郭少晨 陸宇
摘要:全球耐藥結(jié)核病形勢嚴(yán)峻,臨床中用于治療耐藥結(jié)核病的藥物選擇非常有限,導(dǎo)致了治療的困難和挑戰(zhàn),開發(fā)新型抗結(jié)核藥物對于耐藥結(jié)核病的治療具有關(guān)鍵性的作用。惡唑烷酮類藥物及其結(jié)構(gòu)改造物顯示出對結(jié)核分枝桿菌耐藥菌株具有良好的抗菌活性。本文對近期關(guān)于惡唑烷酮類藥物作用機(jī)制、臨床前體內(nèi)外抗結(jié)核活性、藥動(dòng)學(xué)特點(diǎn)、安全性和臨床試驗(yàn)研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:耐藥結(jié)核病;惡唑烷酮類藥物;藥動(dòng)學(xué);藥效學(xué)
中圖分類號(hào):R978.3文獻(xiàn)標(biāo)志碼:A
New oxazolidinone drugs and perspectives for anti-tuberculosis agents
Guo Shaochen and Lu Yu
(Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149)
Abstract The global situation of drug-resistant tuberculosis is severe, with limited drug options available for the treatment of drug-resistant tuberculosis, resulting in challenges and difficulties in treatment. The development of new anti-tuberculosis drugs plays a crucial role in the treatment of drug-resistant tuberculosis. Oxazolidinone drugs and their structural derivatives have shown good antibacterial activity against drug-resistant strains of Mycobacterium tuberculosis. This article reviewed recent advances in the understanding of the mechanism of action, preclinical studies on the anti-tuberculosis activity, pharmacokinetic properties, safety, and clinical trials of oxazolidinone drugs.
Key words Drug-resistant tuberculosis; Oxazolidinone drugs; Pharmacokinetics; Pharmacodynamics
耐多藥結(jié)核病仍然是一項(xiàng)公共衛(wèi)生危機(jī)和衛(wèi)生安全威脅。2021年,全球范圍內(nèi)估算有約45萬例耐多藥/利福平耐藥結(jié)核?。╩ultidrug-resistant TB or rifampicin-resistant TB, MDR/RR-TB)患者,耐藥結(jié)核病形勢非常嚴(yán)峻[1]。耐藥結(jié)核病治療需要組合3~5種藥物組成有效的治療方案,治療周期長、成功率低。耐藥結(jié)核病治療需要新藥新方案縮短療程,提高治愈率。
惡唑烷酮類藥物為人工合成類抗生素,20世紀(jì)80年代杜邦公司發(fā)現(xiàn)兩個(gè)惡唑烷酮類化合物DuP-721和DuP-105對β-內(nèi)酰胺酶耐藥和甲氧西林耐藥的葡萄球菌具有抑制活性而受到關(guān)注[2]。研究者還發(fā)現(xiàn)DuP-721對結(jié)核分枝桿菌、堪薩斯分枝桿菌和瘰疬分枝桿菌表現(xiàn)出良好的抗菌作用,特別是對異煙肼、利福平、鏈霉素單耐藥和聯(lián)合耐藥的結(jié)核分枝桿菌依舊保持著抑制活性,最低抑菌濃度0.97~4.0 μg/mL[3]。
作用于蛋白質(zhì)翻譯系統(tǒng)的翻譯過程的起始階段,藥物在體內(nèi)通過與結(jié)核分枝桿菌的50S核糖體亞基結(jié)合,干擾50S核糖體亞基與30S核糖體亞基、mRNA、啟動(dòng)因子(IF1、IF2、IF3)和N-甲酰甲硫氨酸-tRNA的連接,阻止70S起始復(fù)合物的形成,抑制蛋白質(zhì)翻譯的延伸階段,從而達(dá)到抑制細(xì)菌蛋白質(zhì)的合成的目的,最終抑制結(jié)核分枝桿菌的生長[4-7]。惡唑烷酮類藥物抑制蛋白質(zhì)合成的作用靶點(diǎn)與其他抑制蛋白質(zhì)合成抗生素的靶點(diǎn)不同,惡唑烷酮類化合物對肽酰轉(zhuǎn)移酶活性和肽鏈的釋放階段無影響[6,8]。
由于惡唑烷酮類化合物獨(dú)特的作用機(jī)制,所以不與現(xiàn)有其他抗結(jié)核藥物發(fā)生交叉耐藥。
利奈唑胺(linezolid, LZD)是2010年FDA批準(zhǔn)上市的惡唑烷酮類抗生素,于2018年成為治療耐藥結(jié)核病A組的核心藥物,不僅對復(fù)制期的結(jié)核分枝桿菌,對慢生長和非復(fù)制期結(jié)核分枝桿菌也有抑制作用[9-11]。2019年,BPaL方案被批準(zhǔn)有條件上市作為耐藥結(jié)核病治療方案[12]。LZD治療窗窄,易出現(xiàn)藥物不良反應(yīng),如血小板降低、骨髓抑制、乳酸中毒、外周和視神經(jīng)病變等,主要出現(xiàn)在服用LZD1-2個(gè)月后[13-14]。一項(xiàng)前瞻性隨機(jī)對照研究中發(fā)現(xiàn)在服用LZD后,有81.8%患者出現(xiàn)不同程度的不良反應(yīng)[15]。
LZD價(jià)格較貴,增加了患者的治療負(fù)擔(dān),尤其是在一些經(jīng)濟(jì)不發(fā)達(dá)地區(qū),LZD的應(yīng)用面臨著很大的限制。近年來,研究者希望通過結(jié)構(gòu)改造發(fā)現(xiàn)抗結(jié)核活性高、體內(nèi)藥動(dòng)學(xué)特征好和毒性低的化合物,本文對目前臨床前和進(jìn)入臨床試驗(yàn)的惡唑烷酮類化合物展開綜述。
1 惡唑烷酮類藥物 (表1和圖1)
惡唑烷酮類藥物主要通過化學(xué)結(jié)構(gòu)中惡唑烷酮(A環(huán))、苯環(huán)(B環(huán))和嗎啉環(huán)(C環(huán)),以及A環(huán)中C-5位置上的官能團(tuán)進(jìn)行改造,從而使得化合物具有更優(yōu)的抗菌活性和藥動(dòng)學(xué)特點(diǎn)。結(jié)構(gòu)-活性關(guān)系研究表明,化合物苯環(huán)和惡唑烷酮環(huán)的C-5為(S)構(gòu)型對活性至關(guān)重要,同時(shí)對與該位置基團(tuán)也可以進(jìn)行結(jié)構(gòu)改造從而獲得更好的活性,對嗎啉環(huán)的結(jié)構(gòu)改造則可以改善藥物的藥動(dòng)學(xué)特點(diǎn)和溶解性[16]。
1.1 Sutezolid (PNU-100480)
Sutezolid又名PNU-100480,在化學(xué)結(jié)構(gòu)式中C環(huán)含有硫代嗎啉取代基團(tuán),在體外對結(jié)核分枝桿菌具有抑制作用,對敏感菌株和耐藥菌株MIC的范圍在0.03~0.5 μg/mL之間,代謝產(chǎn)物為亞砜代謝物PNU-101603和苯基砜代謝物PNU-101244,其中PNU-101603也具有抗結(jié)核活性[17]。體內(nèi)研究表明,服用劑量25~100 mg/kg的Sutezolid 4周后,能夠觀察到結(jié)核感染小鼠肺、脾組織中結(jié)核分枝桿菌菌落數(shù)明顯降低,藥效與INH相近[18]。小鼠體內(nèi)實(shí)驗(yàn)表明100 mg/kg
的Sutezolid抗結(jié)核作用強(qiáng)于LZD,安全性強(qiáng)于LZD。Sutezolid還能夠增強(qiáng)INH+RFP+PZA組合方案和MFX+PZA組合方案的抗結(jié)核活性,小鼠肺組織多降低約2log10 CFU[19]。Sutezolid具有口服吸收快的藥動(dòng)學(xué)特點(diǎn),Tmax在1.75~2.5 h,口服后能夠迅速在體內(nèi)分布,分布容積Vz/F為990 L~2000 L,
清除速率(CL/F)為145~167 L/h,半衰期T1/2在4.08~11.7 h,sutezolid的分布容積和半衰期隨服用高劑量而升高,體現(xiàn)中心室在藥物消除相的作用[20]。Sutezolid安全性較高,在健康受試者體內(nèi)1000 mg/kg下,受試者均能夠耐受[21]。300~1800 mg
單次給藥情況下,健康受試者未出現(xiàn)明顯的心電圖信號(hào)改變和其他與心臟相關(guān)的不良反應(yīng)[20]。
目前,II b期臨床試驗(yàn)(臨床試驗(yàn)NCT03959566)評(píng)估不同劑量的Sutezolid(0,600 mg每日一次,1200 mg 每日一次,600 mg每日兩次,800 mg每日兩次)在藥物組合BDQ+DEL+MFX組合中的安全性、耐受性、藥動(dòng)學(xué)和量效關(guān)系[22]。通過研究藥物暴露與毒性之間的關(guān)系,該研究旨在確定Sutezolid的最佳劑量,以在保持可接受的安全性的同時(shí)提供最佳療效。
1.2 Delpazolid (LCB01-0371)
Delpazolid,又名LCB01-0371,由韓國LegoChem BioSciences公司合成。Delpazolid的關(guān)鍵骨架上應(yīng)用了環(huán)狀氨肟酮結(jié)構(gòu),保持了一定的疏水性,并具有與羧酸類似的微弱堿性pH。因此,在人體生理?xiàng)l件下,它可以通過從羧酸獲得質(zhì)子而帶電,從而增強(qiáng)了其溶解度和藥動(dòng)學(xué)特性[23]。Delpazolid對MDR-TB的MIC比LZD低,具有在巨噬細(xì)胞內(nèi)抗結(jié)核活性[23-24]。藥物相互作用研究結(jié)果表明,delpazolid與BDQ、CFZ和PZA存在部分協(xié)同作用,與利福類、氟喹諾酮類藥物存在相加作用[23]。
在400~1200 mg劑量范圍內(nèi),AUC0-12和Cmax不按服藥劑量成比例上升,說明此藥物表現(xiàn)為非線性PK特點(diǎn)[25]。Delpazolid口服吸收較快,半衰期T1/2約2 h,僅為LZD半衰期的1/3~1/2,經(jīng)尿排泄占給藥劑量的8%左右,服藥12h后人體內(nèi)基本上檢測不到delpazolid[26]。Delpazolid的安全性較高,在大鼠模型中就表現(xiàn)出較低的骨髓抑制和神經(jīng)毒性。在I期臨床試驗(yàn)和臨床前實(shí)驗(yàn)均表現(xiàn)出較低的線粒體毒性,并且由于delpazolid不是細(xì)胞色素酶P450和藥物轉(zhuǎn)運(yùn)體的底物,很少引起藥物間相互作用[23,27]。Ⅱ期臨床試驗(yàn)(臨床試驗(yàn)NCT02836483)評(píng)估不同劑量下的Delpazolid(800 mg每日一次,400 mg每日兩次,800 mg每日兩次和1,200 mg每日一次)的早期殺菌活性和安全性。日均下降菌落數(shù)分別為0.044±0.016,0.053±0.017,0.043±0.016和0.019±0.017,且未發(fā)現(xiàn)受試者出現(xiàn)與該藥物相關(guān)的嚴(yán)重不良反應(yīng)[26]。目前,delpazolid正在進(jìn)行IIb期臨床試驗(yàn)(臨床試驗(yàn)NCT04550832),評(píng)估藥物在BDQ+DEL+MFX組合方案中發(fā)揮的藥效與藥物在體內(nèi)暴露量之間的關(guān)系[26]。
1.3 Contezolid (MRX-1)
Contezolid在結(jié)構(gòu)上采用 “三氟非共面”分子結(jié)構(gòu)設(shè)計(jì),即B環(huán)有臨位F,增加了A、B環(huán)的非共面性,顯著降低毒性;C環(huán)二氫吡啶酮結(jié)構(gòu)替代嗎啉環(huán),加快藥物代謝,縮短半衰期[28]。體外微孔板稀釋實(shí)驗(yàn)發(fā)現(xiàn)contezolid對異煙肼敏感和耐藥的結(jié)核分枝桿菌株均具有抑制作用,MIC在0.5~1.0 μg/mL
之間,其活性與LZD相似[29]。在結(jié)核分枝桿菌Erdman感染的BALB/c小鼠模型中,100 mg/kg劑量的conetezolid和LZD能夠顯著降低小鼠肺臟組織中,表現(xiàn)出較強(qiáng)的抗結(jié)核活性,低劑量(25 mg/kg, BID)和中劑量(50 mg/kg, BID)的contezolid抑菌作用較高劑量組較弱[29]。群體藥動(dòng)學(xué)研究表明,contezolid口服ADME過程是二室模型,吸收過程受食物影響,受試者體重影響外周室分布容積,contezolid符合一級(jí)消除動(dòng)力學(xué)特點(diǎn),主要通過尿液和糞便排出體外,主要代謝物為MRX445-1和MRX459[30-31]。Contezolid安全性好,健康受試者可耐受口服單劑量800、1200和1600 mg[32]。PK/PD研究顯示contezolid在800 mg治療劑量下不會(huì)使QT間期延長,而超治療劑量(1600 mg)下對QT間期延長僅有較輕的作用[33-34]。除此之外,還表現(xiàn)出較弱的誘導(dǎo)MAO相關(guān)5-羥色胺能神經(jīng)毒性和骨髓抑制毒性[28]。目前,在國內(nèi)還在開展康替唑胺片治療結(jié)核分枝桿菌感染的臨床研究,研究旨在評(píng)估康替唑胺片對初治敏感肺結(jié)核和耐多藥肺結(jié)核患者早期殺菌活性、安全性和耐受性。
1.4 AZD5847 (Posizolid)
AZD5847抗結(jié)核活性呈劑量依賴,在細(xì)胞內(nèi)外均具有抗結(jié)核活性,MIC<1 μg/mL。無論從抗結(jié)核活性以及殺菌速率上看,AZD5847均優(yōu)于LZD[35]。結(jié)核感染模型小鼠在接受AZD5847治療后4周,可降低肺組織中1log10 CFU,(AUC在105~158 μg/mL之間)。PK/PD研究表明AZD5847藥效學(xué)靶值在游離藥物AUC/MIC>20,在有效的藥物組合方案中%T>MIC≥25%[36]。AZD5847與其他抗結(jié)核藥物應(yīng)用有相加作用,提示AZD5748在未來可以應(yīng)用于聯(lián)合療法中。在隨后進(jìn)行的臨床試驗(yàn)Ⅱ期研究中(NCT01516203),評(píng)價(jià)AZD5847對60名感染敏感菌株的結(jié)核病患者進(jìn)行為期14 d的早期殺菌活性,結(jié)果顯示AZD5847沒有表現(xiàn)出優(yōu)于其他惡唑烷酮類化合物的抗結(jié)核活性。從藥動(dòng)學(xué)特點(diǎn)分析,AZD5847在人體內(nèi)按二室模型分布,存在藥物吸收過程滯后的現(xiàn)象,并且AZD5847在小鼠體內(nèi)分布容積和清除率較低,消除半衰期(elimination half-life)較長。AZD5847的AUC、(fAUC)/MIC和fT>MIC三項(xiàng)PK/PD參數(shù)均比陽性對照藥物L(fēng)ZD和sutezolid低[37-38]。目前,AstraZeneca公司已經(jīng)將化合物AZD5847從新藥管線中移除。
1.5 特地唑胺(tedizolid)
磷酸特地唑胺作為惡唑烷酮類前藥,進(jìn)入體內(nèi)可以迅速轉(zhuǎn)化為有抗菌活性的特地唑胺[39]。特地唑胺對C-5側(cè)鏈進(jìn)行了改造,并增加了D環(huán),使得與核糖體的結(jié)合位點(diǎn)增加,從而增加抗菌活性[40]。體外實(shí)驗(yàn)證明特地唑胺對結(jié)核分枝桿菌臨床敏感株和耐藥株均具有抑制作用,對非復(fù)制期的結(jié)核分枝桿菌也同樣具有活性,同時(shí)具有巨噬細(xì)胞內(nèi)活性,與陽性對照藥物MFX和RFP相當(dāng)[41-43]。特地唑胺可與現(xiàn)有的抗結(jié)核藥物組成有效的藥物組合方案,研究表明特地唑胺代替LZD與MFX的藥物組合殺菌速率常數(shù)為每日(0.27±0.05)[44-45]。特地唑胺對作用靶點(diǎn)親和力更強(qiáng),較LZD不易發(fā)生耐藥性[46]。特地唑胺安全性高,體外實(shí)驗(yàn)證明隨著特地唑胺劑量升高,沒有增加對THP-1細(xì)胞毒性。特地唑胺在AUC0-24≤
90 mg·h/L情況下未下調(diào)線粒體酶基因的表達(dá),提示線粒體毒性較小[44]。肝臟移植的肺結(jié)核患者連續(xù)服用特地唑胺20個(gè)月的情況下未出現(xiàn)貧血和胃腸道的不良反應(yīng),展現(xiàn)了特地唑胺在長期服用的情況下的安全性較高的特點(diǎn)[47]。Ⅱ期臨床試驗(yàn)(臨床試驗(yàn)NCT05534750)評(píng)估特地唑胺的對初治敏感肺結(jié)核患者早期殺菌活性,目前該項(xiàng)試驗(yàn)正處于受試者入組階段。
1.6 OTB-658
OTB-658是在LZD化學(xué)結(jié)構(gòu)上進(jìn)行優(yōu)化,引入巰代碼林取代基增加其化學(xué)結(jié)構(gòu)的位阻,增強(qiáng)了化合物在體內(nèi)代謝的穩(wěn)定性[48]。體外活性研究中,OTB-658的MIC低于陽性對照藥物L(fēng)ZD,對結(jié)核分枝桿菌標(biāo)準(zhǔn)株H37Rv、臨床分離敏感和耐藥菌株均具有良好的活性。OTB-658具有巨噬細(xì)胞內(nèi)活性,可以進(jìn)入巨噬細(xì)胞內(nèi)抑制結(jié)核分枝桿菌的生長。除此之外,OTB-658自發(fā)突變頻率較低,約為10-8,提示OTB-658不易產(chǎn)生耐藥情況[48-49]。OTB-658體內(nèi)代謝物OTB-665和OTB-698同樣具有抗結(jié)核活性,可抑制結(jié)核分枝桿菌的生長(MIC分別為0.44和0.93 μg/mL)[50]。
在小鼠結(jié)核急、慢性感染模型中,低劑量OTB-658抗結(jié)核活性強(qiáng)于中劑量利奈唑胺。OTB-658低劑量組(25 mg/kg)小鼠肺、脾組織中菌落數(shù)(colony forming units, CFU)均低于LZD組(50 mg/kg),差異具有統(tǒng)計(jì)學(xué)意義[48-49]。臨床前研究顯示化合物OTB-658具有較好的藥動(dòng)學(xué)特征,其具有口服吸收快、生物利用度較高、半衰期長等特點(diǎn)。細(xì)胞毒性較低,不易引起骨髓抑制的不良反應(yīng),外周神經(jīng)毒性和心臟毒性較低,未發(fā)現(xiàn)明顯降低白細(xì)胞、血小板等血液細(xì)胞的不良反應(yīng)。另外,OTB-658成藥性良好,在微粒體中穩(wěn)定性高,實(shí)驗(yàn)中未見對CYP450有抑制作用,不易發(fā)生藥物間相互作用,適合在今后臨床應(yīng)用中與其他藥物組成有效的聯(lián)合用藥方案[48]。
2021年12月,OTB-658的Ia期臨床試驗(yàn)(登記號(hào)CTR20211895)已完成,該臨床試驗(yàn)評(píng)價(jià)了OTB-658在健康受試者單次給藥的耐受性和藥動(dòng)學(xué)特點(diǎn)。
1.7 TBI-223
TBI-223抑菌活性與利奈唑胺相當(dāng),在小鼠結(jié)核感染模型評(píng)價(jià)藥物組合方案實(shí)驗(yàn)中,將BPaL組合方案中的利奈唑胺替換為TBI-223,組合方案仍表現(xiàn)出較好的抗結(jié)核活性和抑制復(fù)發(fā)的能力,其抑菌活性與其劑量呈正相關(guān)[51]。藥代方面,TBI-223在大鼠和犬體內(nèi)具有較高的口服生物利用度。同時(shí),TBI-223在肝微粒體中具有較高的穩(wěn)定性,對5種細(xì)胞色素酶無抑制和誘導(dǎo)的作用,對可以介導(dǎo)細(xì)胞色素酶活化的核受體PXR、CAR和AhR無激活作用[52]。
值得關(guān)注的是,TBI-223安全性高,骨髓抑制毒性低,在一項(xiàng)為期28 d的大鼠毒性研究中未觀察到大鼠血液學(xué)變化或骨髓毒性。它對哺乳動(dòng)物線粒體蛋白質(zhì)合成抑制能力低,提示TBI-223在體內(nèi)發(fā)揮抗結(jié)核活性過程中,并不干擾人的線粒體蛋白質(zhì)合成過程,不易產(chǎn)生類似于LZD抑制人線粒體蛋白質(zhì)合成所引起的不良反應(yīng),可以提高臨床使用中的安全性[22,52]。目前,TBI-223已完成臨床試驗(yàn)I期階段(NCT03758612)。
2 小結(jié)與展望
綜上所述,惡唑烷酮類候選物具有許多獨(dú)特的優(yōu)勢,包括作用靶點(diǎn)獨(dú)特、不與現(xiàn)有抗結(jié)核藥物發(fā)生交叉耐藥、可減少耐藥菌株的出現(xiàn);經(jīng)過結(jié)構(gòu)改造使得藥物與作用靶點(diǎn)的親和力更強(qiáng),具有更好的藥動(dòng)學(xué)特征,口服吸收迅速,有較高的組織滲透性,可在體內(nèi)被較快而徹底降解而不易發(fā)生蓄積,藥物口服生物利用度更高,能夠更好地在體內(nèi)發(fā)揮抗結(jié)核的活性,也能夠增強(qiáng)藥物組合方案的抑菌活性;同時(shí)增強(qiáng)了安全性,具有較低的線粒體毒性、外周神經(jīng)毒性低和骨髓抑制毒性,不與藥物代謝酶發(fā)生相互作用,減少不良反應(yīng)的發(fā)生,這些優(yōu)點(diǎn)使得惡唑烷酮類藥物在抗結(jié)核藥物領(lǐng)域擁有廣闊的開發(fā)前景和潛力。
雖然惡唑烷酮類藥物已經(jīng)在抗結(jié)核藥物研究中取得了很大的進(jìn)展,但還面臨著一些挑戰(zhàn)和問題。目前大多數(shù)惡唑烷酮類藥物在多個(gè)臨床試驗(yàn)來評(píng)估由革蘭陽性菌引起的皮膚和軟組織感染、敗血癥、骨髓炎癥等疾病的治療的療效和安全性,而在治療耐藥結(jié)核病方面,多數(shù)惡唑烷酮類藥物尚處于實(shí)驗(yàn)室研究和早期臨床試驗(yàn)階段,主要在健康受試者評(píng)價(jià)安全性和耐受性,或者是在固定藥物組合中探索惡唑烷酮類藥物的給藥劑量,目前對藥物的早期殺菌活性和治療療效等相關(guān)內(nèi)容的臨床試驗(yàn)還開展較少。未來的研究對惡唑烷酮類藥物的毒性、藥動(dòng)學(xué)、作用機(jī)制和耐藥機(jī)制等方面的研究需要進(jìn)一步深入,同時(shí)也需要加快推進(jìn)藥物的臨床試驗(yàn)的研究進(jìn)程。
參 考 文 獻(xiàn)
WHO. Global tuberculosis report 2022[R]. World Health Organization. 2022.
Slee A M, Wuonola M A, McRipley R J, et al. Oxazolidinones, a new class of synthetic antibacterial agents: In vitro and in vivo activities of DuP 105 and DuP 721[J]. Antimicrob Agents Chemother, 1987, 31(11): 1791-1797.
Ashtekar D R, Costa-Periera R, Shrinivasan T, et al. Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis[J]. Diagn Microbiol Infect Dis, 1991, 14(6): 465-471.
Livermore D M. Linezolid in vitro: Mechanism and antibacterial spectrum[J]. J Antimicrob Chemother, 2003, 51 Suppl 2(90002): ii9-16.
Eustice D C, Feldman P A, Zajac I, et al. Mechanism of action of DuP 721: Inhibition of an early event during initiation of protein synthesis[J]. Antimicrob Agents Chemother, 1988, 32(8): 1218-1222.
Lin A H, Murray R W, Vidmar T J, et al. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin[J]. Antimicrob Agents Chemother, 1997, 41(10): 2127-2131.
Swaney S M, Aoki H, Ganoza M C, et al. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria[J]. Antimicrob Agents Chemother, 1998, 42(12): 3251-3255.
Kloss P, Xiong L, Shinabarger D L, et al. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center[J]. J Mol Biol, 1999, 294(1): 93-101.
Drusano G L, Myrick J, Maynard M, et al. Linezolid kills acid-phase and nonreplicative-persister-phase Mycobacterium tuberculosis in a hollow-fiber infection model[J]. Antimicrob Agents Chemother, 2018, 62(8): AAC.00221-00218.
de Miranda Silva C, Hajihosseini A, Myrick J, et al. Effect of linezolid plus bedaquiline against Mycobacterium tuberculosis in log phase, acid phase, and nonreplicating-persister phase in an in vitro assay[J]. Antimicrob Agents Chemother, 2018, 62(8): AAC.00856-00818.
WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment[R]. World Health Organization. 2018.
Burki T. BPaL approved for multidrug-resistant tuberculosis[J]. Lancet Infect Dis, 2019, 19(10): 1063-1064.
Burk A, Douzery E J P, Springer M S. The secondary structure of mammalian mitochondrial 16S rRNA ?molecules: Refinements based on a comparative phylogenetic approach[J]. J Mammalian Evolution, 2002, 9(3): 225-252.
Kishor K, Dhasmana N, Kamble S S, et al. Linezolid induced adverse drug reactions-an update[J]. Curr Drug Metab, 2015, 16(7): 553-559.
Tang S, Yao L, Hao X, et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: A study in China[J]. Eur Respir J, 2015, 45(1): 161-170.
Bahuguna A and Rawat D S. An overview of new antitubercular drugs, drug candidates, and their targets[J]. Med Res Rev, 2020, 40(1): 263-292.
Barbachyn M R, Hutchinson D K, Brickner S J, et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity[J]. J Med Chem, 1996, 39(3): 680-685.
Cynamon M H, Klemens S P, Sharpe C A, et al. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model[J]. Antimicrob Agents Chemother, 1999, 43(5): 1189-1191.
Williams K N, Stover C K, Zhu T, et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model[J]. Antimicrob Agents Chemother, 2009, 53(4): 1314-1319.
Bruinenberg P, Nedelman J, Yang T J, et al. Single ascending-dose study to evaluate the safety, tolerability, and pharmacokinetics of sutezolid in healthy adult subjects[J]. Antimicrob Agents Chemother, 2022, 66(4): e0210821.
Wallis R S, Jakubiec W M, Kumar V, et al. Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers[J]. J Infect Dis, 2010, 202(5): 745-751.
Negatu D A, Aragaw W W, Cangialosi J, et al. Side-by-side profiling of oxazolidinones to estimate the therapeutic window against mycobacterial infections[J]. Antimicrob Agents Chemother, 2023: e0165522.
Cho Y L, Jang J. Development of delpazolid for the treatment of tuberculosis[J]. Appl Sci Basel, 2020, 10(7): 2211.
Zong Z, Jing W, Shi J, et al. Comparison of in vitro activity and mic distributions between the novel oxazolidinone delpazolid and linezolid against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in China[J]. Antimicrob Agents Chemother, 2018, 62(8): e00165-18.
Cho Y S, Lim H S, Cho Y L, et al. Multiple-dose safety, tolerability, pharmacokinetics, and pharmacodynamics of oral LCB01-0371 in healthy male volunteers[J]. Clin Ther, 2018, 40(12): 2050-2064.
Kim J S, Kim Y H, Lee S H, et al. Early bactericidal activity of delpazolid (LCB01-0371) in patients with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2022, 66(2): e0168421.
Douros A, Grabowski K, Stahlmann R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones[J]. Expert Opin Drug Metab Toxicol, 2015, 11(12): 1849-1859.
Wang W, Voss K M, Liu J, et al. Nonclinical evaluation of antibacterial oxazolidinones contezolid and contezolid acefosamil with low serotonergic neurotoxicity[J]. Chem Res Toxicol, 2021, 34(5): 1348-1354.
Shoen C, DeStefano M, Hafkin B, et al. In vitro and in vivo activities of contezolid (MRX-I) against Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2018, 62(8): e00493-18.
Wu X, Meng J, Yuan H, et al. Pharmacokinetics and disposition of contezolid in humans: Resolution of a disproportionate human metabolite for clinical development[J]. Antimicrob Agents Chemother, 2021, 65(11): e0040921.
Li L, Wu H, Chen Y, et al. Population pharmacokinetics study of contezolid (MRX-I), a novel oxazolidinone antibacterial agent, in Chinese patients[J]. Clin Ther, 2020, 42(5): 818-829.
Wu J, Wu H, Wang Y, et al. Tolerability and pharmacokinetics of contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis[J]. Clin Ther, 2019, 41(6): 1164-1174 e4.
Wu J, Wang K, Chen Y, et al. Concentration-response modeling of ECG data from early-phase clinical studies to assess QT prolongation risk of contezolid (MRX-I), an oxazolidinone antibacterial agent[J]. J Pharmacokinet Pharmacodyn, 2019, 46(6): 531-541.
Wu J, Cao G, Wu H, et al. Evaluation of the effect of contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo- and positive-controlled crossover study in healthy Chinese volunteers[J]. Antimicrob Agents Chemother, 2020, 64(6): e02158-19.
Balasubramanian V, Solapure S, Iyer H, et al. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis[J]. Antimicrob Agents Chemother, 2014, 58(1): 495-502.
Balasubramanian V, Solapure S, Shandil R, et al. Pharmacokinetic and pharmacodynamic evaluation of AZD5847 in a mouse model of tuberculosis[J]. Antimicrob Agents Chemother, 2014, 58(7): 4185-4190.
Furin J J, Du Bois J, van Brakel E, et al. Early bactericidal activity of AZD5847 in patients with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2016, 60(11): 6591-6599.
Alsultan A, Furin J J, Du Bois J, et al. Population pharmacokinetics of AZD-5847 in adults with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2017, 61(10): e01066-01017.
Molina-Torres C A, Barba-Marines A, Valles-Guerra O, et al. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages[J]. Ann Clin Microbiol Antimicrob, 2014, 13: 13.
Zhanel G G, Love R, Adam H, et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant Gram-positive pathogens[J]. Drugs, 2015, 75(3): 253-270.
Ruiz P, Causse M, Vaquero M, et al. In vitro activity of tedizolid against Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2019, 63(4): e01939-18.
Aono A, Murase Y, Chikamatsu K, et al. In vitro activity of tedizolid and linezolid against multidrug-resistant Mycobacterium tuberculosis: A comparative study using microdilution broth assay and genomics[J]. Diagn Microbiol Infect Dis, 2022, 103(3): 115714.
Srivastava S, Deshpande D, Nuermberger E, et al. The Sterilizing Effect of Intermittent Tedizolid for Pulmonary Tuberculosis[J]. Clin Infect Dis, 2018, 67(suppl_3): S336-S341.
Deshpande D, Srivastava S, Nuermberger E, et al. Multiparameter responses to tedizolid monotherapy and moxifloxacin combination therapy models of children with intracellular tuberculosis[J]. Clin Infect Dis, 2018, 67(suppl_3): S342-S348.
Srivastava S, Cirrincione K N, Deshpande D, et al. Tedizolid, faropenem, and moxifloxacin combination with potential activity against nonreplicating Mycobacterium tuberculosis[J]. Front Pharmacol, 2020, 11: 616294.
Locke J B, Hilgers M, Shaw K J. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700)[J]. Antimicrob Agents Chemother, 2009, 53(12): 5265-5274.
Yuste J R, Serrano-Alonso M, Carmona-Torre F, et al. Efficacy and safety of long-term use of tedizolid after liver transplantation in an adolescent with pulmonary tuberculosis[J]. J Antimicrob Chemother, 2019, 74(9): 2817-2819.
Zhao H, Wang B, Fu L, et al. Discovery of a conformationally constrained oxazolidinone with improved safety and efficacy profiles for the treatment of multidrug-resistant tuberculosis[J]. J Med Chem, 2020, 63(17): 9316-9339.
Guo S, Wang B, Fu L, et al. In vitro and in vivo activity of oxazolidinone candidate OTB-658 against Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2021, 65(11): e0097421.
Jiang J, Liu Y, Liu X, et al. Simultaneous determination of a novel oxazolidinone anti-tuberculosis OTB-658 and its metabolites in monkey blood by LC-MS/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1167: 122552.
Gordon O, Dikeman D A, Ortines R V, et al. The novel oxazolidinone TBI-223 is effective in three preclinical mouse models of methicillin-resistant Staphylococcus aureus infection[J]. Microbiol Spectr, 2022, 10(5): e0245121.
Mdluli K, Cooper C, Yang T, et al. TBI-223: A safer oxazolidinone in pre-clinical development for tuberculosis[C]. ASM Microbe, 2017.