)檢測(cè)B細(xì)胞淋巴瘤/白血病基因-2相關(guān)X蛋白基因(Bax)、微管相關(guān)蛋白1輕鏈3(LC3)和Beclin-1凋亡、自噬相關(guān)蛋白表達(dá);酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)白介素-1β(IL-1β)、腫瘤壞死因子α(TNF-α)水平;2,7-二氯熒光素二乙酸酯(DCFH-DA)熒光探針法檢測(cè)活性氧(ROS)水平;實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)檢測(cè)HMGB1、RAGE mRNA表達(dá)水平。結(jié)果:與對(duì)照組比較,高糖組H9c2細(xì)胞活力下降,細(xì)胞凋亡率、自噬小體數(shù)量及Bax、LC3、Beclin-1蛋白表達(dá)增加,IL-1β、TNF-α、ROS水平及HMGB1、RAGE mRNA表達(dá)增加,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);與高糖組比較,高糖+Gly組H9c2細(xì)胞活力升高,細(xì)胞凋亡率、自噬小體數(shù)量及Bax、LC3、Beclin-1蛋白表達(dá)減少,IL-1β、TNF-α、ROS水平及HMGB1、RAGE mRNA表達(dá)減少,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);與高糖+Gly組比較,高糖+Gly+pcDNA3.1-HMGB1組H9c2細(xì)胞活力下降,細(xì)胞凋亡率、自噬小體數(shù)量及Bax、LC3、Beclin-1蛋白表達(dá)增加,IL-1β、TNF-α、ROS水平及HMGB1、RAGE mRNA表達(dá)增加,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:Gly能夠減輕高糖誘導(dǎo)的H9c2細(xì)胞炎癥和氧化應(yīng)激反應(yīng),抑制其凋亡和自噬,可能與抑制HMGB1/RAGE信號(hào)通路有關(guān)。

關(guān)鍵詞? 甘草甜素;高遷移率族蛋白;晚期糖基化終產(chǎn)物受體;高糖;心肌細(xì)胞;細(xì)胞凋亡;細(xì)胞自噬;實(shí)驗(yàn)研究

doi:10.12102/j.issn.1672-1349.2024.11.007

Effects of Glycyrrhizin Modulating HMGB1/RAGE Signaling Pathway on Apoptosis and Autophagy of Cardiomyocytes Induced by High Glucose

PAN Juan, WANG Qi, TIAN Yanni

Xian Yang Central Hospital, Xianyang 712000, Shaanxi, China

Corresponding Author? ?TIAN Yanni, E-mail: tianyn0516@163.com

Abstract? Objective:To investigate the effect of glycyrrhizin(Gly) on apoptosis and autophagy induced by high glucose in cardiomyocytes by regulating the high mobility group box protein(HMGB1)/receptor for advanced glycation end products(RAGE) signaling pathway.Methods:Rat cardiomyocytes H9c2 were cultured in vitro and divided into control(Ctrl) group,high glucose group,high glucose+Gly group,high glucose+pcDNA3.1 empty vector group,high-glucose+pcDNA3.1-HMGB1 group,high glucose+Gly+pcDNA3.1 empty vector group,and high glucose+Gly+pcDNA3.1-HMGB1 group.Cell viability was detected by cell counfing kit-8(CCK-8) assay.Apoptosis rate was detected by Annexin V-FITC/propyl iodide(PI) method.Autophagy was observed by transmission electron microscopy.The expression of B-cell lymphoma/leukemia gene-2-related X protein gene(Bax),microtubule-related protein 1 light chain 3(LC3) and Beclin-1 apoptosis and autophagy-related protein were detected by Western Blot.The levels of interleukin-1β(IL-1β) and tumor necrosis factor α(TNF-α) were detected by enzyme-linked immunosorbent assay(ELISA).2,7-dichlorofluorescein diacetate(DCFH-DA) fluorescence probe method was performed to detect reactive oxygen species(ROS).Real-time fluorescence quantitative polymerase chain reaction(qRT-PCR) was performed to detect the mRNA expression levels of HMGB1 and RAGE.Results:Compared with Ctrl group,H9c2 cell viability inhigh glucose group decreased,apoptosis rate,autophagosome number and protein expression of Bax,LC3 and Beclin-1 increased,IL-1β,TNF-α,ROS levels and mRNA expression of HMGB1 and RAGE increased,with statistical significance(P<0.05).Compared with the high glucose group,the H9c2 cell viability was increased in the high glucose+Gly group,the apoptosis rate,the number of autophagosomes and the expression of Bax,LC3 and Beclin-1 protein decreased,and the levels of IL-1β,TNF-α and ROS and the mRNA expressions of HMGB1 and RAGE decreased,with statistical significance(P<0.05).Compared with the high glucose+Gly group,the viability of H9c2 cells in the high glucose+Gly+pcDNA3.1-HMGB1 group decreased,the apoptosis rate,the number of autophagosomes and the expression of Bax,LC3 and Beclin-1 protein increased,the levels of IL-1β,TNF-α and ROS and the expression of HMGB1 and RAGE mRNA increased.The differences were statistically significant(P<0.05).Conclusion:Gly can reduce the inflammation and oxidative stress response of H9c2 cells induced by high glucose,inhibit their apoptosis and autophagy,which may be related to the inhibition of HMGB1/RAGE signaling pathway.

Keywords? glycyrrhizin; high mobility group box protein; receptor for advanced glycation end products;high glucose; cardiomyocytes; apoptosis; autophagy; experimental study

糖尿病性心肌?。╠iabetic cardiomyopathy,

通訊作者? 田艷妮,E-mail:tianyn0516@163.com

引用信息? 潘娟,王琪,田艷妮.甘草甜素調(diào)節(jié)HMGB1/RAGE信號(hào)通路對(duì)高糖誘導(dǎo)的心肌細(xì)胞凋亡和自噬的影響[J].中西醫(yī)結(jié)合心腦血管病雜志,2024,22(11):1961-1966.

DCM)是一種以心臟結(jié)構(gòu)和功能的異常改變?yōu)樘卣鞯奶悄虿〔l(fā)癥,也是引發(fā)糖尿病病人死亡的常見原因之一[1]。研究顯示,炎癥和氧化應(yīng)激反應(yīng)在DCM的發(fā)生進(jìn)展中發(fā)揮著關(guān)鍵性作用,過度累積的炎性因子和活性氧(reactive oxygen species,ROS)可誘導(dǎo)心臟收縮功能受損,促進(jìn)心肌細(xì)胞凋亡和自噬[2-3]。因此,抑制炎癥和氧化應(yīng)激反應(yīng)是防治DCM的重要方向。

甘草甜素(glycyrrhizin,Gly)是從中藥甘草的根中分離得到的一種三萜類化合物,具有抗炎、抗氧化、抗病毒、免疫調(diào)節(jié)、抗?jié)兊葟V泛的藥理生物活性[4]。有研究顯示,Gly對(duì)心臟損傷有一定的保護(hù)作用[5]。但關(guān)于Gly對(duì)DCM的作用及潛在機(jī)制目前仍不清楚。高遷移率族蛋白1(high mobility group box-1 protein,HMGB1)/晚期糖基化終產(chǎn)物受體(receptor of advanced glycation end-product,RAGE)作為在誘導(dǎo)炎癥和氧化應(yīng)激反應(yīng)中發(fā)揮重要作用的信號(hào)通路已被廣泛研究,且研究顯示HMGB1/ RAGE參與糖尿病及相關(guān)并發(fā)癥的發(fā)生進(jìn)展[6-7]。此外,有研究報(bào)道稱Gly可通過抑制HMGB1/RAGE信號(hào)通路而改善2,4-二硝基氯苯誘導(dǎo)的小鼠特應(yīng)性皮炎癥狀或減輕腦靜脈竇阻塞再通引發(fā)的腦損傷[8-9]。本研究利用高糖誘導(dǎo)大鼠心肌細(xì)胞H9c2損傷,觀察Gly對(duì)H9c2細(xì)胞凋亡和自噬的影響,同時(shí)分析HMGB1/RAGE信號(hào)通路在其中的作用,初步揭示Gly在DCM疾病中的調(diào)控機(jī)制。

1? 材料與方法

1.1? 材料

ATCC來源大鼠H9c2細(xì)胞購(gòu)自上海雅吉生物科技有限公司;Gly購(gòu)自上海恒斐生物科技有限公司;pcDNA3.1空載體及pcDNA3.1-HMGB1購(gòu)自上海吉瑪制藥公司;Lipofectamine-2000購(gòu)自上海玉博生物科技有限公司;細(xì)胞計(jì)數(shù)(CCK-8)試劑盒、V-異硫氰酸熒光素(Annexin V-FITC)/碘化丙啶(propidium iodide,PI)試劑盒、ROS

2,7-二氯熒光素二乙酸酯(DCFH-DA)熒光探針試劑盒、RIPA裂解液、二喹啉甲酸(BCA)試劑盒購(gòu)自上海碧云天生物公司;大鼠白介素-1β(interleukin-1β,IL-1β)、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒購(gòu)自上海酶研生物科技有限公司;Trizol購(gòu)自上海聯(lián)碩生物科技有限公司;HMGB1、RAGE引物由北京全式金生物公司設(shè)計(jì)合成;兔源一抗anti-B細(xì)胞淋巴瘤/白血病基因-2相關(guān)X蛋白基因(B-cell lymphoma/leukemia gene-2 associated X Protein,Bax)、anti-微管相關(guān)蛋白1輕鏈3(microtu-bule associated protein 1 light chain 3,LC3)、anti-Beclin-1和山羊抗兔二抗購(gòu)自Abcam公司。

1.2? 細(xì)胞處理及分組

H9c2細(xì)胞采用低糖(5.5 mmol/L)杜爾伯科改良伊格爾(DMEM)培養(yǎng)基,于37 ℃、5%CO2培養(yǎng)箱中常規(guī)培養(yǎng)。待細(xì)胞密度約80%時(shí)收集,以1×106個(gè)/孔接種至6孔板內(nèi),待細(xì)胞密度約80%時(shí)利用Lipofectamine-2000分別將pcDNA3.1空載體、pcDNA3.1-HMGB1轉(zhuǎn)染至H9c2細(xì)胞中,同時(shí)設(shè)置未轉(zhuǎn)染的H9c2細(xì)胞,48 h后經(jīng)實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)檢測(cè)轉(zhuǎn)染效果。

實(shí)驗(yàn)分為對(duì)照組、高糖組、高糖+Gly組、高糖+pcDNA3.1空載體組、高糖+pcDNA3.1-HMGB1組、高糖+Gly+pcDNA3.1空載體組、高糖+Gly+pcDNA3.1-HMGB1組。對(duì)照組、高糖組將未轉(zhuǎn)染的H9c2細(xì)胞分別用低糖(5.5 mmol/L)DMEM培養(yǎng)基、高糖(35 mmol/L)DMEM培養(yǎng)基重懸[10];高糖+Gly組將未轉(zhuǎn)染的H9c2細(xì)胞用含20 μmol/L Gly[11]的高糖DMEM培養(yǎng)基重懸;高糖+pcDNA3.1空載體組、高糖+pcDNA3.1-HMGB1組、高糖+Gly+pcDNA3.1空載體組、高糖+Gly+pcDNA3.1-HMGB1組將轉(zhuǎn)染pcDNA3.1空載體、pcDNA3.1-HMGB1的H9c2細(xì)胞分別用高糖DMEM培養(yǎng)基、含20 μmol/L Gly的高糖DMEM培養(yǎng)基重懸。

1.3? CCK-8法檢測(cè)各組H9c2細(xì)胞活力

將各組H9c2細(xì)胞以1×104個(gè)/孔接種至96孔板內(nèi),培養(yǎng)48 h后加入CCK-8試劑并繼續(xù)培養(yǎng)2 h,借助Thermo MultiskanTMFC酶標(biāo)儀測(cè)定450 nm波長(zhǎng)處的吸光度(OD)。細(xì)胞活力與OD450值成正比。

1.4? Annexin V-FITC/PI法檢測(cè)各組H9c2細(xì)胞凋亡率

將各組H9c2細(xì)胞以5×104個(gè)/孔接種至24孔板內(nèi),培養(yǎng)48 h后收集。將H9c2細(xì)胞轉(zhuǎn)移至流式管內(nèi)(100 μL中2×105個(gè)),加入5 μL Annexin V-FITC,4 ℃孵育15 min,而后加入5 μL的PI,4 ℃孵育5 min,借助BD FACSCantoⅡ流式細(xì)胞儀檢測(cè)細(xì)胞凋亡率。

1.5? 透射電鏡觀察各組H9c2細(xì)胞自噬

細(xì)胞培養(yǎng)處理同1.4,將H9c2細(xì)胞依次經(jīng)戊二醛固定2 h、鋨酸固定2 h,磷酸緩沖液洗后進(jìn)行乙醇梯度脫水,而后進(jìn)行包埋、超薄切片(60~80 nm),醋酸鈾、檸檬酸鉛各染色15 min,于低壓小型透射電鏡(LVEM)下觀察并分析。

1.6? 蛋白免疫印記法(Western Blot)檢測(cè)凋亡和自噬相關(guān)蛋白表達(dá)情況

細(xì)胞培養(yǎng)處理同1.4,加入RIPA裂解液提取總蛋白,BCA法測(cè)定濃度后進(jìn)行定量、變性,隨后進(jìn)行凝膠電泳分離蛋白、轉(zhuǎn)膜、封閉,孵育兔源一抗anti-Bax、anti-LC3、anti-Beclin-1和anti-GAPDH(4 ℃過夜),次日孵育山羊抗兔二抗(室溫2 h),最后滴加增強(qiáng)化學(xué)發(fā)光試劑(enhanced chemiluminescence,ECL),置于Tocan360凝膠成像分析系統(tǒng)中拍照,借助Image-Pro Plus 6.0軟件進(jìn)行灰度分析。

1.7? H9c2細(xì)胞IL-1β、TNF-α及ROS水平檢測(cè)

細(xì)胞培養(yǎng)處理同1.4,收集培養(yǎng)上清,利用ELISA試劑盒測(cè)定上清中IL-1β、TNF-α水平;而后向各孔中加入無血清培養(yǎng)液稀釋的DCFH-DA熒光探針(終濃度10 μmol/L),37 ℃孵育20 min后收集細(xì)胞,借助BD FACSCanto Ⅱ流式細(xì)胞儀檢測(cè)平均熒光強(qiáng)度。ROS水平與平均熒光強(qiáng)度成正比。

1.8? qRT-PCR檢測(cè)各組H9c2細(xì)胞HMGB1、RAGE mRNA表達(dá)水平

細(xì)胞培養(yǎng)處理同1.4,加入Trizol提取總RNA,經(jīng)反轉(zhuǎn)錄合成cDNA,而后利用ABI7500 qRT-PCR儀擴(kuò)增cDNA,以甘油醛-3-磷酸脫氫酶(GAPDH)為內(nèi)參,采用2-△△CT法分析HMGB1、RAGE表達(dá)水平。引物序列:HMGB1正向引物為5′-CTAGCCCTGTCCTGGTGGTATT-3′,反向引物為5′-CCAATTTACAACCCCCAGACTGT-3′;RAGE正向引物為5′-AGGAAAGCCCTCCTGTCAACA-3′,反向引物為5′-CACAGAGCCTGCAGCTTGTC-3′;GAPDH正向引物為5′-GAAGGTCGGTGTGAACGGATTTG-3′,反向引物為5′-CATGTAGACCATGTAGTTGAGGTCA-3′。

1.9? 統(tǒng)計(jì)學(xué)處理

采用SPSS 25.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。符合正態(tài)分布的定量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較行One-way ANOVA分析,進(jìn)一步兩兩比較行SNK-q檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

2? 結(jié)? 果

2.1? 各組H9c2細(xì)胞活力比較

與對(duì)照組比較,高糖組H9c2細(xì)胞活力下降(P<0.05);與高糖組比較,高糖+Gly組H9c2細(xì)胞活力升高(P<0.05),高糖+pcDNA3.1-HMGB1組H9c2細(xì)胞活力下降(P<0.05);與高糖+Gly組比較,高糖+Gly+pcDNA3.1-HMGB1組H9c2細(xì)胞活力下降(P<0.05)。詳見表1。

2.2? 各組H9c2細(xì)胞凋亡和自噬情況比較

與對(duì)照組比較,高糖組H9c2細(xì)胞凋亡率、自噬小體數(shù)量增加(P<0.05);與高糖組比較,高糖+Gly組H9c2細(xì)胞凋亡率、自噬小體數(shù)量減少(P<0.05),高糖+pcDNA3.1-HMGB1組H9c2細(xì)胞凋亡率、自噬小體數(shù)量增加(P<0.05);與高糖+Gly組比較,高糖+Gly+pcDNA3.1-HMGB1組H9c2細(xì)胞凋亡率、自噬小體數(shù)量增加(P<0.05)。詳見圖1、圖2、表2。

2.3? 各組H9c2細(xì)胞凋亡和自噬相關(guān)蛋白表達(dá)情況

與對(duì)照組比較,高糖組H9c2細(xì)胞Bax、LC3、Beclin-1蛋白表達(dá)增加(P<0.05);與高糖組比較,高糖+Gly組H9c2細(xì)胞Bax、LC3、Beclin-1蛋白表達(dá)減少(P<0.05),高糖+pcDNA3.1-HMGB1組H9c2細(xì)胞Bax、LC3、Beclin-1蛋白表達(dá)增加(P<0.05);與高糖+Gly組比較,高糖+Gly+pcDNA3.1-HMGB1組H9c2細(xì)胞Bax、LC3、Beclin-1蛋白表達(dá)增加(P<0.05)。詳見表3、圖3。

2.4? 各組H9c2細(xì)胞IL-1β、TNF-α及ROS水平比較

與對(duì)照組比較,高糖組H9c2細(xì)胞IL-1β、TNF-α及ROS水平增加(P<0.05);與高糖組比較,高糖+Gly組H9c2細(xì)胞IL-1β、TNF-α及ROS水平減少(P<0.05),高糖+pcDNA3.1-HMGB1組H9c2細(xì)胞IL-1β、TNF-α及ROS水平增加(P<0.05);與高糖+Gly組比較,高糖+Gly+pcDNA3.1-HMGB1組H9c2細(xì)胞IL-1β、TNF-α及ROS水平增加(P<0.05)。詳見表4。

2.5? 各組H9c2細(xì)胞HMGB1、RAGE mRNA表達(dá)水平比較

與對(duì)照組比較,高糖組H9c2細(xì)胞HMGB1、RAGE mRNA表達(dá)增加(P<0.05);與高糖組比較,高糖+Gly組H9c2細(xì)胞HMGB1、RAGE mRNA表達(dá)減少(P<0.05),高糖+pcDNA3.1-HMGB1組H9c2細(xì)胞HMGB1、RAGE mRNA表達(dá)增加(P<0.05);與高糖+Gly組比較,高糖+Gly+pcDNA3.1-HMGB1組H9c2細(xì)胞HMGB1、RAGE mRNA表達(dá)增加(P<0.05)。詳見表5。

3? 討? 論

DCM是一種獨(dú)立于其他疾病的心臟損傷,由糖尿病本身引起,發(fā)病早期表現(xiàn)為心室舒張功能異常,后期表現(xiàn)為收縮功能障礙,若治療不當(dāng),可發(fā)展為心力衰竭、心律失常、心源性休克甚至猝死[12]。據(jù)報(bào)道,DCM的發(fā)病機(jī)制涉及糖脂代謝紊亂、氧化應(yīng)激、炎癥反應(yīng)、心肌鈣調(diào)節(jié)機(jī)制受損等多種途徑,其中炎癥和氧化應(yīng)激反應(yīng)日益受到關(guān)注[13]。高血糖可促進(jìn)ROS和炎性因子的過量產(chǎn)生,進(jìn)而誘導(dǎo)心肌細(xì)胞凋亡和心功能損傷[14-15]。本研究中,H9c2細(xì)胞經(jīng)高糖處理后,其IL-1β、TNF-α、ROS水平明顯升高,同時(shí)細(xì)胞活力下降,細(xì)胞凋亡率、自噬小體數(shù)量及自噬、凋亡相關(guān)蛋白Bax、LC3、Beclin-1表達(dá)增加,表明高糖誘導(dǎo)H9c2細(xì)胞發(fā)生了炎癥氧化應(yīng)激反應(yīng),促進(jìn)其凋亡和自噬。

Gly是甘草的主要活性成分之一,在各種疾病模型中,Gly已顯示出抗炎和抗氧化應(yīng)激的巨大潛力。Gly可通過抑制炎癥反應(yīng)減輕偶氮氧甲烷/葡聚糖硫酸鈉誘導(dǎo)的結(jié)直腸癌小鼠的癌變[16]。Gly可通過抑制炎癥和氧化應(yīng)激反應(yīng)改善Ⅱ型膠原誘導(dǎo)的關(guān)節(jié)炎癥[17]。此外,Xu等[18]研究發(fā)現(xiàn)Gly可通過調(diào)節(jié)炎癥和氧化狀態(tài)改善心肌缺血損傷,其作用機(jī)制可能與激活核因子E2相關(guān)因子2/血紅素加氧酶1、抑制核因子κB信號(hào)通路有關(guān)。本研結(jié)果顯示,與高糖組比較,高糖+Gly組H9c2細(xì)胞IL-1β、TNF-α、ROS水平下降,同時(shí)細(xì)胞活力升高,凋亡和自噬現(xiàn)象好轉(zhuǎn),表明Gly能夠減輕高糖誘導(dǎo)的H9c2細(xì)胞炎癥和氧化應(yīng)激反應(yīng),抑制其凋亡和自噬。

炎癥和氧化應(yīng)激反應(yīng)過程涉及諸多信號(hào)通路的調(diào)節(jié),其中HMGB1/RAGE發(fā)揮著關(guān)鍵性作用,HMGB1是一種因在凝膠電泳時(shí)遷移速度快而得名的高度保守的核蛋白,當(dāng)受到外界刺激時(shí)HMGB1被釋放到胞外,與膜受體RAGE相結(jié)合而促進(jìn)多種炎性因子的表達(dá),誘導(dǎo)或加重炎癥和氧化應(yīng)激反應(yīng)[19]。研究顯示,HMGB1/RAGE信號(hào)通路參與肺部疾?。?0]、風(fēng)濕性疾?。?1]、膿毒癥[22]、糖尿病及其相關(guān)并發(fā)癥[6-7]等多種疾病的病理過程。本研究發(fā)現(xiàn),H9c2細(xì)胞經(jīng)高糖處理后HMGB1、RAGE表達(dá)增加,且過表達(dá)HMGB1后,H9c2細(xì)胞中IL-1β、TNF-α、ROS水平升高,細(xì)胞活力下降,凋亡和自噬現(xiàn)象加重,表明HMGB1/RAGE信號(hào)通路參與了高糖誘導(dǎo)的H9c2細(xì)胞損傷。為了探究抑制HMGB1/RAGE信號(hào)通路是否為Gly減輕高糖誘導(dǎo)的H9c2細(xì)胞損傷的潛在機(jī)制,首先檢測(cè)了高糖致?lián)p傷的H9c2細(xì)胞在經(jīng)Gly干預(yù)后其HMGB1、RAGE表達(dá)的差異,結(jié)果顯示HMGB1、RAGE表達(dá)減少;然后在Gly干預(yù)的同時(shí)通過轉(zhuǎn)染使HMGB1過表達(dá),結(jié)果發(fā)現(xiàn),Gly減輕高糖誘導(dǎo)的H9c2細(xì)胞炎癥和氧化應(yīng)激反應(yīng),抑制其凋亡和自噬的作用被削弱,上述結(jié)果綜合表明抑制HMGB1/RAGE信號(hào)通路為Gly的潛在機(jī)制。

綜上所述,Gly能夠減輕高糖誘導(dǎo)的H9c2細(xì)胞炎癥和氧化應(yīng)激反應(yīng),抑制其凋亡和自噬,可能與抑制HMGB1/RAGE信號(hào)通路有關(guān)。

參考文獻(xiàn):

[1]? MURTAZA G,VIRK H U H,KHALID M,et al.Diabetic cardiomyopathy--a comprehensive updated review[J].Progress in Cardiovascular Diseases,2019,62(4):315-326.

[2]? ABUKHALIL M H,ALTHUNIBAT O Y,ALADAILEH S H,et al.Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress,inflammation and apoptosis in rats[J].Biomedecine & Pharmacotherapie,2021,138:111410.

[3]? ZHU Y B,QIAN X,LI J J,et al.Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway[J].Artificial Cells,Nanomedicine,and Biotechnology,2019,47(1):4172-4181.

[4]? 李林霏,毛福英,李斯琦,等.甘草甜素的藥理活性、作用機(jī)制及其應(yīng)用進(jìn)展[J].中華中醫(yī)藥學(xué)刊,2022,40(1):242-247.

[5]? YUAN Y G,LI B,PENG W Z,et al.Protective effect of glycyrrhizin on coronary microembolization-induced myocardial dysfunction in rats[J].Pharmacology Research & Perspectives,2021,9(1):e00714.

[6]? BEHL T,SHARMA E,SEHGAL A,et al.Expatiating the molecular approaches of HMGB1 in diabetes mellitus:highlighting signalling pathways via RAGE and TLRs[J].Molecular Biology Reports,2021,48(2):1869-1881.

[7]? STEINLE J J.Role of HMGB1 signaling in the inflammatory process in diabetic retinopathy[J].Cellular Signalling,2020,73:109687.

[8]? WANG Y,ZHANG Y,PENG G,et al.Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1[J].International Immunopharmacology,2018,60:9-17.

[9]? MU S W,DANG Y,F(xiàn)AN Y C,et al.Effect of HMGB1 and RAGE on brain injury and the protective mechanism of glycyrrhizin in intracranial-sinus occlusion followed by mechanical thrombectomy recanalization[J].International Journal of Molecular Medicine,2019,44(3):813-822.

[10]? 孔建強(qiáng),邴淼,汪瓊,等.右美托咪定調(diào)控miR-126對(duì)高糖誘導(dǎo)的心肌細(xì)胞氧化應(yīng)激及凋亡的影響[J].西部醫(yī)學(xué),2021,33(3):336-341.

[11]? LAI T F,SHEN Y,CHEN C C,et al.Glycyrrhizic acid ameliorates myocardial ischemia-reperfusion injury in rats through inhibiting endoplasmic reticulum stress[J].European Journal of Pharmacology,2021,908:174353.

[12]? DILLMANN W H.Diabetic cardiomyopathy[J].Circulation Research,2019,124(8):1160-1162.

[13]? RITCHIE R H,ABEL E D.Basic mechanisms of diabetic heart disease[J].Circulation Research,2020,126(11):1501-1525.

[14]? YIN Q,LI Z D,LU S Y.Knockdown of ILK alleviates high glucose-induced damage of H9c2 cells through TLR4/MyD88/NF-κB pathway[J].Disease Markers,2022,2022:6205190.

[15]? YANG Z,WU Y,WANG L G,et al.Prokineticin 2 (PK2) rescues cardiomyocytes from high glucose/high palmitic acid-induced damage by regulating the AKT/GSK3β pathway in vitro[J].Oxidative Medicine and Cellular Longevity,2020,2020:3163629.

[16]? WANG G F,HIRAMOTO K,MA N,et al.Glycyrrhizin attenuates carcinogenesis by inhibiting the inflammatory response in a murine model of colorectal cancer[J].International Journal of Molecular Sciences,2021,22(5):2609.

[17]? SHAFIK N M,EL-ESAWY R O,MOHAMED D A,et al.Regenerative effects of glycyrrhizin and/or platelet rich plasma on type-Ⅱ collagen induced arthritis:targeting autophay machinery markers,inflammation and oxidative stress[J].Archives of Biochemistry and Biophysics,2019,675:108095.

[18]? XU C L,LIANG C H,SUN W X,et al.Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state[J].Drug Design,Development and Therapy,2018,12:1311-1319.

[19]? ZHANG C,DONG H,CHEN F,et al.The HMGB1-RAGE/TLR-TNF-α signaling pathway may contribute to kidney injury induced by hypoxia[J].Exp Ther Med,2019,17(1):17-26.

[20]? ZHANG Y,ZHANG M,WANG C Y,et al.Ketamine alleviates LPS induced lung injury by inhibiting HMGB1-RAGE level[J].European Review for Medical and Pharmacological Sciences,2018,22(6):1830-1836.

[21]? SHI J,XU H,CAVAGNARO M J,et al.Blocking HMGB1/RAGE signaling by berberine alleviates A1 astrocyte and attenuates sepsis-associated encephalopathy[J].Frontiers in Pharmacology,2021,12:760186.

[22]? LIN S S,YUAN L J,NIU C C,et al.Hyperbaric oxygen inhibits the HMGB1/RAGE signaling pathway by upregulating miR-107 expression in human osteoarthritic chondrocytes[J].Osteoarthritis and Cartilage,2019,27(9):1372-1381.

(收稿日期:2022-12-05)

(本文編輯郭懷?。?/p>

猜你喜歡
高糖氧化應(yīng)激活力
活力
基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
葛根素對(duì)高糖誘導(dǎo)HUVEC-12細(xì)胞氧化損傷的保護(hù)作用
中成藥(2018年6期)2018-07-11 03:01:04
丹紅注射液對(duì)高糖引起腹膜間皮細(xì)胞損傷的作用
中成藥(2017年8期)2017-11-22 03:18:21
改制增添活力
氧化應(yīng)激與糖尿病視網(wǎng)膜病變
收回編制 激發(fā)活力
張掖市甜菜高產(chǎn)高糖栽培技術(shù)
氧化應(yīng)激與結(jié)直腸癌的關(guān)系
大黃素對(duì)高糖培養(yǎng)的GMC增殖、FN表達(dá)及p38MAPK的影響
甘德县| 金阳县| 沽源县| 渭南市| 兖州市| 进贤县| 皋兰县| 怀来县| 揭东县| 玛多县| 丹东市| 丰台区| 固安县| 泰兴市| 东城区| 星座| 鹤岗市| 本溪市| 阳曲县| 兴海县| 尉犁县| 吐鲁番市| 米泉市| 平远县| 内黄县| 海城市| 云南省| 桦川县| 攀枝花市| 长兴县| 四川省| 铜川市| 河北省| 福贡县| 丹阳市| 祁门县| 南阳市| 社旗县| 九江市| 台北市| 柯坪县|