冀志蕊 王美玉 張樹武 杜宜南 叢佳林 徐秉良 周宗山
摘? ? 要:膠孢炭疽菌(Colletotrichum gloeosporioides)能夠引發(fā)蘋果苦腐病和蘋果炭疽葉枯病,危害葉片和果實,影響果品產(chǎn)量和品質(zhì),給蘋果產(chǎn)業(yè)造成嚴(yán)重的經(jīng)濟損失。對蘋果與病原物互作分子機制最新研究進展進行綜述,包括蘋果上炭疽病的病原菌組成和分類、侵染循環(huán)及其引發(fā)的果樹病害種類,病原菌的致病結(jié)構(gòu)和降解酶類、致病相關(guān)基因的挖掘與分析、效應(yīng)蛋白的篩選與功能分析等致病相關(guān)分子機制,蘋果被侵染后生理生化變化、激素信號、抗病基因挖掘、miRNA參與的免疫調(diào)控機制等抗病相關(guān)的研究內(nèi)容,以期為解析病原菌致病機制及與寄主互作機制,進而為挖掘潛力候選基因,以及病害綜合防控和抗病分子育種奠定理論基礎(chǔ)。
關(guān)鍵詞:蘋果;膠孢炭疽菌;侵染機制;抗病機制
中圖分類號:S661.1 文獻標(biāo)志碼:A 文章編號:1009-9980(2024)06-1199-14
Advances in study of the interaction between apple and Colletotrichum gloeosporioides
JI Zhirui1, 2, WANG Meiyu2, ZHANG Shuwu1, DU Yinan2, CONG Jialin2, XU Bingliang1*, ZHOU Zongshan2*
(1College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng 125100, Liaoning, China)
Abstract: Colletotrichum gloeosporioides can cause apple bitter rot, and anthracnose leaf blight, resulting in affecting fruit yield and quality, and causing serious economic losses to the apple industry. According to the latest fungal classification system, the C. gloeosporioides species complex consists of 13 different species, including C. gloeosporioides, C. aenigma and C. fructicola et al. Among them, C. fructicola and C. gloeosporioides are important pathogenic fungi on various fruit trees. Meanwhile, C. gloeosporioides can also cause diseases on other fruit trees such as cherry, passion fruit, and kiwifruit. In order to better prevent and control diseases, we need to have a comprehensive understanding of the classification, pathogenic mechanisms, and host interaction mechanisms of the pathogens on apples. In the process of colonizing host tissue, a number of C. gloeosporioides genes participate in different phases of infection procedures, which include conidiation, appressorium morphogenesis, melanization and penetration, biotrophy, necrotrophy, and various transport activities. In recent years, research on the pathogenic molecular mechanism of C. gloeosporioides on apples has mainly focused on the cloning and analysis of pathogenic related genes, screening and identification of effector proteins, pathogenic enzymes, and colletotoxins of C. gloeosporioides. Fungi secrete enzymes such as pectin, keratin and cellulase could help them successfully infect their hosts. New studies have shown that the adapter protein gene GcAP1 can regulate the expression of endopolygalacturonase genes (CgPG1 and CgPG2), pectin lyase genes (pnl-1, pnl-2), and pectate lyase genes (pelA, pelB), and GcAP1 is an important virulence factor of C. gloeosporioides. Currently, the successful application of PEG mediated genetic transformation and Agrobacterium mediated transformation in the study of C. gloeosporioides provides a basis for the development of pathogenic molecular mechanisms. It has been confirmed that the genes with different functions such as CgABCF2, CgCMK1, CgSET5, CgOpt1, CgNVF1, CgABCF2, CgChip6 are present in C. gloeosporioides, playing an important role in infecting apples. In addition, C2H2 transcription factors, cation stress response transcription factors CgSltA, CgCrzA, and CsHtf1 also play important roles in pathogen pathogenesis. During the infection process, C. gloeosporioides can also secrete a series of effectors to inhibit the host immune response, thereby promoting pathogen infection and colonization. Currently, scientists have analyzed the roles of effectors such as CfE12, CfEC92, and Sntf2 in C. gloeosporioides, laying the foundation for subsequent research on interactions of pathogen and host. In addition, C. gloeosporioides secrete toxins during the necrotrophic stage, causing necrosis of the host tissue. The research on apple disease resistance started relatively late, mainly focusing on germplasm resource identification, physiological and biochemical testing, disease resistance gene mining, plant hormone mediated disease resistance response, disease related transcription factors, and other mechanisms of action. Research has shown that after inoculation with anthrax fungus, the activities of superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), and serotonin N-acetyltransferase (SNAT) in apple leaves increased, indicating that these enzymes are involved in the infection process of C. gloeosporioides. Plant hormones play an important role in plant defense and growth and development, and hormones related to plant immune responses include salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), and so on. Research has shown that there are significant differences in the expression levels of SA synthesis related genes MdEDS1, MdPAD4, MdPAL and SA signal transduction related genes MdNPR1, MdPR1 and MdPR5 between resistant and susceptible varieties. There are differences in the resistance and susceptibility of different apple varieties to C. gloeosporioides. The Hanfu variety has been used to screen for resistance genes due to its high resistance to C. gloeosporioides. WRKY and NAC transcription factors play a crucial role in plant resistance to pathogen infection. In apples, transcription factors MdWRKY15, MdWRKY17, and MdWRKY100 enhance apple resistance to anthracnose by regulating SA accumulation. Here, we plotted the downstream regulatory patterns of AtwrKY33 and MdWRKYs involved in the MAPK cascade reaction, and presented some research results on MdWRKYs. At the end of the article, we summarized the research results on the regulatory mechanism of miRNA involvement in plant immunity. Clarifying the pathogenic process and molecular mechanism of the pathogen is of great significance for the comprehensive prevention and control of C. gloeosporioides. With the deepening of various studies, researchers will inevitably change their thinking on the prevention and control of C. gloeosporioides. Traditional chemical prevention and control methods, such as the extensive use of fungicides and insecticides, can achieve the effect of combating pathogens, but they also can cause serious harm to the environment and people. Breeding of resistant varieties is a fundamental means to solve the problems in preventing and controlling C. gloeosporioides. This article aimed to analyze the pathogenic mechanism of pathogens and their interaction with hosts, laying a theoretical foundation for screening potential candidate genes and breeding new varieties resistant to diseases.
Key words: Apples; Colletotrichum gloeosporioides; Infection mechanism; Disease resistance mechanisms
炭疽菌(Colletotrichum)屬小叢殼科刺盤孢屬真菌,有性型為子囊菌門盤菌亞門小叢殼屬,在溫暖和潮濕的條件下易暴發(fā)流行,是世界上重要的植物病原菌之一[1]。炭疽菌可分為14個復(fù)合種和部分種,膠胞炭疽菌(C. gloeosporioides)是重要的一個復(fù)合種,能侵染1000余種作物,危害枝干、葉部、果實等部位,造成果實腐爛、植株枯萎甚至死亡。
C. gloeosporioides通過“半活體營養(yǎng)”寄生并侵染寄主植物[2],在整個侵染周期主要有活體營養(yǎng)型(biotrophic)和死體營養(yǎng)型(necrotrophic)兩種營養(yǎng)模式。在侵染初期活體營養(yǎng)階段,菌體不會立即殺死周邊寄主細(xì)胞,而是感應(yīng)寄主表面的物理和化學(xué)信號(植物表面硬度、疏水性、葉片紋理、植物激素等),產(chǎn)生初侵染菌絲攝取寄主體內(nèi)營養(yǎng)和能源。在侵染后期,分化出次生菌絲并迅速擴展,分泌細(xì)胞壁降解酶導(dǎo)致植物組織形成壞死斑,后轉(zhuǎn)換為死體營養(yǎng)[3-5],其生活史和侵染過程如圖1所示。
目前,生產(chǎn)上對炭疽病的防控以化學(xué)農(nóng)藥為主,隨著人們對果品安全的逐漸重視,科研人員開展了藥劑篩選和復(fù)配[6]、農(nóng)藥助劑應(yīng)用[7]及植物免疫誘抗劑使用等[8]藥劑減量增效研究。盡管對蘋果炭疽病菌的侵染和致病研究取得一定進展,但因其種群多樣、侵染過程復(fù)雜,對其侵染致病機制和果樹抗性機制的研究仍有待深入。筆者在本文中將圍繞蘋果膠孢炭疽菌病原學(xué)、病原菌致病機制及果樹抗性機制展開論述。
1 侵染蘋果的膠孢炭疽菌復(fù)合群概述
膠孢炭疽菌(C. gloeosporioides)能夠引發(fā)蘋果果實炭疽?。╝pple bitter rot)和蘋果炭疽葉枯?。℅lomerella leaf spot of apple,GLSA),也能引發(fā)果實采后炭疽病。膠孢炭疽菌復(fù)合種(C. gloeosporioides complex)是蘋果上主要的病原菌,包含果生刺盤孢(C. fructicola)、隱秘刺盤孢(C. aenigma)、膠孢刺盤孢(C. gloeosporioides)等13種不同炭疽菌,其中C. fructicola和C. gloeosporioides是多種果樹的重要致病菌,可以在無傷條件下成功侵染寄主[9-10]。除蘋果外,C. gloeosporioides還可引發(fā)櫻桃、百香果、獼猴桃等果樹病害[10-15](表1)。
2 膠孢炭疽菌致病分子機制
隨著生物信息學(xué)和分子生物學(xué)的發(fā)展,膠孢刺盤孢(C. gloeosporioides)、希金斯刺盤孢(C. higginsianum)、禾生刺盤孢(C. graminicola)、東方刺盤孢(C. orbiculare)等全基因組測序組裝完成并公布。在此基礎(chǔ)上,PEG介導(dǎo)的遺傳轉(zhuǎn)化[25]和農(nóng)桿菌介導(dǎo)的轉(zhuǎn)化[26]在蘋果炭疽菌研究中成功應(yīng)用,為病原菌致病分子機制的解析提供了理論依據(jù)[22-23]。近年來蘋果上膠孢炭疽菌致病分子機制的研究主要集中在致病結(jié)構(gòu)和降解酶測定、致病基因的克隆與分析、效應(yīng)蛋白篩選與功能研究及炭疽菌毒素等方面(圖2)[27-29]。
2.1 膠孢炭疽菌致病結(jié)構(gòu)和降解酶
炭疽菌要穿透寄主的表皮組織,需要對寄主組織施加機械壓力,即孢子萌發(fā)時形成的附著胞及其胞內(nèi)組合液產(chǎn)生膨壓,壓力施加至附著胞下部的侵染釘,當(dāng)壓力到達(dá)一定程度時直接穿透植物表皮而侵入,構(gòu)成侵染和定殖[30]。黑化附著胞的形成可能涉及一系列復(fù)雜的生物學(xué)過程,包括分泌特定的分子、改變細(xì)胞壁結(jié)構(gòu)以提供附著支持等[31]。
植物的細(xì)胞壁是抵御病原菌侵入的天然屏障,病原菌通過分泌產(chǎn)生果膠酶、角質(zhì)酶、纖維素酶、蛋白酶等降解酶類物質(zhì)破壞寄主細(xì)胞壁,輔助其侵染和定殖。薛蓮[32]對蘋果采后炭疽病菌細(xì)胞壁降解酶活性進行分析,明確聚甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病原菌侵染中發(fā)揮重要作用。研究表明,銜接蛋白GcAP1復(fù)合體分布于細(xì)胞質(zhì)中,GcAP1基因能夠調(diào)控多聚半乳糖醛酸內(nèi)切酶基因(CgPG1、CgPG2)、果膠裂解酶基因(pnl-1、pnl-2)及果膠酸酯裂解酶基因(pelA、pelB)的表達(dá),從而影響炭疽菌的生長發(fā)育和毒力[33]。研究表明,膠孢炭疽菌pH依賴性轉(zhuǎn)錄因子CgPacC能夠調(diào)節(jié)細(xì)胞壁降解酶、轉(zhuǎn)運蛋白和抗氧化劑的表達(dá),在病原菌定殖中發(fā)揮重要作用[34]。
2.2 膠孢炭疽菌侵染階段相關(guān)致病基因挖掘與分析
C. gloeosporioides成功侵染定殖包括分生孢子萌發(fā)、附著胞形成、黑色素生成、侵染釘穿透寄主組織等不同階段,涉及的基因及其調(diào)控機制較為復(fù)雜,目前的研究以單一基因為主。
Zhao等[35]證實蘋果炭疽葉枯病菌染色質(zhì)調(diào)節(jié)基因CgSET5在菌絲生長、分生孢子形成、附著胞形成、細(xì)胞壁完整性、致病性中發(fā)揮重要作用,并同時參與過氧化物酶體的生物反應(yīng),是C. gloeosporioides的核心致病調(diào)節(jié)因子。該團隊在后續(xù)研究中證實單羧酸轉(zhuǎn)運蛋白CgMCT1參與了C. gloeosporioides營養(yǎng)生長、黑色素形成、分生孢子形成,且參與寄主體內(nèi)ROS降解[27]。Zhou等[28]發(fā)現(xiàn)當(dāng)炭疽菌CgABCF2基因缺失后,菌絲生長速率和附著胞數(shù)量顯著下降,導(dǎo)致致病性喪失。張俊祥等[36-37]研究證實CgCMK1、CgNVF1在炭疽菌分生孢子和附著胞中的表達(dá),對分生孢子產(chǎn)量、附著胞形成、氧化脅迫應(yīng)答反應(yīng)及致病性等方面均有影響。徐杰[38]證實蘋果炭疽葉枯病菌基因GTPBP1在調(diào)控附著胞的形成中發(fā)揮作用。譚清群[39]研究證實氨甲酰磷酸合成酶(carbamyl phosphate synthase,CPS)小亞基基因Cpa1通過調(diào)控精氨酸的合成從而影響病原菌致病力。研究表明,寡肽轉(zhuǎn)運蛋白基因CgOpt1在菌絲中表達(dá),參與真菌對IAA反應(yīng)的調(diào)節(jié),通過影響產(chǎn)孢和色素沉積來降低病菌的致病性[40]。甾醇糖基轉(zhuǎn)移酶編碼基因CgChip6參與分生孢子萌發(fā)和附著胞的形成,該基因缺失后病原菌毒力顯著下降[41]。Liang等[42]對果生炭疽菌(C. fructicola)1104-7基因組進行了測序和組裝,獲得了高質(zhì)量參考基因組,為C. fructicola致病相關(guān)基因的研究提供了重要的理論和數(shù)據(jù)支撐。
2.3 轉(zhuǎn)錄因子調(diào)控膠孢炭疽菌分子機制
轉(zhuǎn)錄因子(transcription factor,TF)能夠與基因啟動子區(qū)域的順式作用元件進行特異性互作,從而調(diào)控目的基因的表達(dá)強度,可分為4類,即鋅指蛋白(包括3類:C2H2、C4和C6)、堿性亮氨酸拉鏈、堿性螺旋環(huán)螺旋和同源異形盒類轉(zhuǎn)錄因子[43]。已有研究表明,膠孢炭疽菌的轉(zhuǎn)錄因子在表達(dá)調(diào)控中能起到協(xié)調(diào)作用,能夠促進附著胞黑化和定殖。C2H2鋅指蛋白型轉(zhuǎn)錄因子CgAzf1、CgCrzA及CgGcp1能夠調(diào)控黑色素生物合成途徑相關(guān)基因的表達(dá),參與分生孢子的萌發(fā)和侵染過程[31,44-45]。CfSte12能夠調(diào)控與附著胞功能相關(guān)的四次穿模蛋白PLS1(tetraspanin PLS1)、Gas1樣蛋白(Gas1-like proteins)、角質(zhì)酶和黑色素合成的基因表達(dá)[46]。陽離子脅迫反應(yīng)轉(zhuǎn)錄因子CgSltA、CgCrzA及CsHtf1在炭疽菌營養(yǎng)生長、分生孢子產(chǎn)生、附著胞形成和致病性等方面均發(fā)揮重要作用[45,47]。堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉(zhuǎn)錄因子CgAP1在C. gloeosporioides中起氧化還原傳感器的作用[48-49]。轉(zhuǎn)錄因子CfMcm1是C. fructicola的關(guān)鍵調(diào)節(jié)因子,在病原菌無性繁殖、黑色素形成、致病性、果膠酶降解等過程中發(fā)揮作用[50]。
2.4 效應(yīng)蛋白篩選及功能研究
在侵染過程中,炭疽菌通過分泌一系列效應(yīng)蛋白抑制寄主免疫反應(yīng),從而促進病原菌的侵染和定殖[51-52],不同侵染階段所分泌的效應(yīng)因子功能不同[3,53]。隨著基因組測序的應(yīng)用,炭疽菌中多個候選的效應(yīng)因子被成功篩選鑒定[54-55]。真菌胞外膜蛋白CFEM(common in several fungal extracellular membrane)是真菌所獨有的蛋白結(jié)構(gòu)域,與病原菌致病性密切相關(guān)。Shang等[56]研究證實,刺盤孢屬真菌CFEM型效應(yīng)因子CfEC12能夠與蘋果中MdNIMIN2互作,與水楊酸受體NPR1競爭MdNIMIN2蛋白的結(jié)合位點,從而抑制蘋果抗性基因的表達(dá)和免疫反應(yīng)。LysM型效應(yīng)蛋白可以保護真菌細(xì)胞壁免受植物幾丁質(zhì)酶的作用或隔離釋放的殼寡糖,從而避免被植物的防御系統(tǒng)識別,其具有幾丁質(zhì)結(jié)合活性,可以結(jié)合幾丁質(zhì)從而抑制植物的PTI(pattern-triggered immunity),促進病原菌的侵染[57]。Shang等[58]研究證實C. fructicola中效應(yīng)蛋白CfEC92在早期附著胞生成和附著胞介導(dǎo)的滲透階段上調(diào)表達(dá),抑制蘋果的PTI和相關(guān)防御基因表達(dá),促進病原菌侵染。王美玉[59]開展效應(yīng)蛋白Sntf2功能研究,證實其能夠與葉綠體組裝因子Mdycf39互作干擾葉綠體功能,從而抑制寄主植物的免疫反應(yīng),促進C. gloeosporioides的侵染和定殖。
2.5 膠孢炭疽菌毒素
炭疽菌在死體營養(yǎng)階段通過分泌毒素造成寄主組織壞死。目前,對于炭疽菌毒素的研究多集中在毒素生物學(xué)測定、成分鑒定純化階段。C. gloeosporioides產(chǎn)生的毒素為非寄主專化性毒素,能夠侵染多種寄主。Khodadadi等[60]分離鑒定了蘋果苦腐病病原菌,明確其毒素能夠?qū)?種不同樹種造成危害,關(guān)于炭疽菌的毒素和作用機制仍然有待進一步深入研究。
3 蘋果抗膠胞炭疽菌侵染的分子機制
果樹在自然環(huán)境中會受到各類病原物的侵染,為了抵御病原菌的侵染,植物進化出識別和抵御病原菌的PTI和ETI兩層免疫系統(tǒng)[61]。第一層免疫系統(tǒng)是由植物細(xì)胞質(zhì)膜上的模式識別受體感知微生物相關(guān)分子模式(microbe-associated molecular pattern,MAMPs)或損傷相關(guān)分子模式(damage-associated molecular pattern,DAMPs)而觸發(fā)一系列的免疫反應(yīng),稱為“模式觸發(fā)免疫”(PTI),該免疫反應(yīng)包括活性氧(reactive oxygen species,ROS)的激活及抗病基因表達(dá)量上調(diào)等[62-63]。病原菌為了應(yīng)對植物的PTI免疫反應(yīng)進化出毒力蛋白(效應(yīng)因子),抑制植物PTI反應(yīng),從而成功侵入,這一中間過程被稱為“效應(yīng)因子觸發(fā)的易感性”,即EST(effector-triggered susceptibility)。最后,植物進化出識別和抵御這些效應(yīng)子的胞內(nèi)NLR來誘導(dǎo)更為強大的抗性反應(yīng),即第二層免疫“效應(yīng)因子觸發(fā)的免疫”,ETI(effector-triggered immunnity)[64-65]。ETI的免疫反應(yīng)主要包括程序性細(xì)胞死亡的過敏性反應(yīng)(hypersensitive responses,HR)、Ca2+內(nèi)流、胼胝質(zhì)的沉積等。植物在PTI和ETI期間,產(chǎn)生的免疫反應(yīng)幅度和時間有所不同,但所觸發(fā)的免疫信號網(wǎng)絡(luò)和下游反應(yīng)有所重疊[66-68]。
蘋果抗炭疽病的研究起步相對較晚,主要開展了種質(zhì)資源鑒定[69]、生理生化檢測、抗病基因挖掘、植物激素介導(dǎo)的抗病反應(yīng)及抗病相關(guān)轉(zhuǎn)錄因子[70]作用機制等研究。
3.1 生理生化變化
研究表明接種炭疽菌后,嘎拉和富士葉片內(nèi)超氧化物歧化酶(superoxide dismutase,SOD)、多酚氧化酶(polyphenoloxidas,PPO)、過氧化物酶(peroxidase,POD)、過氧化氫酶(catalase,CAT)、5-羥色胺-N-乙?;D(zhuǎn)移酶(SNAT)的活性增強,其相關(guān)基因表達(dá)量呈先升后降的趨勢,表明以上酶類參與了炭疽葉枯病菌的侵染過程[71-72]。蘋果不同組織被炭疽菌侵染后,PPO、POD、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等7種酶活性均有不同程度的提高[73-75]。通過分析不同抗感品種感染炭疽菌后細(xì)胞壁降解酶活性的變化,證實甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病菌侵染過程中發(fā)揮作用,且抗病品種中細(xì)胞壁降解酶活性高峰的出現(xiàn)早于感病品種[76]。白靜科[30]比較了C. fructicola侵染后抗感品種中過氧化氫(H2O2)和乳突產(chǎn)生的差異,發(fā)現(xiàn)炭疽菌的侵染誘導(dǎo)了蘋果細(xì)胞中H2O2的積累和乳突的產(chǎn)生,并隨著侵染時間延長不斷積累。此外,生防菌也可以通過提高感病品種嘎拉葉片中POD、CAT、SOD等防御酶活性,減少活性氧的積累,從而誘導(dǎo)蘋果對炭疽菌的抗性[77]。
3.2 植物激素
植物激素在植物防御和生長發(fā)育中發(fā)揮重要作用,與植物免疫反應(yīng)相關(guān)的激素包括水楊酸(SA)、茉莉酸(JA)、乙烯(ET)、脫落酸(ABA)等。SA和JA-ET激素作為重要的調(diào)控因子,在蘋果生物和非生物脅迫反應(yīng)中發(fā)揮重要作用[78-79]。SA是通過異分支酸合成酶(ICS)和苯丙氨酸解氨酶(PAL)途徑合成。在應(yīng)激條件下,超過90%的受刺激SA是通過ICS合成的[80]。當(dāng)沒有遇到病原體或逆境時,植物細(xì)胞積累相對較低濃度的SA,外源噴施SA可增強抗病相關(guān)酶的活性,誘導(dǎo)高感蘋果品種對C. gloeosporioides產(chǎn)生抗性[81-82]。在蘋果中,藤牧1號、40-9及16-16等抗性品種(系)中SA合成相關(guān)基因MdEDS1、MdPAD4和MdPAL被C. gloeosporioides誘導(dǎo)表達(dá),SA信號轉(zhuǎn)導(dǎo)相關(guān)基因MdNPR1、MdPR1、MdPR5的表達(dá)量顯著高于嘎拉等感病品種(系)[83]。水楊酸合成途徑中的關(guān)鍵酶MdICS1可以被G. cingulata誘導(dǎo)上調(diào)表達(dá),而JA、ABA和ETH三種外源信號可抑制其表達(dá)。
3.3 蘋果抗病基因挖掘
不同蘋果品種對炭疽菌抗感表現(xiàn)存在差異,在田間蘋果炭疽葉枯病的表現(xiàn)尤為突出[84]。馬玉鑫[85]研究表明,寒富品種CDPK基因家族成員MdCDPK24基因在炭疽菌侵染后顯著上調(diào)表達(dá)。對寒富蘋果同源四倍體進行轉(zhuǎn)錄組測序,發(fā)現(xiàn)MdCaMBP6、MdIPT8在蘋果炭疽葉枯病菌侵染后顯著上調(diào)表達(dá),能夠提高品種抗性[86-87]。Guo等[88]報道湖北蘋果M. hupehensis YT521-B同源結(jié)構(gòu)域包含蛋白2(MhYTP2),其與MdRGA2L mRNA結(jié)合并降低其穩(wěn)定性,在調(diào)節(jié)對炭疽葉枯病的抗性中發(fā)揮重要作用,可用于開發(fā)具有GLS抗性的蘋果品種。劉源霞等[89]采用分離群體分組分析(BSA)方法,篩選獲得了一個與抗病性狀相關(guān)的分子標(biāo)記S0506206-24,在此基礎(chǔ)上,采用全基因組重測序和BSA相結(jié)合的方法,在該雜交群體中定位了1個蘋果抗炭疽葉枯病基因位點Rgls,并將其精細(xì)定位于標(biāo)記InDel4199和SNP4299之間[90],室內(nèi)接種驗證與Rgls位點緊密連鎖的4個分子標(biāo)記S0405127(SSR)、S0304673(SSR)、SNP4236和InDel4254,準(zhǔn)確率均高于90%[91]。
3.4 抗病相關(guān)轉(zhuǎn)錄因子參與的防御反應(yīng)
植物被病原物感染后,當(dāng)病原體相關(guān)的分子模式(PAMP)或效應(yīng)器被植物識別時,細(xì)胞內(nèi)的信號可以被激活,導(dǎo)致活性氧簇(ROS)的產(chǎn)生、絲裂原激活的蛋白激酶(MAPK)激活和防御基因的表達(dá)[62]。MAPKs能夠靶向并磷酸化調(diào)節(jié)下游基因轉(zhuǎn)錄的轉(zhuǎn)錄因子,最終響應(yīng)病原菌的侵入。已報道的與炭疽菌侵染響應(yīng)相關(guān)的轉(zhuǎn)錄因子有AP2/ERF、TGACG基序結(jié)合因子(BZIP)、MYC2(BHLH)、ARF、MYB、WRKY和NAC等7種,后兩者是高等植物特有的轉(zhuǎn)錄因子家族[92]。WRKYs轉(zhuǎn)錄因子作為MAPK級聯(lián)反應(yīng)的重要靶標(biāo),在植物對病原菌的抗性中起關(guān)鍵作用。當(dāng)病原菌侵入后,SA依賴的WRKY基因會迅速表達(dá)并積累,與抗病基因啟動子上的W盒[W-box,TTGAC(C/T)]特異性結(jié)合,啟動防御反應(yīng),從而形成復(fù)雜的WRKY調(diào)控網(wǎng)絡(luò)。在蘋果中,MKK4-MPK3下游轉(zhuǎn)錄因子MdWRKY15、MdWRKY17及MdWRKY100通過調(diào)控SA積累增強蘋果對炭疽菌的抗性[70,93]。其中,MdWRKY100正向調(diào)節(jié)蘋果對C. gloeosporioides的抗性;C. fructicola可提高感病品種中MdWRKY17蛋白積累,誘導(dǎo)MdMEK4-MdMPK3-MdWRKY17-MdDMR6-SA途徑,加速SA降解,從而降低果樹抗性[94]。此外,有研究表明,MdWRKY15通過激活SA合成酶MdICS1的表達(dá)增強對輪紋病的抗性[95]。酯酶/脂肪酶GELP1是MPK3/MPK6及其下游轉(zhuǎn)錄因子MdWRKY100的靶標(biāo),在蘋果抵御病原菌侵染中發(fā)揮重要作用[96]。Li等[97]和Lippok等[98]研究證實,γ-氨基丁酸(GABA)關(guān)鍵合成基因MdGAD1能夠與MdWRKY33互作,增強轉(zhuǎn)基因蘋果愈傷組織形成和葉片的抗氧化能力,正向調(diào)控蘋果對C. gloeosporioides的抗性。此外,MdWRKY31能夠與蘋果超敏反應(yīng)蛋白MdHIR4(hypersensitive-induced reaction? protein,HIR)相互作用,影響SA信號通路中基因的轉(zhuǎn)錄從而調(diào)節(jié)蘋果對葡萄座腔菌B.dothidea的抗性[99]。MdWRKY75能夠與MdRAC7啟動子結(jié)合,調(diào)節(jié)漆酶的生物合成,并在蘋果斑點落葉病菌Alternaria alternata感染期間促進了木質(zhì)素的合成[100]。最新研究表明,MdVQ10能夠與MdWRKY75互作,增強衰老相關(guān)基因MdSAG12和MdSAG18的轉(zhuǎn)錄,促進葉片損傷引發(fā)的衰老進程[101]。然而,以上幾個轉(zhuǎn)錄因子是否在蘋果對炭疽菌抗性中也發(fā)揮著相同或類似的作用仍有待進一步驗證(圖3)。
3.5 miRNA參與植物免疫的調(diào)控機制
非編碼的RNA分為微小RNA(microRNAs,miRNAs)和小干擾RNA(small interfering RNAs,siRNA)兩大類,miRNA是植物生長發(fā)育和脅迫應(yīng)答中重要的調(diào)控因子[102]。miRNA可能參與調(diào)節(jié)病原菌感染中胼胝質(zhì)沉積過程,在模式植物擬南芥中,miR773靶向抑制甲基轉(zhuǎn)移酶2(MET2),影響胼胝質(zhì)沉積和ROS累積,負(fù)調(diào)控C. higginianum的抗病性[103]。Zhang等[104]研究發(fā)現(xiàn),Md-miRln20靶向Md-TN1-GLS負(fù)調(diào)控蘋果對膠孢炭疽菌的侵染。此外,Zhang等[105]研究證實兩種CCR-NB-LRR蛋白MdRNL2和MdRNL6能夠形成復(fù)合物,抑制病原菌生長,提高了蘋果樹對蘋果斑點落葉病菌A. alternata的抗性,進一步研究證實其同樣能夠提高果樹對C. gloeosporioides的抗性[106]。張亞楠等[107]分析了抗感品種中抗病相關(guān)miRNA的表達(dá)量差異,預(yù)測miR390a、miR482b及miR396b/c/f 在蘋果被炭疽菌侵染中發(fā)揮重要作用。Shen等[108]研究發(fā)現(xiàn),Mdm-miR160-MdARF17-MdWRKY33模塊能夠通過調(diào)節(jié)活性氧(ROS)提高蘋果耐寒性能,但其對病原菌致病力的影響仍未證實。上述結(jié)果對果樹抗病育種起重要的推動作用。
4 問題與展望
近年來,在分子生物學(xué)和生物信息學(xué)的推動下,蘋果和炭疽菌互作方面的研究取得了巨大進展。筆者詳細(xì)闡述了蘋果炭疽菌組成、病原菌侵染相關(guān)基因及其與寄主互作的研究進展。明確病原菌致病過程及其分子機制,對蘋果炭疽葉枯病的綜合防控具有重要意義,隨著各項研究的日益深入,研究者對炭疽病的防控思路必將有所轉(zhuǎn)變。
炭疽菌對蘋果產(chǎn)業(yè)造成巨大危害,由于炭疽菌具有潛伏侵染的特性,果樹病害監(jiān)測不僅耗時費力,還存在一定的技術(shù)難題。利用傳統(tǒng)的化學(xué)防控手段,通過大量使用殺菌劑和殺蟲劑等雖能達(dá)到對抗病原菌的效果,但對環(huán)境和人體也會造成嚴(yán)重的危害。隨著生活水平的不斷提高,健康問題已經(jīng)逐漸成為關(guān)注的焦點。目前,研發(fā)生態(tài)友好型生物防治策略已經(jīng)被人們廣泛接受和認(rèn)可,前景一片光明。開展抗性品種選育是從根本上解決果樹炭疽菌防控難問題的有效手段,符合現(xiàn)代農(nóng)業(yè)的生產(chǎn)需求[109-110]。解析抗病機制能夠為蘋果抗病性改良提供重要的理論依據(jù),是果業(yè)科研的重點研究領(lǐng)域。
生物信息學(xué)和分子生物學(xué)的各種先進技術(shù)為作物改良提供了其他途徑,能夠極大地縮短果樹育種周期,解決傳統(tǒng)實生苗選育耗時長的難題。通過構(gòu)建蘋果高效遺傳轉(zhuǎn)化體系進一步開展基因編輯、RNA干擾等生物育種技術(shù)研究,培育具有優(yōu)良性狀的蘋果新種質(zhì)或新品種是果樹科研工作者努力的方向[110]。
總之,了解蘋果與炭疽菌互作的分子機制,能夠為培育抗病品種和創(chuàng)新病害防控策略提供新的見解,對果樹產(chǎn)業(yè)健康發(fā)展具有重要的指導(dǎo)意義。
參考文獻 References:
[1] DEAN R,VAN KAN J A L,PRETORIUS Z A,HAMMOND-KOSACK K E,DI PIETRO A,SPANU P D,RUDD J J,DICKMAN M,KAHMANN R,ELLIS J,F(xiàn)OSTER G D. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.
[2] DE SILVA D D,CROUS P W,ADES P K,HYDE K D,TAYLOR P W J. Life styles of Colletotrichum species and implications for plant biosecurity[J]. Fungal Biology Reviews,2017,31(3):155-168.
[3] OCONNELL R,HERBERT C,SREENIVASAPRASAD S,KHATIB M,ESQUERR?-TUGAY? M T,DUMAS B. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant-Microbe Interactions,2004,17(3):272-282.
[4] TUCKER S L,TALBOT N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi[J]. Annual Review of Phytopathology,2001,39:385-417.
[5] M?NCH S,LINGNER U,F(xiàn)LOSS D S,LUDWIG N,SAUER N,DEISING H B. The hemibiotrophic lifestyle of Colletotrichum species[J]. Journal of Plant Physiology,2008,165(1):41-51.
[6] 梁曉飛,侯彥忠,白云芳,李蘇莉,孫廣宇,朱明旗. 防控蘋果炭疽葉枯病的化學(xué)農(nóng)藥減量增效研究[J]. 陜西農(nóng)業(yè)科學(xué),2022,68(1):39-43.
LIANG Xiaofei,HOU Yanzhong,BAI Yunfang,LI Suli,SUN Guangyu,ZHU Mingqi. Studies on improvement of chemical fungicide efficiency in control of apple Glomerella leaf spot disease[J]. Shaanxi Journal of Agricultural Sciences,2022,68(1):39-43.
[7] 劉安泰,張朝敏,李紫騰,曹克強,孟祥龍,胡同樂. 有機硅助劑在蘋果炭疽葉枯病化學(xué)防控中的減藥增效作用評價[J]. 植物保護,2022,48(1):284-290.
LIU Antai,ZHANG Chaomin,LI Ziteng,CAO Keqiang,MENG Xianglong,HU Tongle. Evaluation of increasing control effect and reducing fungicide effect of organosilicon adjuvant on chemical control of Glomerella apple leaf spot[J]. Plant Protection,2022,48(1):284-290.
[8] 劉禹彤,徐瑞旋,王洪濤,時彥嬌,李翠英,馬鋒旺,梁微. 外源甜菜堿提高蘋果對炭疽葉枯病的抗病性[J]. 果樹學(xué)報,2022,39(7):1252-1261.
LIU Yutong,XU Ruixuan,WANG Hongtao,SHI Yanjiao,LI Cuiying,MA Fengwang,LIANG Wei. Exogenous glycine betaine improved the resistance of apple to Glomerella leaf spot[J]. Journal of Fruit Science,2022,39(7):1252-1261.
[9] WENNEKER M,PHAM K,KERKHOF E,HARTEVELD D O C. First report of preharvest fruit rot of ‘Pink Lady apples caused by Colletotrichum fructicola in Italy[J]. Plant Disease,2021,105(5):1561.
[10] XU C N,ZHOU Z S,WU Y X,CHI F M,JI Z R,ZHANG H J. First report of stem and leaf anthracnose on blueberry caused by Colletotrichum gloeosporioides in China[J]. Plant Disease,2013,97(6):845.
[11] 劉麗萍,高潔,李玉. 植物炭疽菌屬Colletotrichum真菌研究進展[J]. 菌物研究,2020,18(4):266-281.
LIU Liping,GAO Jie,LI Yu. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. Journal of Fungal Research,2020,18(4):266-281.
[12] 王薇,符丹丹,張榮,孫廣宇. 蘋果炭疽葉枯病病原學(xué)研究[J]. 菌物學(xué)報,2015,34(1):13-25.
WANG Wei,F(xiàn)U Dandan,ZHANG Rong,SUN Guangyu. Etiology of apple leaf spot caused by Colletotrichum spp.[J]. Mycosystema,2015,34(1):13-25.
[13] LI Q L,BU J Y,SHU J,YU Z H,TANG L H,HUANG S P,GUO T X,MO J Y,LUO S M,SOLANGI G S,HSIANG T. Colletotrichum species associated with mango in Southern China[J]. Scientific Reports,2019,9(1):18891.
[14] ZHANG R,WANG S F,CUI J Q,SUN G Y,GLEASON M L. First report of bitter rot caused by Colletotrichum acutatum on apple in China[J]. Plant Disease,2008,92(10):1474.
[15] CHEN Y,F(xiàn)U D D,WANG W,GLEASON M L,ZHANG R,LIANG X F,SUN G Y. Diversity of Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China[J]. Journal of Fungi,2022,8(7):740.
[16] YANG Z N,MO J Y,GUO T X,LI Q L,TANG L H,HUANG S P,WEI J G,HSIANG T. First report of Colletotrichum fructicola causing anthracnose on Pouteria campechiana in China[J]. Plant Disease,2021,105(3):708.
[17] TANG Z Y,LOU J,HE L Q,WANG Q D,CHEN L H,ZHONG X T,WU C F,ZHANG L Q,WANG Z Q. First report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China[J]. Plant Disease,2021,106(1):317.
[18] HU Y F,LUO X X,XU Z H,ZHANG L H,WANG Y Q,CUI R Q,KUANG W G,XIA Y Y,MA J. First report of Colletotrichum fructicola causing anthracnose on Punica granatum in China[J]. Plant Disease,2023,107(9):2863.
[19] LI W Z,RAN F,LONG Y H,MO F X,SHU R,YIN X H. Evidences of Colletotrichum fructicola causing anthracnose on Passiflora edulis Sims in China[J]. Pathogens,2021,11(1):6.
[20] ZHANG Z H,YAN M J,LI W W,GUO Y Z,LIANG X F. First report of Colletotrichum aenigma causing apple Glomerella leaf spot on the Granny Smith cultivar in China[J]. Plant Disease,2021,105(5):1563.
[21] ZHANG Y J,SUN W X,NING P,GUO T X,HUANG S P,TANG L H,LI Q L,MO J Y. First report of anthracnose of Papaya (Carica papaya L.) caused by Colletotrichum siamense in China[J]. Plant Disease,2021,105(8):2252.
[22] FAN Y C,GUO F Y,WU R H,CHEN Z Q,LI Z. First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi Province,China[J]. Plant Disease,2023,107(7):2249.
[23] AHMAD T,WANG J J,ZHENG Y Q,MUGIZI A E,MOOSA A,NIE C R,LIU Y. First record of Colletotrichum alienum causing postharvest anthracnose disease of mango fruit in China[J]. Plant Disease,2021,105(6):1852.
[24] WANG N,XU J,ZHAO X Z,WANG M Y,ZHANG J X. First report of Glomerella leaf spot of apple caused by Colletotrichum asianum[J]. Plant Disease,2020,104(10):2734.
[25] 韓小路,白靜科,張瑋,張榮,孫廣宇. PEG介導(dǎo)的蘋果果生刺盤孢Colletotrichum fructicola原生質(zhì)體轉(zhuǎn)化[J]. 西北農(nóng)業(yè)學(xué)報,2016,25(3):442-449.
HAN Xiaolu,BAI Jingke,ZHANG Wei,ZHANG Rong,SUN Guangyu. PEG-mediated transformation of Colletotrichum fructicola[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2016,25(3):442-449.
[26] 徐杰,王美玉,王娜,周宗山,張俊祥. 適用于ATMT介導(dǎo)的RNA干擾載體的構(gòu)建及在蘋果炭疽葉枯病菌中的應(yīng)用[J]. 基因組學(xué)與應(yīng)用生物學(xué),2020,39(9):4053-4057.
XU Jie,WANG Meiyu,WANG Na,ZHOU Zongshan,ZHANG Junxiang. Construction of RNAi vector and application of ATMT-mediated genetic transformation in Colletotrichum gloeosporioides of apple[J]. Genomics and Applied Biology,2020,39(9):4053-4057.
[27] WU J Y,JI Z R,WANG N,CHI F M,XU C N,ZHOU Z S,ZHANG J X. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation[J]. Current Microbiology,2016,73(6):802-810.
[28] ZHOU Z S,WU J Y,WANG M Y,ZHANG J X. ABC protein CgABCF2 is required for asexual and sexual development,appressorial formation and plant infection in Colletotrichum gloeosporioides[J]. Microbial Pathogenesis,2017,110:85-92.
[29] WANG M Y,JI Z R,YAN H F,XU J,ZHAO X Z,ZHOU Z S. Effector Sntf2 interacted with chloroplast-related protein Mdycf39 promoting the colonization of Colletotrichum gloeosporioides in apple leaf[J]. International Journal of Molecular Sciences,2022,23(12):6379.
[30] 白靜科. 果生炭疽菌Colletotrichum fructicola與蘋果不同抗性品種互作研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
BAI Jingke. Interaction between resistant and susceptible apple cultivars and Colletotrichum fructicola[D]. Yangling:Northwest A & F University,2016.
[31] 張興媛,王地廣,高菁,唐雯,李曉宇. 膠孢炭疽菌C2H2型轉(zhuǎn)錄因子CgGcp1的生物學(xué)功能[J]. 微生物學(xué)通報,2022,49(7):2587-2598.
ZHANG Xingyuan,WANG Diguang,GAO Jing,TANG Wen,LI Xiaoyu. Biological functions of a C2H2 transcription factor CgGcp1 in Colletotrichum gloeosporioides[J]. Microbiology China,2022,49(7):2587-2598.
[32] 薛蓮. 采后蘋果與炭疽菌互作的生理生化機制的研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2005.
XUE Lian. Studies on physiological and biochemical mechanism of host-pathogen reaction between postharvest apple and Colletotrichum gloeosporioides[D]. Hefei:Anhui Agricultural University,2005.
[33] 張俊祥,冀志蕊,王娜,徐成楠,遲福梅,周宗山. 蘋果炭疽葉枯病菌GcAP1復(fù)合體β亞基基因的克隆及功能分析[J]. 中國農(nóng)業(yè)科學(xué),2017,50(8):1430-1439.
ZHANG Junxiang,JI Zhirui,WANG Na,XU Chengnan,CHI Fumei,ZHOU Zongshan. Gene cloning and functional analysis of GcAP1 complex beta subunit in Glomerella cingulata[J]. Scientia Agricultura Sinica,2017,50(8):1430-1439.
[34] ALKAN N,MENG X C,F(xiàn)RIEDLANDER G,REUVENI E,SUKNO S,SHERMAN A,THON M,F(xiàn)LUHR R,PRUSKY D. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis[J]. Molecular Plant-Microbe Interactions,2013,26(11):1345-1358.
[35] ZHAO X Z,TANG B Z,XU J,WANG N,ZHOU Z S,ZHANG J X. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2020,145:103474.
[36] 張俊祥,王美玉,遲福梅,徐杰,周宗山. 蘋果炭疽葉枯病菌CgCMK1基因的克隆與功能分析[J]. 植物病理學(xué)報,2020,50(1):40-48.
ZHANG Junxiang,WANG Meiyu,CHI Fumei,XU Jie,ZHOU Zongshan. Cloning and functional analysis of CgCMK1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2020,50(1):40-48.
[37] 張俊祥,王美玉,徐成楠,周宗山. 蘋果炭疽葉枯病菌致病相關(guān)基因CgNVF1的功能初步分析[J]. 植物病理學(xué)報,2018,48(6):810-816.
ZHANG Junxiang,WANG Meiyu,XU Chengnan,ZHOU Zongshan. Functional analysis of the pathogenicity-related gene CgNVF1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2018,48(6):810-816.
[38] 徐杰. 蘋果炭疽葉枯病菌GTP結(jié)合蛋白GTPBP1的功能分析[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2020.
XU Jie. Function analysis of GTP-binding protein GTPBP1 in Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.
[39] 譚清群. 蘋果炭疽葉枯病菌CPA1基因的鑒定與功能分析[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2021.
TAN Qingqun. Identification and functional analysis of CPA1 in Colletotrichum gloeosporioides[D]. Changsha:Hunan Agricultural University,2021.
[40] CHAGU? V,MAOR R,SHARON A. CgOpt1,a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity[J]. BMC Microbiology,2009,9:173.
[41] KIM Y K,WANG Y H,LIU Z M,KOLATTUKUDY P E. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase,a novel fungal virulence factor[J]. The Plant Journal,2002,30(2):177-187.
[42] LIANG X F,CAO M Y,LI S,KONG Y Y,ROLLINS J A,ZHANG R,SUN G Y. Highly contiguous genome resource of Colletotrichum fructicola generated using long-read sequencing[J]. Molecular Plant-Microbe Interactions,2020,33(6):790-793.
[43] LIU Q G,WANG Z C,XU X M,ZHANG H Z,LI C H. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa)[J]. PLoS One,2015,10(8):e0134753.
[44] LI X Y,KE Z J,YU X J,LIU Z Q,ZHANG C H. Transcription factor CgAzf1 regulates melanin production,conidial development and infection in Colletotrichum gloeosporioides[J]. Antonie Van Leeuwenhoek,2019,112(7):1095-1104.
[45] WANG P,LI B,PAN Y T,ZHANG Y Z,LI D W,HUANG L. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides[J]. The Plant Pathology Journal,2020,36(5):385-397.
[46] LIU W K,LIANG X F,GLEASON M L,CAO M Y,ZHANG R,SUN G Y. Transcription factor CfSte12 of Colletotrichum fructicola is a key regulator of early apple Glomerella leaf spot pathogenesis[J]. Applied and Environmental Microbiology,2020,87(1):e02212-e02220.
[47] 劉歡慶,周雙針,高菁,王金泓,唐雯,柳志強,李曉宇. 暹羅炭疽菌同源異型盒轉(zhuǎn)錄因子CsHtf1的生物學(xué)功能[J]. 微生物學(xué)通報,2023,50(12):5350-5362.
LIU Huanqing,ZHOU Shuangzhen,GAO Jing,WANG Jinhong,TANG Wen,LIU Zhiqiang,LI Xiaoyu. Biological function of a homeobox transcription factor CsHtf1 in Colletotrichum siamense[J]. Microbiology China,2023,50(12):5350-5362.
[48] SUN Y J,WANG Y L,TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2016,95:58-66.
[49] LI X Y,WU Y T,LIU Z Q,ZHANG C H. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides[J]. Microbiological Research,2017,197:39-48.
[50] LIU W K,HAN L,CHEN J Z,LIANG X F,WANG B,GLEASON M L,ZHANG R,SUN G Y. The CfMcm1 regulates pathogenicity,conidium germination,and sexual development in Colletotrichum fructicola[J]. Phytopathology,2022,112(10):2159-2173.
[51] ELLIS J G,RAFIQI M,GAN P,CHAKRABARTI A,DODDS P N. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens[J]. Current Opinion in Plant Biology,2009,12(4):399-405.
[52] RAFIQI M,ELLIS J G,LUDOWICI V A,HARDHAM A R,DODDS P N. Challenges and progress towards understanding the role of effectors in plant-fungal interactions[J]. Current Opinion in Plant Biology,2012,15(4):477-482.
[53] SHIMADA C,LIPKA V,OCONNELL R,OKUNO T,SCHULZE-LEFERT P,TAKANO Y. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function[J]. Molecular Plant-Microbe Interactions,2006,19(3):270-279.
[54] GAN P,IKEDA K,IRIEDA H,NARUSAKA M,OCONNELL R J,NARUSAKA Y,TAKANO Y,KUBO Y,SHIRASU K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi[J]. New Phytologist,2013,197(4):1236-1249.
[55] OCONNELL R J,THON M R,HACQUARD S,AMYOTTE S G,KLEEMANN J,TORRES M F,DAMM U,BUIATE E A,EPSTEIN L,ALKAN N,ALTM?LLER J,ALVARADO-BALDERRAMA L,BAUSER C A,BECKER C,BIRREN B W,CHEN Z H,CHOI J,CROUCH J A,DUVICK J P,F(xiàn)ARMAN M A,GAN P,HEIMAN D,HENRISSAT B,HOWARD R J,KABBAGE M,KOCH C,KRACHER B,KUBO Y,LAW A D,LEBRUN M H,LEE Y H,MIYARA I,MOORE N,NEUMANN U,NORDSTR?M K,PANACCIONE D G,PANSTRUGA R,PLACE M,PROCTOR R H,PRUSKY D,RECH G,REINHARDT R,ROLLINS J A,ROUNSLEY S,SCHARDL C L,SCHWARTZ D C,SHENOY N,SHIRASU K,SIKHAKOLLI U R,ST?BER K,SUKNO S A,SWEIGARD J A,TAKANO Y,TAKAHARA H,TRAIL F,VAN DER DOES H C,VOLL L M,WILL I,YOUNG S,ZENG Q D,ZHANG J Z,ZHOU S G,DICKMAN M B,SCHULZE-LEFERT P,VAN THEMAAT E V L,MA L J,VAILLANCOURT L J. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics,2012,44(9):1060-1065.
[56] SHANG S P,LIU G L,ZHANG S,LIANG X F,ZHANG R,SUN G Y. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity[J]. Plant Biotechnology Journal,2024,22(1):82-97.
[57] LIU L P,XU L,JIA Q,PAN R,OELM?LLER R,ZHANG W Y,WU C. Arms race:Diverse effector proteins with conserved motifs[J]. Plant Signaling & Behavior,2019,14(2):1557008.
[58] SHANG S P,WANG B,ZHANG S,LIU G L,LIANG X F,ZHANG R,GLEASON M L,SUN G Y. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase[J]. Molecular Plant Pathology,2020,21(7):936-950.
[59] 王美玉. 蘋果炭疽葉枯病菌效應(yīng)蛋白Sntf2抑制植物免疫的分子機制研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2022.
WANG Meiyu. Molecular mechanism of inhibition of plant immunity by effector Sntf2 from Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2022.
[60] KHODADADI F,GONZ?LEZ J B,MARTIN P L,GIROUX E,BILODEAU G J,PETER K A,DOYLE V P,A?IMOVI? S G. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov.[J]. Scientific Reports,2020,10(1):11043.
[61] PENG Y J,VAN WERSCH R,ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions,2018,31(4):403-409.
[62] COUTO D,ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology,2016,16(9):537-552.
[63] TANG D Z,WANG G X,ZHOU J M. Receptor kinases in plant-pathogen interactions:More than pattern recognition[J]. The Plant Cell,2017,29(4):618-637.
[64] BIA?AS A,ZESS E K,DE LA CONCEPCION J C,F(xiàn)RANCESCHETTI M,PENNINGTON H G,YOSHIDA K,UPSON J L,CHANCLUD E,WU C H,LANGNER T,MAQBOOL A,VARDEN F A,DEREVNINA L,BELHAJ K,F(xiàn)UJISAKI K,SAITOH H,TERAUCHI R,BANFIELD M J,KAMOUN S. Lessons in effector and NLR biology of plant-microbe systems[J]. Molecular Plant-Microbe Interactions,2018,31(1):34-45.
[65] JONES J D G,DANGL J L. The plant immune system[J]. Nature,2006,444(7117):323-329.
[66] TSUDA K,SATO M,STODDARD T,GLAZEBROOK J,KATAGIRI F. Network properties of robust immunity in plants[J]. PLoS Genetics,2009,5(12):e1000772.
[67] DODDS P N,RATHJEN J P. Plant immunity:Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.
[68] QI Y P,TSUDA K,GLAZEBROOK J,KATAGIRI F. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis[J]. Molecular Plant Pathology,2011,12(7):702-708.
[69] 吳建圓,王娜,冀志蕊,遲福梅,周宗山,張俊祥. 蘋果炭疽葉枯病菌致病力分析及蘋果種質(zhì)抗病性鑒定[J]. 植物遺傳資源學(xué)報,2017,18(2):210-216.
WU Jianyuan,WANG Na,JI Zhirui,CHI Fumei,ZHOU Zongshan,ZHANG Junxiang. Pathogenicity differentiation of pathogen causing Glomerella leaf spot of apple (GLSA) and evaluation of resistance to GLSA in apple germplasms[J]. Journal of Plant Genetic Resources,2017,18(2):210-216.
[70] ZHANG F,WANG F,YANG S,ZHANG Y Y,XUE H,WANG Y S,YAN S P,WANG Y,ZHANG Z H,MA Y. MdWRKY100 encodes a group Ⅰ WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichum gloeosporioides infection[J]. Plant Science,2019,286:68-77.
[71] 劉瑛雙,房中文,TURAKULOV K S,劉春曉,董超華,張玉剛. 接種蘋果炭疽葉枯病菌對蘋果葉片相關(guān)酶活性及基因表達(dá)的影響[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2021,38(3):157-163.
LIU Yingshuang,F(xiàn)ANG Zhongwen,TURAKULOV K S,LIU Chunxiao,DONG Chaohua,ZHANG Yugang. Effects on related enzymes activity and gene expression analysis of inoculate apple leaves under Glomerella leaf spot stress[J]. Journal of Qingdao Agricultural University (Natural Science),2021,38(3):157-163.
[72] 吳成成,李婷,趙芮嘉,李保華,梁文星,王彩霞. 蘋果MpSNAT1的克隆與表達(dá)特性分析[J]. 植物生理學(xué)報,2018,54(5):872-878.
WU Chengcheng,LI Ting,ZHAO Ruijia,LI Baohua,LIANG Wenxing,WANG Caixia. Cloning and expression characterization of MpSNAT1 in Malus pumila[J]. Plant Physiology Journal,2018,54(5):872-878.
[73] 吳芳芳,檀根甲. 蘋果感染炭疽病菌后6種酶活性的變化[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報,2004,31(1):46-50.
WU Fangfang,TAN Genjia. Changes in six kinds of enzyme activities in apple fruit inoculatedwith Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2004,31(1):46-50.
[74] 吳芳芳,鄭有飛,胡正華,陳魁. UV-B輻射增強對蘋果炭疽菌生長特性及其過氧化氫酶活性的影響[J]. 生態(tài)環(huán)境,2008,17(1):158-162.
WU Fangfang,ZHENG Youfei,HU Zhenghua,CHEN Kui. Effects of enhancing ultraviolet-B radiation on grown character and catalase activity in Colletitrichum gloeosporiodes[J]. Ecology and Environment,2008,17(1):158-162.
[75] 孔祥華,侯董亮,張偉,田義軻,劉源霞,王彩虹. 炭疽葉枯病菌誘導(dǎo)的不同蘋果種質(zhì)中防御酶活性及丙二醛含量比較[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2017,34(1):5-8.
KONG Xianghua,HOU Dongliang,ZHANG Wei,TIAN Yike,LIU Yuanxia,WANG Caihong. Comparison of defensive enzymes activities and malonaldehyde content induced by Glomerella cingulata among different apple resources[J]. Journal of Qingdao Agricultural University (Natural Science),2017,34(1):5-8.
[76] 薛蓮,檀根甲,徐先松,李麗,韓翔. 蘋果炭疽病菌對蘋果果實致病機制初探[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報,2006,33(4):522-525.
XUE Lian,TAN Genjia,XU Xiansong,LI Li,HAN Xiang. Pathogenesis of the cell wall degrading enzymes produced by Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2006,33(4):522-525.
[77] 朱學(xué)明,史祥鵬,雍道敬,張穎,李保華,梁文星,王彩霞. 內(nèi)生放線菌A-1誘導(dǎo)蘋果對炭疽葉枯病的抗性[J]. 植物生理學(xué)報,2015,51(6):949-954.
ZHU Xueming,SHI Xiangpeng,YONG Daojing,ZHANG Ying,LI Baohua,LIANG Wenxing,WANG Caixia. Induction of resistance against Glomerella cingulata in apple by endophytic actinomycetes strain A-1[J]. Plant Physiology Journal,2015,51(6):949-954.
[78] BARI R,JONES J D G. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488.
[79] TANG L G,YANG G G,MA M,LIU X F,LI B,XIE J T,F(xiàn)U Y P,CHEN T,YU Y,CHEN W D,JIANG D H,CHENG J S. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance[J]. Molecular Plant Pathology,2020,21(5):686-701.
[80] DEMPSEY D A,VLOT A C,WILDERMUTH M C,KLESSIG D F. Salicylic acid biosynthesis and metabolism[J]. The Arabidopsis Book,2011,9:e0156.
[81] ZHANG Y,SHI X P,LI B H,ZHANG Q M,LIANG W X,WANG C X. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple[J]. Plant Physiology and Biochemistry,2016,106:64-72.
[82] 趙妍,王晨. 水楊酸處理對蘋果采后品質(zhì)及炭疽病害的影響[J]. 食品工業(yè),2015,36(9):195-198.
ZHAO Yan,WANG Chen. Influence of salicylic acid on quality and anthracnose in postharvest apple fruit[J]. The Food Industry,2015,36(9):195-198.
[83] 何曉文,孟慧,張家虎,范昆,李林光. ‘嘎拉蘋果及其雜交后代對炭疽葉枯病的抗性機制分析[J]. 西北植物學(xué)報,2022,42(6):983-993.
HE Xiaowen,MENG Hui,ZHANG Jiahu,F(xiàn)AN Kun,LI Linguang. Resistance analysis of ‘Gala and F1 individuals to Glomerella leaf spot[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(6):983-993.
[84] 張朝紅,陳東玫,楊鳳秋,趙同生,趙國棟,李揚,趙永波. 蘋果種質(zhì)及雜種對炭疽菌葉枯病的田間抗性分析[J]. 河北農(nóng)業(yè)科學(xué),2018,22(3):42-46.
ZHANG Chaohong,CHEN Dongmei,YANG Fengqiu,ZHAO Tongsheng,ZHAO Guodong,LI Yang,ZHAO Yongbo. Field resistance of apple germplasm and hybrids to Glomerella leaf spot[J]. Journal of Hebei Agricultural Sciences,2018,22(3):42-46.
[85] 馬玉鑫. ‘寒富蘋果CDPK基因家族分析及MdCDPK24對蘋果炭疽病抗性功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2023.
MA Yuxin. Analysis of CDPK gene family and identification of resistance function of MdCDPK24 to Colletotrichum gloeosporioides in ‘Hanfu apple[D]. Shenyang:Shenyang Agricultural University,2023.
[86] 趙偉玉. ‘寒富蘋果CaMBP基因家族分析及MdCaMBP6抗蘋果炭疽葉枯病的功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2023.
ZHAO Weiyu. Analysis of CaMBP gene family in ‘Hanfu apple and function identification of MdCaMBP6 against apple Glomerella leaf spot[D]. Shenyang:Shenyang Agricultural University,2023.
[87] 史佳俊. 蘋果細(xì)胞分裂素合成關(guān)鍵酶基因MdIPT8在抗炭疽病中的功能解析[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2022.
SHI Jiajun. Functional analysis of MdIPT8,a key enzyme gene for cytokinin synthesis in apple,in resistance to anthracnose[D]. Shenyang:Shenyang Agricultural University,2022.
[88] GUO T L,BAO R,YANG Z H,F(xiàn)U X M,HU L,WANG N,LIU C H,MA F W. The m6A reader MhYTP2 negatively modulates apple Glomerella leaf spot resistance by binding to and degrading MdRGA2L mRNA[J]. Molecular Plant Pathology,2023,24(10):1287-1299.
[89] 劉源霞,李保華,王彩虹,劉春曉,孔祥華,祝軍,戴洪義. 蘋果對炭疽菌葉枯病抗性遺傳的研究及其分子標(biāo)記篩選[J]. 園藝學(xué)報,2015,42(11):2105-2112.
LIU Yuanxia,LI Baohua,WANG Caihong,LIU Chunxiao,KONG Xianghua,ZHU Jun,DAI Hongyi. Genetic studies and molecular markers screening of apple resistance to Glomerella leaf spot[J]. Acta Horticulturae Sinica,2015,42(11):2105-2112.
[90] 劉源霞,蘭進好,柏素花,孫曉紅,劉春曉,張玉剛,戴洪義. 蘋果抗炭疽菌葉枯病基因SNP和InDel標(biāo)記的HRM篩選[J]. 園藝學(xué)報,2017,44(2):215-222.
LIU Yuanxia,LAN Jinhao,BAI Suhua,SUN Xiaohong,LIU Chunxiao,ZHANG Yugang,DAI Hongyi. Screening of SNP and InDel markers to Glomerella leaf spot resistance gene locus in apple using HRM technology[J]. Acta Horticulturae Sinica,2017,44(2):215-222.
[91] 劉春曉,蘭進好,侯鴻敏,張玉剛,戴洪義,劉源霞. 蘋果抗炭疽菌葉枯病基因相關(guān)的4個分子標(biāo)記的準(zhǔn)確性驗證[J]. 園藝學(xué)報,2017,44(7):1355-1362.
LIU Chunxiao,LAN Jinhao,HOU Hongmin,ZHANG Yugang,DAI Hongyi,LIU Yuanxia. Accuracy test of four molecular markers of Glomerella leaf spot resistant gene in apple cultivars[J]. Acta Horticulturae Sinica,2017,44(7):1355-1362.
[92] LI W X,PANG S Y,LU Z G,JIN B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants,2020,9(11):1515.
[93] 谷彥冰. 蘋果兩個WRKY轉(zhuǎn)錄因子的克隆和表達(dá)分析[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2016.
GU Yanbing. Cloning and expression analysis of two WRKY transcription factors in apple (Malus domestica Borkh.)[D]. Beijing:Chinese Academy of Agricultural Sciences,2016.
[94] SHAN D Q,CHANYU W,ZHENG X D,HU Z H,ZHU Y P,ZHAO Y,JIANG A W,ZHANG H X,SHI K,BAI Y X,YAN T C,WANG L,SUN Y Z,LI J F,ZHOU Z Y,GUO Y,KONG J. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.
[95] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of Integrative Plant Biology,2020,62(4):527-543.
[96] JI Z R,WANG M Y,ZHANG S W,DU Y N,CONG J L,YAN H F,GUO H M,XU B L,ZHOU Z S. GDSL esterase/lipase GELP1 involved in the defense of apple leaves against Colletotrichum gloeosporioides infection[J]. International Journal of Molecular Sciences,2023,24(12):10343.
[97] LI Y X,CUI Y L,LIU B Y,XU R X,SHI Y J,LV L L,WANG H T,SHANG Y M,LIANG W,MA F W,LI C Y. γ-aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples[J]. Molecular Plant Pathology,2023,24(6):588-601.
[98] LIPPOK B,BIRKENBIHL R P,RIVORY G,BR?MMER J,SCHMELZER E,LOGEMANN E,SOMSSICH I E. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W-box elements[J]. Molecular Plant-Microbe Interactions,2007,20(4):420-429.
[99] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31[J]. Plant Molecular Biology,2019,101(1/2):149-162.
[100] HOU Y J,YU X Y,CHEN W P,ZHUANG W B,WANG S H,SUN C,CAO L F,ZHOU T T,QU S C. MdWRKY75e enhances resistance to Alternaria alternata in Malus domestica[J]. Horticulture Research,2021,8(1):225.
[101] ZHANG X W,XU R R,LIU Y K,YOU C X,AN J P. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple[J]. The Plant Journal,2023,115(6):1599-1618.
[102] ZHANG S S,WU Y Q,HUANG X,WU W L,LYU L F,LI W L. Research progress about microRNAs involved in plant secondary metabolism[J]. International Journal of Biological Macromolecules,2022,216:820-829.
[103] SALVADOR-GUIRAO R,BALDRICH P,WEIGEL D,RUBIO-SOMOZA I,SAN SEGUNDO B. The microRNA miR773 is involved in the Arabidopsis immune response to fungal pathogens[J]. Molecular Plant-Microbe Interactions,2018,31(2):249-259.
[104] ZHANG Y,ZHANG Q L,HAO L,WANG S N,WANG S Y,ZHANG W N,XU C R,YU Y F,LI T Z. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple[J]. Horticulture Research,2019,6:93.
[105] ZHANG Q L,XU C R,WEI H Y,F(xiàn)AN W Q,LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research,2021,8:219.
[106] ZHANG Q L,WANG Y H,WEI H Y,F(xiàn)AN W Q,XU C R,LI T Z. CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus × domestica)[J]. The Plant Journal,2021,108(5):1522-1538.
[107] 張亞楠,陳新慧,張杰. 蘋果炭疽病抗性miRNA的篩選[J]. 中國農(nóng)學(xué)通報,2021,37(7):106-111.
ZHANG Yanan,CHEN Xinhui,ZHANG Jie. Screening of Malus miRNA:Mediated resistance to Colletotrichum gloeosporioides[J]. Chinese Agricultural Science Bulletin,2021,37(7):106-111.
[108] SHEN X X,PING Y K,BAO C N,LIU C,TAHIR M M,LI X W,SONG Y,XU W R,MA F W,GUAN Q M. Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple[J]. The Plant Journal,2023,114(2):262-278.
[109] YU X Y,HOU Y J,CAO L F,ZHOU T T,WANG S H,HU K X,CHEN J R,QU S C. MicroRNA candidate miRcand137 in apple is induced by Botryosphaeria dothidea for impairing host defense[J]. Plant Physiology,2022,189(3):1814-1832.
[110] LIU K,YANG A,YAN J D,LIANG Z L,YUAN G P,CONG P H,ZHANG L Y,HAN X L,ZHANG C X. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes[J]. Horticulture Research,2023,10(11):uhad198.
收稿日期:2024-03-13 接受日期:2024-04-07
基金項目:中央級公益性科研院所基本科研業(yè)務(wù)費專項(1610182023012);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-27);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(CAAS-ASTIP-2021-RIP-05)
作者簡介:冀志蕊,女,在讀博士研究生,研究方向為果樹病害流行與綜合防控。Tel:0429-3598236,E-mail:xinyu_jzr@163.com
*通信作者 Author for correspondence. E-mail:xubl@gsau.edu.cn;Tel:0429-3598268,E-mail:zhouzongshan@caas.cn