曾慶賀 崔曉宇 唐為 李娟
摘 ?要??記憶辨別力是對(duì)相似的記憶經(jīng)驗(yàn)進(jìn)行準(zhǔn)確辨別的能力, 其依賴于名為模式分離的神經(jīng)計(jì)算機(jī)制, 在人類被試中, 通常使用記憶相似性任務(wù)對(duì)其進(jìn)行測(cè)量與研究。在老化過(guò)程中, 老年人的記憶辨別力會(huì)出現(xiàn)十分明顯的衰退, 這種衰退與海馬、內(nèi)嗅皮層等內(nèi)側(cè)顳葉腦區(qū)的結(jié)構(gòu)和功能衰退以及其他新皮層結(jié)構(gòu)和功能老化關(guān)系密切。由于記憶辨別力高度依賴于內(nèi)側(cè)顳葉的結(jié)構(gòu)和功能完整性, 因此, 它能夠反映出認(rèn)知障礙發(fā)展早期的異常腦結(jié)構(gòu)和功能變化, 使得記憶相似性任務(wù)具備了應(yīng)用于認(rèn)知障礙早期識(shí)別的巨大潛力。未來(lái)研究需要采用更精細(xì)的成像技術(shù)單獨(dú)考察海馬齒狀回和CA3亞區(qū)在記憶辨別中的作用及其老化的影響, 并更多關(guān)注前額葉等新皮層結(jié)構(gòu)老化影響記憶辨別力的神經(jīng)機(jī)制, 同時(shí)也需要建立大樣本前瞻隊(duì)列來(lái)驗(yàn)證記憶相似性任務(wù)在認(rèn)知障礙早期識(shí)別中的有效性。
分類號(hào)??B844
1??引言
情景記憶是個(gè)體對(duì)自己親身經(jīng)歷的、發(fā)生在特定時(shí)間或地點(diǎn)的情景或事件的長(zhǎng)時(shí)記憶, 是保證人們正常生活的重要認(rèn)知功能(Tulving, 2002)。在日常生活中, 人們每天都會(huì)經(jīng)歷一些高度相似的事件, 比如老年人在吃藥前常需要回憶今天是否已經(jīng)吃過(guò)藥了。可見(jiàn), 準(zhǔn)確區(qū)分相似的記憶經(jīng)驗(yàn)是保證我們正常生活的前提之一。這種準(zhǔn)確區(qū)分相似記憶經(jīng)驗(yàn)的功能被稱為記憶辨別功能(mnemonic discrimination), 記憶辨別功能高度依賴于名為模式分離(pattern separation)的神經(jīng)計(jì)算機(jī)制(Marr, 1971; McClelland et al., 1995; Norman & O'Reilly, 2003; Yassa & Stark, 2011), 該機(jī)制是指將高度重疊的記憶信息輸入表征為兩個(gè)獨(dú)立的、完全分離的神經(jīng)信號(hào)輸出。
基于模式分離的基本原理, Stark等人開(kāi)發(fā)出了記憶相似性任務(wù)(Mnemonic Similarity Task, MST)對(duì)記憶辨別功能進(jìn)行測(cè)量與機(jī)制研究(Kirwan & Stark, 2007; Stark et al., 2013; Yassa et al., 2010a, 2011a), 其基本內(nèi)容是要求被試對(duì)舊圖、新圖以及誘餌圖片(與學(xué)習(xí)過(guò)的圖片相似)進(jìn)行識(shí)別(如圖1所示), 其中, 對(duì)誘餌進(jìn)行準(zhǔn)確辨別(將誘餌判斷為相似)的能力即代表了記憶辨別力(Sinha et al., 2018; Stark et al., 2013; Stark et al., 2019; Yassa et al., 2010a)。近些年, 眾多研究者基于物體版MST的基本思路, 設(shè)計(jì)了空間版本(Granger et al., 2022; Reagh & Yassa, 2014)、場(chǎng)景版本(Berron et al., 2018; Güsten et al., 2021; Maass et al., 2019)、面孔版本(Chang et al., 2015; Stiernstr?mer et al., 2018)、情緒材料版本(Leal et al., 2019; Pagen et al., 2022; Szollosi et al., 2022)、單詞版本(Ly et al., 2013)等多種變式任務(wù)對(duì)不同的問(wèn)題進(jìn)行研究, 但這些任務(wù)的核心都是對(duì)相似刺激進(jìn)行準(zhǔn)確辨別。
內(nèi)側(cè)顳葉(medial temporal lobe)是支持包括記憶辨別在內(nèi)的情景記憶功能的關(guān)鍵結(jié)構(gòu)。從解剖結(jié)構(gòu)上看, 內(nèi)側(cè)顳葉包括海馬(hippocampus)、內(nèi)嗅皮層(entorhinal cortex, EC)、圍嗅皮層(perirhinal cortex, PRC)和旁海馬皮層(parahippocampal cortex,PHC)等結(jié)構(gòu), 海馬也可以進(jìn)一步劃分為齒狀回(dentate gyrus, DG)、海馬角1區(qū)到4區(qū)(cornu ammonis 1-4, CA1-4)以及海馬下托(subiculum)等亞區(qū)。自神經(jīng)計(jì)算模型提出以來(lái), 大量研究集中于探討海馬, 特別是海馬DG對(duì)模式分離機(jī)制和記憶辨別功能的貢獻(xiàn), 但隨著神經(jīng)影像研究的不斷深入, 研究者們逐漸意識(shí)到, 記憶辨別功能的實(shí)現(xiàn)也需要海馬與其他內(nèi)側(cè)顳葉結(jié)構(gòu)所組成的完整信息加工回路的支持, 以及額葉、頂葉、枕葉等新皮層結(jié)構(gòu)對(duì)海馬自上而下的調(diào)控(Amer & Davachi, 2023)。
隨著年齡的增長(zhǎng), 許多認(rèn)知功能都會(huì)出現(xiàn)不同程度的下降(Park & Bischof, 2013; Park et al., 2002), 記憶辨別功能也不例外。有研究者通過(guò)MST測(cè)量不同年齡被試的記憶辨別力, 結(jié)果發(fā)現(xiàn)記憶辨別力與年齡之間存在顯著負(fù)相關(guān), 即記憶辨別力隨年齡增長(zhǎng)而下降(Riphagen et al., 2020; Stark et al., 2013)。不僅如此, 當(dāng)老年人出現(xiàn)神經(jīng)退行性病變并發(fā)展為輕度認(rèn)知障礙(mild cognitive impairment, MCI)或阿爾茨海默癥(Alzheimers Disease, AD)時(shí), 其記憶辨別力也會(huì)進(jìn)一步降低(Bakker et al., 2015; Corona-Long et al., 2020; Lalani et al., 2022; Stark et al., 2013; Yassa et al., 2010a)。
目前, 眾多研究者對(duì)老年人記憶辨別力衰退的認(rèn)知神經(jīng)機(jī)制進(jìn)行了深入探討, 在研究過(guò)程中, 研究者們還發(fā)現(xiàn)MST在識(shí)別認(rèn)知障礙早期的輕微認(rèn)知損傷方面具有應(yīng)用價(jià)值。因此, 本文將重點(diǎn)對(duì)老年人記憶辨別力下降的認(rèn)知神經(jīng)機(jī)制研究進(jìn)行梳理和歸納, 并介紹MST在老年認(rèn)知障礙早期識(shí)別方面的應(yīng)用, 最后針對(duì)當(dāng)前研究中存在的問(wèn)題進(jìn)行討論并對(duì)未來(lái)的研究進(jìn)行展望。
2 ?記憶辨別的認(rèn)知神經(jīng)機(jī)制
2.1??記憶辨別的核心機(jī)制:以海馬為中心的內(nèi)側(cè)顳葉模式分離
內(nèi)側(cè)顳葉是情景記憶的加工樞紐。在經(jīng)過(guò)新皮層的處理后, 與物體或內(nèi)容有關(guān)的信息會(huì)進(jìn)入到PRC進(jìn)行更復(fù)雜的加工, 然后被傳遞到外側(cè)內(nèi)嗅皮層(lateral entorhinal cortex, LEC), 與空間或位置有關(guān)的信息則會(huì)進(jìn)入PHC進(jìn)行加工, 然后被傳遞到內(nèi)側(cè)內(nèi)嗅皮層(medial entorhinal cortex, MEC), 最終, 由海馬對(duì)來(lái)自LEC和MEC的信息進(jìn)行整合, 形成完整的情景記憶(Danieli et al., 2023)。作為情景記憶加工中的一個(gè)重要環(huán)節(jié), 模式分離的實(shí)現(xiàn)也依賴于完整的內(nèi)側(cè)顳葉加工路徑。
經(jīng)典理論認(rèn)為, 由于海馬DG的顆粒細(xì)胞數(shù)目巨大且遠(yuǎn)超過(guò)向其進(jìn)行投射的EC細(xì)胞數(shù)量, 故而DG顆粒細(xì)胞能夠?qū)?lái)自EC的信息進(jìn)行稀疏編碼(Chawla et al., 2005; Deng et al., 2013), 即通過(guò)少數(shù)顆粒細(xì)胞對(duì)輸入的信息進(jìn)行編碼。通過(guò)這種方式, 相似的事件將由不同的DG顆粒細(xì)胞進(jìn)行表征, 從而實(shí)現(xiàn)信息分離表征。DG在模式分離中發(fā)揮關(guān)鍵作用已經(jīng)得到了早期動(dòng)物研究的證實(shí), 比如, Leutgeb等人(2007)發(fā)現(xiàn), DG顆粒細(xì)胞群對(duì)微小的環(huán)境變化高度敏感, 當(dāng)環(huán)境發(fā)生十分微小的變化時(shí), CA3錐體細(xì)胞群在兩種環(huán)境下的放電模式十分相似, 但DG顆粒細(xì)胞群在兩種環(huán)境下的放電模式顯著改變(多個(gè)放電場(chǎng)不相干地變化), 說(shuō)明相似的環(huán)境是由部分不同的DG顆粒細(xì)胞進(jìn)行響應(yīng)的, 這一結(jié)果在Neunuebel和Knierim (2014)的研究中也得到了驗(yàn)證。除了DG之外, 早期動(dòng)物研究還發(fā)現(xiàn), 海馬CA3亞區(qū)也能執(zhí)行模式分離(Lee et al., 2004; Leutgeb et al., 2004; Vazdarjanova & Guzowski, 2004), 只不過(guò)CA3亞區(qū)對(duì)微小的環(huán)境變化做出的響應(yīng)遠(yuǎn)不及DG, 只有當(dāng)環(huán)境變化較大時(shí)CA3亞區(qū)才會(huì)表現(xiàn)出模式分離的加工模式(Knierim & Neunuebel, 2016; Neunuebel & Knierim, 2014)。最近, 對(duì)猴子進(jìn)行的研究也為DG/CA3混合區(qū)域神經(jīng)元承擔(dān)模式分離的觀點(diǎn)提供了證據(jù)支持(Sakon & Suzuki, 2019)。由此可見(jiàn), DG和CA3亞區(qū)對(duì)模式分離均有貢獻(xiàn), 但相比于CA3亞區(qū), DG對(duì)微小特征變化更加敏感, 對(duì)相似刺激的分離表征主要由DG承擔(dān)。
在人類研究中, 一方面, 有研究者應(yīng)用MST對(duì)海馬損傷患者的記憶辨別力進(jìn)行測(cè)試, 結(jié)果發(fā)現(xiàn)這些患者的記憶辨別力嚴(yán)重受損(Baker et al., 2016; Hanert et al., 2019; Kirwan et al., 2012), 證明了海馬在人類模式分離中的貢獻(xiàn); 另一方面, 研究者使用高分辨率功能磁共振成像(functional magnetic resonance imaging, fMRI)技術(shù)對(duì)模式分離進(jìn)行研究, 揭示了DG/CA3亞區(qū)在模式分離中的關(guān)鍵性作用。比如, Bakker等人(2008)在MST研究中發(fā)現(xiàn), 舊物體識(shí)別時(shí), 海馬DG/CA3亞區(qū)的活動(dòng)水平顯著低于新物體識(shí)別時(shí)的活動(dòng)水平, 而當(dāng)誘餌出現(xiàn)時(shí), 海馬DG/CA3亞區(qū)的活動(dòng)水平則與新物體出現(xiàn)時(shí)的活動(dòng)水平無(wú)顯著差異, 其他海馬亞區(qū)并沒(méi)有出現(xiàn)類似的活動(dòng)模式, 說(shuō)明DG/CA3亞區(qū)能夠按照處理新物體的方式對(duì)誘餌進(jìn)行響應(yīng)。還有研究者通過(guò)操作誘餌的相似性水平, 發(fā)現(xiàn)了海馬DG/CA3亞區(qū)能夠?qū)⒉町愝^小的信息輸入轉(zhuǎn)變?yōu)椴町愝^大的信號(hào)輸出(Lacy et al., 2011; Reagh et al., 2018), 該結(jié)果與神經(jīng)計(jì)算模型相吻合(Norman & O'Reilly, 2003), 進(jìn)一步證實(shí)了DG/CA3亞區(qū)在模式分離中發(fā)揮著關(guān)鍵作用。
除了海馬DG/CA3亞區(qū)之外, 其他內(nèi)側(cè)顳葉結(jié)構(gòu)在模式分離中的作用也得到了研究者的關(guān)注。有研究顯示, PHC能夠根據(jù)場(chǎng)景特征對(duì)空間場(chǎng)景進(jìn)行分類(Dilks et al., 2022)以及對(duì)距離等空間維度的信息進(jìn)行表征(Baumann & Mattingley, 2021), MEC也能夠區(qū)分物體的位置并推動(dòng)海馬的空間信息組織(Keene et al., 2016); PRC和LEC則對(duì)于感知具有較多重疊特征的物體十分重要, 特別是能夠細(xì)粒度地表征主觀感知到的物體相似程度(Ferko et al., 2022)。可見(jiàn), PHC、PRC和EC在維持感知的準(zhǔn)確性、解決相似信息干擾方面發(fā)揮著作用, 那么也可以認(rèn)為, 高度重疊的記憶信息在進(jìn)入內(nèi)側(cè)顳葉之后, 就已經(jīng)開(kāi)始進(jìn)行模式分離了。這一觀點(diǎn)已經(jīng)得到了一定的證據(jù)支持, 比如, 有研究發(fā)現(xiàn), 當(dāng)成功辨別誘餌時(shí), PRC-LEC在物體MST中會(huì)表現(xiàn)出更高的激活水平, 與DG/CA3亞區(qū)的活動(dòng)模式相似(Reagh & Yassa, 2014; Stevenson??et al., 2020), PHC-MEC則會(huì)在空間MST中表現(xiàn)出與DG/CA3亞區(qū)相似的活動(dòng)模式(Reagh & Yassa, 2014)。不過(guò), 根據(jù)相似度將誘餌劃分為三個(gè)不同的水平后, 并沒(méi)有發(fā)現(xiàn)PRC-LEC或PHC-MEC與DG/CA3的活動(dòng)模式完全一致(Reagh et al., 2018)。對(duì)此結(jié)果, 研究者認(rèn)為, 相比于海馬DG/CA3亞區(qū), EC與PRC、PHC在區(qū)分高度相似誘餌方面的能力較弱(Reagh et al., 2018), 也就是說(shuō), 這些腦區(qū)能夠在一定程度上參與模式分離, 只不過(guò)這些腦區(qū)的表征更加模糊, 不能實(shí)現(xiàn)完全的分離表征(Reagh & Yassa, 2014)。
綜上, 模式分離由內(nèi)側(cè)顳葉主導(dǎo), 高度重疊的信息在進(jìn)入海馬之前, 首先經(jīng)歷信息的選擇, 物體信息進(jìn)入PRC-LEC通路, 并在此進(jìn)行精細(xì)表征并將重疊的信息分離到一定程度, 空間或場(chǎng)景信息進(jìn)入PHC-MEC通路并在此經(jīng)歷初步分離, 最終, 經(jīng)過(guò)初步分離的信息進(jìn)入海馬DG/CA3亞區(qū), 被加工成互不重疊的記憶表征(Amer & Davachi, 2023; Reagh & Yassa, 2014)。從模式分離的完整加工路徑來(lái)看, 其他內(nèi)側(cè)顳葉結(jié)構(gòu)對(duì)相似刺激的預(yù)先選擇與初步分離加工, 是保證海馬高效執(zhí)行模式分離的基礎(chǔ)之一。
2.2 記憶辨別的初始加工環(huán)節(jié):知覺(jué)表征分離
記憶辨別是建立在知覺(jué)辨別的基礎(chǔ)上的, 盡管內(nèi)側(cè)顳葉對(duì)于形成能夠區(qū)分相似刺激的神經(jīng)表征至關(guān)重要(Kent et al., 2016), 但枕葉感覺(jué)區(qū)在知覺(jué)表征分離中發(fā)揮的作用同樣不容忽視。Bowman等人(2019)發(fā)現(xiàn), 腹側(cè)視覺(jué)區(qū)的視覺(jué)表征非常詳細(xì), 甚至可以依據(jù)腹側(cè)視覺(jué)區(qū)的活動(dòng)信號(hào)對(duì)目標(biāo)以及與之高度相似的誘餌進(jìn)行區(qū)分; 也有研究者在MST研究中發(fā)現(xiàn), 誘餌正確辨別時(shí)與舊項(xiàng)目正確再認(rèn)時(shí)的枕葉激活水平存在顯著差異(Klippenstein et al., 2020), 枕葉感覺(jué)區(qū)甚至表現(xiàn)出了與海馬模式分離相似的神經(jīng)活動(dòng)模式(Pidgeon & Morcom, 2016)。以上這些結(jié)果說(shuō)明, 枕葉感覺(jué)區(qū)能夠識(shí)別出先前呈現(xiàn)過(guò)的刺激的特征變化, 實(shí)現(xiàn)知覺(jué)分離表征。值得一提的是, 雖然現(xiàn)有研究發(fā)現(xiàn)枕葉感覺(jué)區(qū)的激活水平與記憶辨別力之間不存在顯著相關(guān)(Klippenstein et al., 2020), 但枕葉卻能夠影響海馬神經(jīng)活動(dòng)對(duì)行為成績(jī)的預(yù)測(cè), 比如Koolschijn等人(2019)在研究中發(fā)現(xiàn), 當(dāng)模式分離發(fā)生時(shí)對(duì)外側(cè)枕葉進(jìn)行經(jīng)顱直流電刺激干擾后, 海馬的神經(jīng)活動(dòng)不再能預(yù)測(cè)行為成績(jī), 這說(shuō)明感覺(jué)區(qū)的知覺(jué)表征分離是內(nèi)側(cè)顳葉順利進(jìn)行模式分離的前提。
以上證據(jù)表明, 枕葉感覺(jué)區(qū)對(duì)相似刺激的特征差異也比較敏感, 其能夠?qū)ο嗨频拇碳みM(jìn)行知覺(jué)上的分離表征, 在一定程度上解決相似信息之間的干擾。作為記憶辨別的初始信息加工“車間”, 枕葉感覺(jué)區(qū)雖然不能單獨(dú)實(shí)現(xiàn)記憶經(jīng)驗(yàn)的分離表征, 但其進(jìn)行的細(xì)顆粒度知覺(jué)表征對(duì)于由內(nèi)側(cè)顳葉主導(dǎo)的模式分離具有推動(dòng)作用。
2.3記憶辨別中的監(jiān)測(cè)與認(rèn)知控制
記憶監(jiān)測(cè)也是記憶功能的一個(gè)重要方面, 比如在記憶過(guò)程中, 需要對(duì)編碼的質(zhì)量或提取到的信息的準(zhǔn)確性和相關(guān)性進(jìn)行監(jiān)測(cè)(Chua et al., 2009; Orth et al., 2023), 因此, 記憶監(jiān)測(cè)對(duì)評(píng)估和判斷記憶內(nèi)容以及區(qū)分相似的記憶經(jīng)驗(yàn)是必不可少的。已有研究證實(shí), 記憶監(jiān)測(cè)依賴于前額葉(Chua & Ahmed, 2016; Imperio & Chua, 2023; Shao et al., 2022), 那么, 在記憶辨別過(guò)程中, 刺激特征的微小變化也應(yīng)該能夠反映在前額葉的活動(dòng)模式上。這一觀點(diǎn)已經(jīng)得到相關(guān)證據(jù)支持, 比如, 使用MST進(jìn)行的研究發(fā)現(xiàn), 前額葉表現(xiàn)出了和海馬模式分離一致的活動(dòng)模式(Nash et al., 2021), 更為重要的是, 通過(guò)操作誘餌相似性水平所得到的前額葉刺激信號(hào)輸入?神經(jīng)信號(hào)輸出曲線與Lacy等人(2011)發(fā)現(xiàn)的海馬DG/CA3亞區(qū)輸入?輸出函數(shù)曲線相吻合(Pidgeon & Morcom, 2016)。這些證據(jù)表明, 前額葉雖然不能對(duì)信息進(jìn)行分離表征, 但能夠監(jiān)測(cè)到相似刺激間的差異, 并對(duì)相似的刺激進(jìn)行差異化響應(yīng)。
除了監(jiān)測(cè)之外, 前額葉在情景記憶中的另一個(gè)重要功能是認(rèn)知控制。已有研究表明, 在情景記憶的編碼或提取階段, 前額葉能夠通過(guò)認(rèn)知控制自上而下地調(diào)節(jié)海馬的活動(dòng)模式(Aly & Turk-?Browne, 2016; Anderson & Hulbert, 2021; Malik et al., 2022; Zheng et al., 2021), 研究者在記憶辨別中也發(fā)現(xiàn)了類似的證據(jù), 比如, Frank等人(2020)發(fā)現(xiàn), 當(dāng)由前額葉主導(dǎo)的預(yù)期被打破時(shí), 海馬DG/CA3亞區(qū)對(duì)高相似度物體的模式分離程度會(huì)進(jìn)一步增加; Lohnas等人(2018)通過(guò)顱內(nèi)電極記錄被試的皮層腦電, 結(jié)果發(fā)現(xiàn), 若要求被試將誘餌也判斷為舊, 海馬并不會(huì)表現(xiàn)出模式分離的電生理信號(hào), 只有在要求被試對(duì)誘餌和舊物體進(jìn)行區(qū)分時(shí), 海馬才會(huì)執(zhí)行模式分離。這些證據(jù)說(shuō)明, 前額葉能夠根據(jù)任務(wù)要求向海馬發(fā)送執(zhí)行模式分離的指令并調(diào)節(jié)海馬的模式分離活動(dòng)。更為重要的是, Lohnas等人還發(fā)現(xiàn), 無(wú)論是否要求區(qū)分誘餌和舊物體, 背外側(cè)前額葉對(duì)誘餌和舊物體的響應(yīng)始終存在顯著差異, 也就是說(shuō), 前額葉始終能夠監(jiān)測(cè)到相似物體之間的差異, 在監(jiān)測(cè)到差異后, 前額葉能夠通過(guò)自上而下地調(diào)控來(lái)促進(jìn)重疊信息分離, 進(jìn)而實(shí)現(xiàn)記憶辨別。
綜上所述, 記憶辨別依賴于大規(guī)模腦網(wǎng)絡(luò)的協(xié)同活動(dòng):相似的刺激首先由枕葉感覺(jué)區(qū)對(duì)其特征進(jìn)行感知與加工, 并對(duì)重疊的信號(hào)進(jìn)行初步知覺(jué)表征分離, 前額葉在監(jiān)測(cè)到輸入信號(hào)的差異后, 根據(jù)任務(wù)要求啟動(dòng)并調(diào)控下游腦區(qū)的模式分離。在前額葉的監(jiān)測(cè)和調(diào)控下, 來(lái)自枕葉感覺(jué)區(qū)的信息經(jīng)由不同的信息加工路徑進(jìn)入內(nèi)側(cè)顳葉, 由PHC、PRC和EC進(jìn)行初步的模式分離后進(jìn)入海馬, 再由海馬DG/CA3亞區(qū)實(shí)現(xiàn)完全的分離表征, 最終將高度重疊的感知信號(hào)輸入轉(zhuǎn)變?yōu)榛ゲ恢丿B的神經(jīng)信號(hào)輸出。
3??記憶辨別力受老化影響的認(rèn)知神經(jīng)機(jī)制
3.1??海馬老化影響記憶辨別力的認(rèn)知神經(jīng)機(jī)制
海馬萎縮是老化中的常見(jiàn)現(xiàn)象(Kantarci et al., 2008; Raz et al., 2005), 盡管它被認(rèn)為是導(dǎo)致老年人記憶能力下降的重要原因之一, 但現(xiàn)有研究發(fā)現(xiàn), 海馬總體積與健康老年人記憶辨別力之間的相關(guān)關(guān)系較弱。比如有研究者將老年人和青年人樣本一起考察, 發(fā)現(xiàn)海馬總體積與記憶辨別力之間存在顯著正相關(guān)(Stark & Stark, 2017), 而Doxey和Kirwan (2015)在研究中并沒(méi)有發(fā)現(xiàn)健康老年人的海馬總體積與記憶辨別力之間存在關(guān)聯(lián), 還有研究者發(fā)現(xiàn), 健康老年人只有在最相似物體的辨別成績(jī)上才會(huì)表現(xiàn)出與海馬總體積的顯著正相關(guān)(Rizzolo et al., 2021)。當(dāng)考察海馬DG/CA3亞區(qū)體積與老年人記憶辨別力的關(guān)系時(shí), 研究結(jié)果則趨向一致:Doxey和Kirwan (2015)在研究中發(fā)現(xiàn), 健康老年人海馬DG/CA3亞區(qū)的體積與記憶辨別力之間存在顯著正相關(guān), 即DG/CA3亞區(qū)的體積越小, 記憶辨別力越差, 還有研究者在對(duì)DG體積進(jìn)行單獨(dú)分析時(shí)也發(fā)現(xiàn)了一致的結(jié)果(Dillon et al., 2017; Riphagen et al., 2020)。這些證據(jù)說(shuō)明海馬DG/CA3亞區(qū)萎縮對(duì)老年人記憶辨別力的影響比海馬總體萎縮造成的影響更為顯著, 這可能是由于海馬不同亞區(qū)在老化的過(guò)程中的萎縮速度不同(Bussy et al., 2021; Pereira et al., 2014), 且由于DG/CA3亞區(qū)僅占海馬總體積的一小部分, 因此, DG/CA3亞區(qū)的體積萎縮很難反映在海馬總體積的變化上。綜上, DG/CA3亞區(qū)體積與記憶辨別力關(guān)系密切, 老化導(dǎo)致的DG/CA3亞區(qū)萎縮可能是導(dǎo)致老年人記憶辨別力下降的重要原因之一。
海馬體積萎縮是一個(gè)連續(xù)的過(guò)程, 研究者認(rèn)為在可測(cè)量的海馬體積萎縮之前, 海馬的微觀結(jié)構(gòu)破壞就已經(jīng)發(fā)生了, 海馬微觀結(jié)構(gòu)的完整性可能比海馬體積更能有效預(yù)測(cè)健康老年人的記憶辨別力(Leal & Yassa, 2018)。最近一項(xiàng)研究發(fā)現(xiàn), 通過(guò)超高分辨率擴(kuò)散加權(quán)成像技術(shù)測(cè)量出的DG微觀結(jié)構(gòu)破壞(細(xì)胞密度降低)與更差的記憶辨別力顯著相關(guān), DG微觀結(jié)構(gòu)破壞對(duì)老年人記憶辨別力的預(yù)測(cè)作用甚至優(yōu)于DG體積(Granger et al., 2022); Yassa等人(2011b)應(yīng)用超高分辨率彌散張量成像技術(shù)也發(fā)現(xiàn)了DG/CA3亞區(qū)的樹(shù)突結(jié)構(gòu)完整性降低與健康老年人記憶辨別力下降有關(guān)。由此我們可以推測(cè), 老年人記憶辨別力下降開(kāi)始于海馬微觀結(jié)構(gòu)破壞, 并隨著海馬結(jié)構(gòu)完整性的降低而持續(xù)惡化, 也就是說(shuō), 模式分離加工的微神經(jīng)環(huán)路破壞也是導(dǎo)致老年人記憶辨別力下降的原因之一。
除了海馬結(jié)構(gòu)完整性下降之外, 老年人的海馬功能活動(dòng)也會(huì)出現(xiàn)異常。大量研究表明, 興奮性和抑制性活動(dòng)平衡, 即E/I平衡, 是健康大腦的重要特征之一(Contreras & Wilent, 2005; Lopatina et al., 2019; Yizhar et al., 2011), 其中γ-氨基丁酸(γ-aminobutyric acid, GABA)是中樞神經(jīng)系統(tǒng)中的主要抑制性神經(jīng)遞質(zhì)之一(McCormick, 1989), 其在維持E/I平衡中發(fā)揮著重要作用(Bi et al., 2020)。在老化或認(rèn)知障礙發(fā)展進(jìn)程中, 海馬內(nèi)GABA能中間神經(jīng)元和GABA受體數(shù)量減少(Levenga et al., 2013; Martín-Belmonte et al., 2020), 導(dǎo)致海馬內(nèi)GABA信號(hào)減弱, 抑制性神經(jīng)活動(dòng)不足。因此,?老年人的常見(jiàn)腦功能變化之一就是GABA能系統(tǒng)功能障礙導(dǎo)致的海馬神經(jīng)元興奮性增加或過(guò)度激活(Jiménez-Balado & Eich, 2021; Tang et al., 2023)。在記憶辨別過(guò)程中, 研究者也發(fā)現(xiàn)了海馬的過(guò)度激活:當(dāng)正確辨別誘餌時(shí), 健康老年人會(huì)表現(xiàn)出比年輕人更高的海馬DG/CA3亞區(qū)激活水平(Reagh et al., 2018; Yassa et al., 2011a), 攜帶AD風(fēng)險(xiǎn)基因APOE ε4的健康老年人也會(huì)表現(xiàn)出比非攜帶者更高的DG/CA3激活水平(Sinha et al., 2018), 當(dāng)老年人發(fā)展為MCI時(shí), 其DG/CA3亞區(qū)的激活水平相比于健康老年人也會(huì)進(jìn)一步提高(Corona-Long et al., 2020; Tran et al., 2017; Yassa et al., 2010a)。
目前, 尚未發(fā)展為AD的老年人在記憶辨別中表現(xiàn)出的海馬過(guò)度激活已被證明是一種指示神經(jīng)損傷和神經(jīng)活動(dòng)效率降低的標(biāo)志。針對(duì)健康老年人的研究指出, 海馬過(guò)度激活與記憶辨別力之間存在顯著負(fù)相關(guān), 老年人的海馬激活水平越高, 記憶辨別力就越差(Berron et al., 2019; Reagh et al., 2018; Yassa et al., 2011a)。在輕度認(rèn)知障礙群體中, 有研究者使用低劑量的抗癲癇藥物對(duì)MCI患者進(jìn)行治療, 結(jié)果發(fā)現(xiàn)MCI患者的海馬DG/CA3亞區(qū)的激活水平顯著降低, 而記憶辨別力顯著提升 (Bakker et al., 2012; Bakker et al., 2015)。除此之外, 來(lái)自AD病理機(jī)制的研究也發(fā)現(xiàn), AD病理生物標(biāo)記物tau蛋白和β-淀粉樣蛋白(amyloid β-protein, Aβ)的含量不僅與老年人的記憶辨別力之間存在關(guān)聯(lián)(Berron et al., 2019; Maass et al., 2019; Papp et al., 2021a), 而且與老年人在正確辨別誘餌時(shí)的海馬激活水平也存在顯著正相關(guān)(Berron et al., 2019), 即病理生物標(biāo)記物的含量越高, 海馬的激活水平越高??梢?jiàn), 在發(fā)展為AD患者之前, 導(dǎo)致老年人記憶辨別力下降的另一個(gè)重要因素是海馬功能障礙, 主要體現(xiàn)為海馬因神經(jīng)效率降低而出現(xiàn)過(guò)度激活。
已有研究指出, 海馬與其他腦區(qū)間的功能連接對(duì)于記憶辨別也有重要作用, 比如動(dòng)物研究發(fā)現(xiàn), EC向海馬DG的功能投射能夠影響小鼠的位置辨別成績(jī)(Yun et al., 2023), 針對(duì)人類被試的干預(yù)研究也發(fā)現(xiàn), DG/CA3與PHC的功能連接增加能夠提升記憶辨別力(Suwabe et al., 2018)。結(jié)合EC及其他內(nèi)側(cè)顳葉結(jié)構(gòu)在記憶辨別中起到初步分離加工的作用, 可以推斷內(nèi)側(cè)顳葉與海馬的信息交流有助于加強(qiáng)海馬與上游腦區(qū)的表征共享, 因此老化導(dǎo)致海馬與其他腦區(qū)間的信息交流障礙也將影響進(jìn)入海馬的信息精度, 進(jìn)而導(dǎo)致老年人記憶辨別力下降。這一觀點(diǎn)已經(jīng)得到相關(guān)證據(jù)支持:最近的一項(xiàng)研究發(fā)現(xiàn), 在認(rèn)知正常的老年人中, 物體記憶辨別力相對(duì)較差的老年人比物體記憶辨別力較好的老年人表現(xiàn)出了前側(cè)LEC與海馬DG/CA3亞區(qū)之間的靜息態(tài)功能連接顯著增加的情況, 且這一改變被證明是與Aβ病理發(fā)展和神經(jīng)退行性病變有關(guān)(Adams et al., 2022); Stark等人(2021)則發(fā)現(xiàn)在記憶辨別中, 相比于年輕人, 老年人海馬前部與PHC的功能連接顯著降低, 這一較弱的功能連接與老年人較差的記憶辨別力有關(guān)。由此可見(jiàn), 除海馬自身的結(jié)構(gòu)和功能外, 老化對(duì)海馬與其他腦區(qū)間功能連接的影響, 也是導(dǎo)致老年人記憶辨別力下降的原因之一。
結(jié)合以上證據(jù)可以發(fā)現(xiàn), 在記憶辨別中, 海馬既作為模式分離的核心樞紐, 實(shí)現(xiàn)表征完全分離, 又作為一個(gè)收斂區(qū), 對(duì)來(lái)自多個(gè)腦區(qū)的信息進(jìn)行整合, 因此, 老化導(dǎo)致的海馬DG/CA3亞區(qū)體積萎縮和微觀結(jié)構(gòu)破壞, 以及海馬神經(jīng)效率降低或與其他腦區(qū)的信息交流障礙都將導(dǎo)致老年人記憶辨別力受損。以海馬為核心的腦老化是導(dǎo)致老年人記憶辨別力下降的關(guān)鍵原因。
3.2其他腦區(qū)老化影響記憶辨別力的認(rèn)知神經(jīng)機(jī)制
在除海馬之外的其他內(nèi)側(cè)顳葉結(jié)構(gòu)中, EC老化對(duì)記憶辨別力的影響是目前研究得最多的。盡管諸多研究報(bào)告了老年人的EC體積也會(huì)出現(xiàn)明顯的萎縮(Devanand et al., 2008; Gellersen et al., 2023; Tran et al., 2017; Tran et al., 2022), 但是并沒(méi)有發(fā)現(xiàn)記憶辨別力與EC的體積之間存在顯著相關(guān)(Tran et al., 2022)。相比之下, EC功能與記憶辨別力的關(guān)系則更加明確。有研究指出, 在老化或認(rèn)知障礙發(fā)展進(jìn)程中, 誘餌正確辨別時(shí)的EC功能變化與海馬的功能變化恰好相反, 在誘餌正確辨別時(shí), 健康老年人的EC激活水平顯著低于年輕人(Reagh et al., 2018), 當(dāng)發(fā)展為MCI時(shí), 患者的EC激活水平較健康老年人會(huì)進(jìn)一步降低(Yassa et al., 2010a), 并且老年人在正確辨別誘餌時(shí)的EC的激活水平與記憶辨別力之間存在顯著正相關(guān), EC激活水平越低, 記憶辨別力越差(Reagh et al.,?2018)。有臨床試驗(yàn)采用極低劑量的抗癲癇藥物左乙拉西坦對(duì)MCI患者進(jìn)行治療, 結(jié)果發(fā)現(xiàn), 治療后MCI患者的記憶辨別成績(jī)顯著提升, 此時(shí)海馬激活水平并未出現(xiàn)顯著變化, 但EC的激活水平提升到了與健康老年人相同的水平(Bakker et al., 2015)。從以上研究結(jié)果可知, EC的活動(dòng)水平過(guò)低也會(huì)導(dǎo)致老年人記憶辨別力下降, EC活動(dòng)不足反映了EC對(duì)相似信息進(jìn)行初步分離加工的能力變差。
另外, 穿質(zhì)通路(perforant path)老化的影響也不容忽視。穿質(zhì)通路是EC向DG和CA3亞區(qū)進(jìn)行信息傳遞的重要通道, 動(dòng)物研究發(fā)現(xiàn), 穿質(zhì)通路纖維損失是導(dǎo)致記憶辨別力下降的一個(gè)獨(dú)立因素(Burke et al., 2018)。 在人類研究中, Bennett和Stark (2016)采用超高分辨率彌散張量成像技術(shù)進(jìn)行研究, 結(jié)果發(fā)現(xiàn)在控制老化對(duì)全腦白質(zhì)的影響后, 穿質(zhì)通路完整性能夠顯著預(yù)測(cè)老年人的記憶辨別力, 穿質(zhì)通路越完整, 記憶辨別力越好, 該結(jié)果與前人研究結(jié)果相吻合(Yassa et al., 2010b)。值得一提的是, 在認(rèn)知正常的老年人中, 穿質(zhì)通路完整性并不能預(yù)測(cè)老年人的其他記憶成績(jī)(Bennett & Stark, 2016), 也就是說(shuō), 盡管從EC到海馬的信息傳輸通道正常運(yùn)作是海馬所有功能正常運(yùn)作的前提, 但穿質(zhì)通路的輕微損傷對(duì)記憶辨別以外的其他記憶功能影響并不顯著, 這可能是由于穿質(zhì)通路直接向海馬DG進(jìn)行投射, 因此穿質(zhì)通路的輕微損傷也能對(duì)記憶辨別力產(chǎn)生直接影響, 這在一定程度上說(shuō)明了穿質(zhì)通路纖維損失也是導(dǎo)致老年人記憶辨別力損傷的一個(gè)重要原因。
近些年, 研究者也開(kāi)始關(guān)注到老年人前額葉監(jiān)測(cè)和認(rèn)知控制功能衰退對(duì)記憶辨別力的影響, 比如行為研究發(fā)現(xiàn), 由前額葉主導(dǎo)的老年人執(zhí)行功能與通過(guò)MST測(cè)量的記憶辨別力之間存在顯著正相關(guān)(Gellersen et al., 2021; Jensen et al., 2023; Pishdadian et al., 2020)。雖然目前仍然少有研究關(guān)注人類前額葉老化影響記憶辨別力的神經(jīng)機(jī)制, 但神經(jīng)影像學(xué)研究指出, 前額葉體積萎縮與功能障礙也會(huì)對(duì)老年人的情景記憶產(chǎn)生負(fù)面影響(Ankudowich et al., 2019; Brehmer et al., 2020; Maillet & Rajah, 2013; Shao et al., 2022), 老年人前額葉對(duì)海馬的調(diào)控功能紊亂也與認(rèn)知障礙的發(fā)展密切相關(guān)(Nyberg et al., 2019), 動(dòng)物研究和人類研究還發(fā)現(xiàn)抑制前額葉的活動(dòng)能夠?qū)е掠洃洷鎰e力顯著下降(Johnson et al., 2021; Wais et al., 2018)。結(jié)合以上這些證據(jù), 我們推測(cè)老年人的前額葉結(jié)構(gòu)和功能完整性下降, 以及前額葉與內(nèi)側(cè)顳葉或其他腦區(qū)的信息傳遞與調(diào)控作用障礙, 也能夠?qū)е掠洃洷鎰e力嚴(yán)重受損, 但具體的認(rèn)知神經(jīng)機(jī)制還有待進(jìn)一步探究。
另外, 還有研究團(tuán)隊(duì)發(fā)現(xiàn), 記憶辨別也依賴于默認(rèn)模式網(wǎng)絡(luò)(Default mode network, DMN)。在DMN內(nèi), 老年人相較于年輕人表現(xiàn)出的前額葉與顳葉的靜息態(tài)功能連接降低與老年人記憶辨別力下降有關(guān)(Wahlheim et al., 2022)。在最近的一項(xiàng)研究中, Cui等人(2023)也發(fā)現(xiàn)了老年人前部DMN和后部DMN之間的靜息態(tài)功能連接的增加與老年人記憶辨別力的提升顯著相關(guān)。盡管DMN在情景記憶中的作用通常被認(rèn)為是海馬或內(nèi)側(cè)顳葉與相鄰腦區(qū)之間的功能連接主導(dǎo)的, 但不可否認(rèn)的是, 其他腦區(qū)也會(huì)因老化的影響而產(chǎn)生或多或少的改變, 因此, 在未來(lái)還需要進(jìn)一步探究具體新皮層結(jié)構(gòu)在記憶辨別中的作用及其老化對(duì)記憶辨別力的影響程度。
總之, 現(xiàn)有證據(jù)表明, 記憶辨別是由大規(guī)模腦網(wǎng)絡(luò)協(xié)同活動(dòng)所支持的, 老化對(duì)各個(gè)腦區(qū)的影響都將或多或少導(dǎo)致記憶辨別力下降。除海馬外的其他內(nèi)側(cè)顳葉結(jié)構(gòu)老化主要影響了對(duì)信息的初步分離加工以及向海馬的信息傳輸, 使得進(jìn)入海馬的信息完整性受損, 以至于無(wú)法形成準(zhǔn)確的信息表征; 前額葉等控制網(wǎng)絡(luò)內(nèi)的腦區(qū)老化主要影響了對(duì)信息的監(jiān)測(cè)以及對(duì)海馬等內(nèi)側(cè)顳葉結(jié)構(gòu)自上而下的調(diào)控。
4 ?MST在老化研究領(lǐng)域的應(yīng)用
雖然目前尚無(wú)能夠治愈認(rèn)知障礙的治療手段(Grabowska et al., 2023), 但已有大量研究證實(shí), 早期干預(yù)能夠延緩AD的進(jìn)展(Gaugler et al., 2019; Rosenberg et al., 2018), 因此, 認(rèn)知障礙的早期識(shí)別對(duì)患者進(jìn)行疾病管理以及降低AD的發(fā)生和延緩AD的發(fā)展都具有重要意義。在認(rèn)知障礙的評(píng)估中, 傳統(tǒng)神經(jīng)心理學(xué)測(cè)驗(yàn)扮演著重要角色:在臨床和社區(qū)實(shí)踐中, 研究者常依據(jù)多個(gè)認(rèn)知領(lǐng)域的神經(jīng)心理學(xué)測(cè)驗(yàn)結(jié)果對(duì)認(rèn)知障礙風(fēng)險(xiǎn)群體進(jìn)行風(fēng)險(xiǎn)等級(jí)劃分(Edmonds et al., 2019; Langbaum et al., 2020)。然而, 老年人在完成成套神經(jīng)心理學(xué)測(cè)驗(yàn)時(shí), 需要花費(fèi)大量時(shí)間, 且其施測(cè)和評(píng)分過(guò)程也依賴于臨床醫(yī)生或有經(jīng)驗(yàn)的施測(cè)人員, 老年人難以獨(dú)立進(jìn)行, 因此, 簡(jiǎn)單易行且不依賴于專業(yè)施測(cè)人員的電子化認(rèn)知評(píng)估范式成為認(rèn)知障礙早期識(shí)別的重要發(fā)展方向。
MST在認(rèn)知障礙的早期識(shí)別方面有著巨大的應(yīng)用潛力。情景記憶損傷是AD的主要特征之一, 已有研究指出, 基線情景記憶成績(jī)是認(rèn)知能力衰退的重要預(yù)測(cè)因素(Johnson et al., 2009; Schaeverbeke et al., 2021), 且情景記憶成績(jī)與AD病理發(fā)展程度存在顯著負(fù)相關(guān)(Albert, 2011; Bennett et al., 2006; Moscoso et al., 2019), 故而大多數(shù)研究者使用情景記憶范式對(duì)認(rèn)知障礙進(jìn)行早期識(shí)別, 其中, 再認(rèn)測(cè)驗(yàn)是情景記憶范式中最常見(jiàn)的測(cè)驗(yàn)形式。不過(guò), 已有研究證實(shí), 簡(jiǎn)單再認(rèn)能力無(wú)法被用于識(shí)別存在輕微記憶損傷或攜帶AD風(fēng)險(xiǎn)基因APOE ε4的認(rèn)知障礙高風(fēng)險(xiǎn)個(gè)體(Sinha et al., 2018; Stark et al., 2013)。雖然MST采用了再認(rèn)的形式進(jìn)行測(cè)驗(yàn), 但相比之下, 其效果顯著優(yōu)于簡(jiǎn)單再認(rèn)任務(wù), 通過(guò)其測(cè)量的記憶辨別力能夠有效地反映出由于認(rèn)知障礙早期發(fā)展所導(dǎo)致的輕微記憶損傷。比如, 有研究指出, 在健康老年人中, 回憶功能(聽(tīng)覺(jué)詞語(yǔ)學(xué)習(xí)測(cè)驗(yàn)成績(jī))受損的被試相比回憶功能正常的被試表現(xiàn)出了顯著降低的記憶辨別力(Stark et al., 2013), 存在主觀記憶下降老年人的記憶辨別力顯著低于健康老年人(De Simone et al., 2022), AD風(fēng)險(xiǎn)基因APOE ε4的攜帶者也比非攜帶者在MST上表現(xiàn)得更差(Sinha et al., 2018)。還有研究發(fā)現(xiàn), 通過(guò)MST測(cè)量的記憶辨別力在區(qū)分正常老年人和MCI患者以及區(qū)分主觀認(rèn)知下降老年人和MCI患者方面具有較高的準(zhǔn)確度(Belliart-?Guérin & Planche, 2023; Kim et al., 2023)??梢?jiàn), MST是一項(xiàng)對(duì)認(rèn)知功能衰退非常敏感的范式, 能夠有效地揭示AD等神經(jīng)退行性疾病發(fā)展早期就開(kāi)始出現(xiàn)的輕微記憶損傷, 十分有潛力成為社區(qū)認(rèn)知障礙風(fēng)險(xiǎn)預(yù)警和臨床認(rèn)知障礙早篩的有效工具。
盡管研究者們基于模式分離的基本原理開(kāi)發(fā)出了多種版本的MST對(duì)不同的問(wèn)題進(jìn)行研究, 但在老化研究領(lǐng)域中, 應(yīng)用比較廣泛的仍然是物體版本的MST和空間/場(chǎng)景版本的MST, 相比之下, 物體版本的MST更加適用于認(rèn)知障礙的早期識(shí)別。已有研究發(fā)現(xiàn), 老年人對(duì)物體進(jìn)行記憶辨別的能力比對(duì)空間/場(chǎng)景進(jìn)行記憶辨別的能力下降得更快、下降得更早(Güsten et al., 2021; Reagh et al.,?2016), 跨物種研究也發(fā)現(xiàn)了相似的結(jié)果(Johnson et al., 2017)。這種差異產(chǎn)生的原因在于物體與空間/場(chǎng)景模式分離加工依賴于不同的加工通路。如前文所述, 空間/場(chǎng)景的模式分離則更多依賴于PHC-MEC通路, 物體的模式分離則更多依賴于PRC-LEC通路, 而PRC-LEC通路更加容易受到老化的影響而出現(xiàn)功能衰退(Burke et al., 2014), 在AD臨床前階段, 也發(fā)現(xiàn)了LEC的功能障礙更為顯著(Khan et al., 2014), 這也許是物體版本的MST能夠比另外兩種任務(wù)反映出更早期的AD病理生理變化, 以及在認(rèn)知障礙的早期識(shí)別方面更具優(yōu)勢(shì)的原因?;诖耍?目前的研究團(tuán)隊(duì)更多地嘗試將物體版本的MST應(yīng)用于智能手機(jī)、平板電腦等便攜式電子設(shè)備, 進(jìn)行無(wú)監(jiān)督式認(rèn)知評(píng)估(Papp et al., 2021a, 2021b), 同時(shí)也有研究人員不斷對(duì)MST進(jìn)行優(yōu)化(Stark et al., 2023; Villarreal et al., 2022), 如通過(guò)自適應(yīng)設(shè)計(jì)等方式縮短評(píng)估時(shí)間, 提升使用體驗(yàn), 以推動(dòng)其在社區(qū)和臨床的廣泛應(yīng)用。
5??問(wèn)題與展望
近些年來(lái), 研究者們應(yīng)用MST對(duì)記憶辨別的認(rèn)知神經(jīng)機(jī)制進(jìn)行了深入的探索, 也揭示了老年人記憶辨別力下降的規(guī)律及原因, 基于這些發(fā)現(xiàn), 研究者們也逐漸將MST推廣到社區(qū)和臨床研究中, 推動(dòng)實(shí)現(xiàn)認(rèn)知障礙風(fēng)險(xiǎn)預(yù)警和早期識(shí)別。雖然當(dāng)前已有的研究取得很多重要成果, 但也仍然存在一些亟待解決的問(wèn)題。
首先, 在應(yīng)用fMRI技術(shù)考察海馬不同亞區(qū)在執(zhí)行模式分離時(shí)的功能活動(dòng)時(shí), 由于分辨率限制, 大多數(shù)研究無(wú)法將DG和CA3亞區(qū)完全分開(kāi), 只是籠統(tǒng)地考察DG/CA3亞區(qū)的活動(dòng)對(duì)模式分離的貢獻(xiàn)。然而動(dòng)物研究早已指出, DG和CA3亞區(qū)在模式分離中的貢獻(xiàn)程度是不同的(Knierim & Neunuebel, 2016; Neunuebel & Knierim, 2014), 因此, 在人類研究中精確地考察DG和CA3在模式分離中的功能活動(dòng)以及二者與其他腦結(jié)構(gòu)之間的功能連接是十分有必要的。7T超高場(chǎng)強(qiáng)fMRI技術(shù)的發(fā)展為解決這一問(wèn)題提供了契機(jī), 在此精細(xì)的成像技術(shù)之下, 不僅有研究者發(fā)現(xiàn)了DG是海馬中唯一能夠?qū)ο嗨茍?chǎng)景形成完全不同的神經(jīng)表征的結(jié)構(gòu)(Berron et al., 2016), 還有研究者發(fā)現(xiàn)不同APOE基因型的青年被試在相似空間信息的模式分離中表現(xiàn)出了DG、CA3的功能活動(dòng)差異以及DG和CA3之間的功能連接差異(Lee et al., 2020)。可見(jiàn), 在人類被試中將DG和CA3亞區(qū)分開(kāi)考察, 能夠?yàn)槟J椒蛛x的機(jī)制研究提供更多信息, 也能夠?yàn)檎J(rèn)知障礙的發(fā)生與發(fā)展機(jī)制提供重要補(bǔ)充。因此, 在未來(lái)的研究中, 應(yīng)該更多地嘗試在老年人群體中單獨(dú)考察DG和CA3在執(zhí)行模式分離時(shí)的功能活動(dòng)以及其與不同腦區(qū)之間的相互作用對(duì)記憶辨別力的影響。
其次, 盡管現(xiàn)有研究強(qiáng)調(diào)了內(nèi)側(cè)顳葉, 特別是海馬在記憶辨別中的作用, 但前額葉老化對(duì)記憶辨別的影響可能不亞于內(nèi)側(cè)顳葉老化。有研究指出, 相比于誘餌虛報(bào)為舊的條件, 誘餌正確辨別時(shí), 雙側(cè)額下回與內(nèi)側(cè)顳葉的功能連接顯著增加(Wais et al., 2017), 這種差異在一定程度上說(shuō)明了, 在記憶辨別時(shí)需要對(duì)內(nèi)側(cè)顳葉進(jìn)行更強(qiáng)的調(diào)控。因此, 前額葉老化導(dǎo)致調(diào)控功能減弱, 可能對(duì)海馬的過(guò)度激活也有貢獻(xiàn), 進(jìn)而間接影響了老年人的記憶辨別力。這一觀點(diǎn)不乏證據(jù)支持, 比如, 最近一項(xiàng)動(dòng)物研究指出, 前額葉能夠通過(guò)長(zhǎng)程GABA能投射(long-range GABAergic projection)抑制海馬的活動(dòng)(Malik et al., 2022), 在青年人的工作記憶研究中也發(fā)現(xiàn)了前額葉對(duì)海馬的調(diào)控減弱與海馬的過(guò)度激活有關(guān)聯(lián)(Xiong et al., 2021), 還有研究發(fā)現(xiàn), 在情景記憶編碼階段, 老年人前額葉激活水平改變對(duì)海馬過(guò)度激活也有貢獻(xiàn)(Nyberg et al., 2019)。因此, 未來(lái)的研究應(yīng)該更加注重前額葉與海馬的相互作用對(duì)記憶辨別力的影響, 多角度、整體性地探究老年人記憶辨別力下降的認(rèn)知神經(jīng)機(jī)制, 以便在老化早期采取行之有效的干預(yù)方案來(lái)維持老年人的認(rèn)知健康。
最后, 現(xiàn)階段針對(duì)老年人記憶辨別功能進(jìn)行的研究仍然以小樣本橫斷研究為主, 缺乏大樣本研究和前瞻性隊(duì)列研究。雖然MST在認(rèn)知障礙風(fēng)險(xiǎn)預(yù)警與早期識(shí)別方面有著良好的應(yīng)用潛力, 但想要使MST成為輔助臨床診斷和進(jìn)行認(rèn)知障礙風(fēng)險(xiǎn)評(píng)估與預(yù)測(cè)的有效工具, 還需要通過(guò)前瞻隊(duì)列確定不同記憶辨別力的老年人向MCI或AD轉(zhuǎn)歸的情況, 以此劃分認(rèn)知障礙風(fēng)險(xiǎn)等級(jí), 同時(shí)也需要通過(guò)大樣本研究建立老年人記憶辨別力常模。因此, 未來(lái)的研究應(yīng)側(cè)重于應(yīng)用MST進(jìn)行大樣本研究, 并嘗試建立前瞻性隊(duì)列。
6??總結(jié)
大量研究對(duì)記憶辨別功能進(jìn)行了深入探討, 并從結(jié)構(gòu)和功能兩方面揭示了老年人記憶辨別力下降的認(rèn)知神經(jīng)機(jī)制。當(dāng)前研究已經(jīng)證實(shí)了海馬等內(nèi)側(cè)顳葉結(jié)構(gòu)完整性降低和功能異常, 以及海馬與其他內(nèi)側(cè)顳葉腦區(qū)之間的結(jié)構(gòu)和功能連接改變是記憶辨別力下降的關(guān)鍵原因, 此外, 廣泛分布的新皮層區(qū)域老化對(duì)記憶辨別力也存在顯著影響。未來(lái)的研究應(yīng)結(jié)合更加先進(jìn)的神經(jīng)影像技術(shù)手段, 單獨(dú)考察海馬DG和CA3亞區(qū)在記憶辨別中的作用及其老化的影響, 同時(shí)也應(yīng)該更加關(guān)注前額葉等新皮層結(jié)構(gòu)老化影響記憶辨別力的神經(jīng)機(jī)制。另一方面, 通過(guò)MST測(cè)得的記憶辨別力, 能夠有效地反映出早期老化及異常老化對(duì)大腦結(jié)構(gòu)和功能的影響, 因此, MST在老年人的認(rèn)知障礙早篩與風(fēng)險(xiǎn)預(yù)警方面有著巨大的應(yīng)用潛力, 但目前仍然需要通過(guò)大樣本研究和前瞻隊(duì)列研究來(lái)進(jìn)一步驗(yàn)證其在認(rèn)知障礙早期識(shí)別中的有效性, 同時(shí)也要對(duì)MST進(jìn)行改進(jìn), 使其成為能夠滿足老年人主動(dòng)監(jiān)測(cè)認(rèn)知健康需求的電子化評(píng)估工具。
參考文獻(xiàn)
Adams, J. N., Kim, S., Rizvi, B., Sathishkumar, M., Taylor, L., Harris, A. L., ... Yassa, M. A. (2022). Entorhinal-?hippocampal circuit integrity is related to mnemonic discrimination and amyloid-β pathology in older adults. The Journal of Neuroscience, 42(46), 8742?8753.
Albert, M. S. (2011). Changes in cognition. Neurobiology of Aging, 32(Suppl. 1), S58?S63.
Aly, M., & Turk-Browne, N. B. (2016). Attention promotes episodic encoding by stabilizing hippocampal representations.?Proceedings of the National Academy of Sciences of the United States of America, 113(4), E420?E429.
Amer, T., & Davachi, L. (2023). Extra-hippocampal contributions to pattern separation. eLife, 12, e82250.
Anderson, M. C., & Hulbert, J. C. (2021). Active forgetting: Adaptation of memory by prefrontal control. Annual Review of Psychology, 72, 1?36.
Ankudowich, E., Pasvanis, S., & Rajah, M. N. (2019). Age-?related differences in prefrontal-hippocampal connectivity are associated with reduced spatial context memory. Psychology and Aging, 34(2), 251?261.
Baker, S., Vieweg, P., Gao, F., Gilboa, A., Wolbers, T., Black, Sandr E., & Rosenbaum, R. S. (2016). The human dentate gyrus plays a necessary role in discriminating new memories.?Current Biology, 26(19), 2629?2634.
Bakker, A., Albert, M. S., Krauss, G., Speck, C. L., & Gallagher, M. (2015). Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clinical, 7, 688?698.
Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. L. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640?1642.
Bakker, A., Krauss, G. L., Albert, M. S., Speck, C. L., Jones, L. R., Stark, C. E., … Gallagher, M. (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 74(3), 467?474.
Baumann, O., & Mattingley, J. B. (2021). Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus, 31(7), 640?657.
Belliart-Guérin, G., & Planche, V. (2023). Mnemonic discrimination performance in a memory clinic: A pilot study. Journal of Alzheimer's Disease, 94(4), 1527?1534.
Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., & Wilson, R. S. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66(12), 1837?1844.
Bennett, I. J., & Stark, C. E. L. (2016). Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study. Neurobiology of Learning and Memory, 129, 107?112.
Berron, D., Cardenas-Blanco, A., Bittner, D., Metzger, C. D., Spottke, A., Heneka, M. T., ... Düzel, E. (2019). Higher CSF tau levels are related to hippocampal hyperactivity and object mnemonic discrimination in older adults. The Journal of Neuroscience, 39(44), 8788?8797.
Berron, D., Neumann, K., Maass, A., Schütze, H., Fliessbach, K., Kiven, V., ... Düzel, E. (2018). Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiology of Aging, 65, 86?97.
Berron, D., Schütze, H., Maass, A., Cardenas-Blanco, A., Kuijf, H. J., Kumaran, D., & Düzel, E. (2016). Strong evidence for pattern separation in human dentate gyrus. The Journal of Neuroscience, 36(29), 7569?7579.
Bi, D., Wen, L., Wu, Z., & Shen, Y. (2020). GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers & Dementia, 16(9), 1312?1329.
Bowman, C. R., Chamberlain, J. D., & Dennis, N. A. (2019). Sensory representations supporting memory specificity: Age effects on behavioral and neural discriminability. The Journal of Neuroscience, 39(12), 2265?2275.
Brehmer, Y., Nilsson, J., Berggren, R., Schmiedek, F., & L?vdén, M. (2020). The importance of the ventromedial prefrontal cortex for associative memory in older adults: A latent structural equation analysis. NeuroImage, 209, 116475.
Burke, S. N., Maurer, A. P., Nematollahi, S., Uprety, A., Wallace, J. L., & Barnes, C. A. (2014). Advanced age dissociates dual functions of the perirhinal cortex. The Journal of Neuroscience, 34(2), 467?480.
Burke, S. N., Turner, S. M., Desrosiers, C. L., Johnson, S. A., & Maurer, A. P. (2018). Perforant path fiber loss results in mnemonic discrimination task deficits in young rats. Frontiers in Systems Neuroscience, 12, 61.
Bussy, A., Plitman, E., Patel, R., Tullo, S., Salaciak, A., Bedford, S. A., ... Alzheimers Dis, N. (2021). Hippocampal?subfield volumes across the healthy lifespan and the effects of MR sequence on estimates. NeuroImage, 233, 117931.
Chang, A., Murray, E., & Yassa, M. A. (2015). Mnemonic discrimination of similar face stimuli and a potential mechanism for the "other race" effect. Behavioral Neuroscience, 129(5), 666?672.
Chawla, M. K., Guzowski, J. F., Ramirez-Amaya, V., Lipa, P., Hoffman, K. L., Marriott, L. K., ... Barnes, C. A. (2005). Sparse, environmentally selective expression of arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus, 15(5), 579?586.
Chua, E. F., & Ahmed, R. (2016). Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring. Neuropsychologia, 85, 74?79.
Chua, E. F., Schacter, D. L., & Sperling, R. A. (2009). Neural correlates of metamemory: A comparison of feeling-?of-knowing and retrospective confidence judgments. Journal of Cognitive Neuroscience, 21(9), 1751?1765.
Contreras, D., & Wilent, W. B. (2005). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neuroscience, 8(10), 1364?1370.
Corona-Long, C. A., Tran, T. T., Chang, E., Speck, C. L., Gallagher, M., & Bakker, A. (2020). Comparison of male and female patients with amnestic mild cognitive impairment:?Hippocampal hyperactivity and pattern separation memory performance. Alzheimer's & Dementia: Diagnosis, Assessment & Disease monitoring, 12(1), e12043.
Cui, X. Y., Gui, W. J., Miao, J. W., Liu, X. M., Zhu, X. Y., Zheng, Z. W., ... Li, J. (2023). A combined intervention of aerobic exercise and video game in older adults: The efficacy and neural basis on improving mnemonic discrimination. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 78(8), 1436?1444.
Danieli, K., Guyon, A., & Bethus, I. (2023). Episodic memory formation: A review of complex hippocampus input pathways. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 126, 110757.
De Simone, M. S., Rodini, M., De Tollis, M., Fadda, L., Caltagirone, C., & Carlesimo, G. A. (2022). The diagnostic usefulness of experimental memory tasks for detecting subjective cognitive decline: Preliminary results in an Italian sample. Neuropsychology, 37(6), 636?649.
Deng, W., Mayford, M., & Gage, F. H. (2013). Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife, 2, e00312.
Devanand, D. P., Liu, X., Tabert, M. H., Pradhaban, G., Cuasay, K., Bell, K., ... Pelton, G. H. (2008). Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease. Biological Psychiatry, 64(10), 871?879.
Dilks, D. D., Kamps, F. S., & Persichetti, A. S. (2022). Three cortical scene systems and their development. Trends in Cognitive Sciences, 26(2), 117?127.
Dillon, S. E., Tsivos, D., Knight, M., McCann, B., Pennington, C., Shiel, A. I., ... Coulthard, E. J. (2017). The impact of ageing reveals distinct roles for human dentate gyrus and CA3 in pattern separation and object recognition memory. Scientific Reports, 7, 14069.
Doxey, C. R., & Kirwan, C. B. (2015). Structural and functional correlates of behavioral pattern separation in the hippocampus and medial temporal lobe. Hippocampus, 25(4), 524?533.
Edmonds, E. C., McDonald, C. R., Marshall, A., Thomas, K. R., Eppig, J., Weigand, A. J., ... Alzheimers Dis Neuroimaging, I. (2019). Early versus late MCI: Improved MCI staging using a neuropsychological approach. Alzheimer's & Dementia, 15(5), 699?708.
Ferko, K. M., Blumenthal, A., Martin, C. B., Proklova, D., Minos, A. N., Saksida, L. M., ... K?hler, S. (2022). Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision. eLife, 11, e66884.
Frank, D., Montemurro, M. A., & Montaldi, D. (2020). Pattern separation underpins expectation-modulated memory. Journal of Neuroscience, 40(17), 3455?3464.
Gaugler, J., James, B., Johnson, T., Marin, A., Weuve, J., & Alzheimer's, A. (2019). 2019 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 15(3), 321?387.
Gellersen, H. M., Trelle, A. N., Farrar, B. G., Coughlan, G., Korkki, S. M., Henson, R. N., & Simons, J. S. (2023). Medial temporal lobe structure, mnemonic and perceptual discrimination in healthy older adults and those at risk for mild cognitive impairment. Neurobiology of Aging, 122, 88?106.
Gellersen, H. M., Trelle, A. N., Henson, R. N., & Simons, J. S. (2021). Executive function and high ambiguity perceptual discrimination contribute to individual differences in mnemonic discrimination in older adults. Cognition, 209, 104556.
Grabowska, M. E., Huang, A., Wen, Z. X., Li, B. S., & Wei, W. Q. (2023). Drug repurposing for Alzheimer's disease from 2012-2022?A 10-year literature review. Frontiers in Pharmacology, 14, 1257700.
Granger, S. J., Colon-Perez, L., Larson, M. S., Phelan, M., Keator, D. B., Janecek, J. T., ... Yassa, M. A. (2022). Hippocampal dentate gyrus integrity revealed with ultrahigh resolution diffusion imaging predicts memory performance in older adults. Hippocampus, 32(9), 627??638.
Güsten, J., Ziegler, G., Duzel, E., & Berron, D. (2021). Age impairs mnemonic discrimination of objects more than scenes: A web-based, large-scale approach across the lifespan. Cortex, 137, 138?148.
Hanert, A., Pedersen, A., & Bartsch, T. (2019). Transient hippocampal CA1 lesions in humans impair pattern separation performance. Hippocampus, 29(8), 736?747.
Imperio, C. M., & Chua, E. F. (2023). HD-tDCS over the left DLPFC increases cued recall and subjective question familiarity rather than other aspects of memory and metamemory. Brain Research, 1819, 148538.
Jensen, A., Karpov, G., Collin, C. A., & Davidson, P. S. R. (2023). Executive function predicts older adults' lure discrimination difficulties on the mnemonic similarity task. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 78(10), 1642?1650.
Jiménez-Balado, J., & Eich, T. S. (2021). GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Seminars in Cell & Developmental Biology, 116, 146?159.
Johnson, D. K., Storandt, M., Morris, J. C., & Galvin, J. E. (2009). Longitudinal study of the transition from healthy aging to Alzheimer disease. Archives of Neurology, 66(10), 1254?1259.
Johnson, S. A., Turner, S. M., Santacroce, L. A., Carty, K. N., Shafiq, L., Bizon, J. L., Maurer, A. P., & Burke, S. N. (2017). Rodent age-related impairments in discriminating perceptually similar objects parallel those observed in humans. Hippocampus, 27(7), 759?776.
Johnson, S. A., Zequeira, S., Turner, S. M., Maurer, A. P., Bizon, J. L., & Burke, S. N. (2021). Rodent mnemonic similarity task performance requires the prefrontal cortex. Hippocampus, 31(7), 701?716.
Kantarci, K., Petersen, R. C., Przybelski, S. A., Weigand, S. D., Shiung, M. M., Whitwell, J. L., ... Jack, C. R. (2008). Hippocampal volumes, proton magnetic resonance spectroscopy metabolites, and cerebrovascular disease in mild cognitive impairment subtypes. Archives of Neurology, 65(12), 1621?1628.
Keene, C. S., Bladon, J., McKenzie, S., Liu, C. D., O'Keefe, J., & Eichenbaum, H. (2016). Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. Journal of Neuroscience, 36(13), 3660?3675.
Kent, B. A., Hvoslef-Eide, M., Saksida, L. M., & Bussey, T. J. (2016). The representational-hierarchical view of pattern separation: Not just hippocampus, not just space, not just memory? Neurobiology of Learning and Memory, 129, 99?106.
Khan, U. A., Liu, L., Provenzano, F. A., Berman, D. E., Profaci, C. P., Sloan, R., ... Small, S. A. (2014). Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease. Nature Neuroscience, 17(2), 304?311.
Kim, S., Adams, J. N., Chappel-Farley, M. G., Keator, D., Janecek, J., Taylor, L., ... Yassa, M. A. (2023). Examining the diagnostic value of the mnemonic discrimination task for classification of cognitive status and amyloid-beta burden. Neuropsychologia, 191, 108727.
Kirwan, C. B., Hartshorn, A., Stark, S. M., Goodrich-?Hunsaker, N. J., Hopkins, R. O., & Stark, C. E. L. (2012). Pattern separation deficits following damage to the hippocampus. Neuropsychologia, 50(10), 2408?2414.
Kirwan, C. B., & Stark, C. E. L. (2007). Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. Learning & Memory, 14(9), 625?633.
Klippenstein, J. L., Stark, S. M., Stark, C. E. L., & Bennett, I. J. (2020). Neural substrates of mnemonic discrimination: A whole-brain fMRI investigation. Brain and Behavior, 10(3), e01560.
Knierim, J. J., & Neunuebel, J. P. (2016). Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiology of Learning and Memory, 129, 38?49.
Koolschijn, R. S., Emir, U. E., Pantelides, A. C., Nili, H., Behrens, T. E. J., & Barron, H. C. (2019). The hippocampus?and neocortical inhibitory engrams protect against memory interference. Neuron, 101(3), 528?541.
Lacy, J. W., Yassa, M. A., Stark, S. M., Muftuler, L. T., & Stark, C. E. L. (2011). Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed?using high-resolution fMRI and variable mnemonic similarity. Learning & Memory, 18(1), 15?18.
Lalani, S. J., Reyes, A., Kaestner, E., Stark, S. M., Stark, C. E. L., Lee, D., ... McDonald, C. R. (2022). Impaired behavioral pattern separation in refractory temporal lobe epilepsy and mild cognitive impairment. Journal of the International Neuropsychological Society, 28(6), 550?562.
Langbaum, J. B., Ellison, N. N., Caputo, A., Thomas, R. G., Langlois, C., Riviere, M. -E., ... Hendrix, S. B. (2020). The Alzheimer's prevention initiative composite cognitive test: A practical measure for tracking cognitive decline in preclinical Alzheimer's disease. Alzheimer's Research & Therapy, 12(1), 66.
Leal, S. L., Ferguson, L. A., Harrison, T. M., & Jagust, W. J. (2019). Development of a mnemonic discrimination task using naturalistic stimuli with applications to aging and preclinical Alzheimer's disease. Learning & Memory, 26(7), 219?228.
Leal, S. L., & Yassa, M. A. (2018). Integrating new findings and examining clinical applications of pattern separation. Nature Neuroscience, 21(2), 163?173.
Lee, H., Stirnberg, R., Wu, S., Wang, X., St?cker, T., Jung, S., Montag, C., & Axmacher, N. (2020). Genetic Alzheimer's disease risk affects the neural mechanisms of pattern separation in hippocampal subfields. Current Biology, 30(21), 4201?4212.
Lee, I., Knierim, J. J., Yoganarasimha, D., & Rao, G. (2004). Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature, 430(6998), 456?459.
Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961?966.
Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M. -B., & Moser, E. I. (2004). Distinct ensemble codes in hippocampal areas CA3 and CA1. Science, 305(5688), 1295?1298.
Levenga, J., Krishnamurthy, P., Rajamohamedsait, H., Wong, H., Franke, T. F., Cain, P., Sigurdsson, E. M., & Hoeffer, C. A. (2013). Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathologica Communications, 1, 34.
Lohnas, L. J., Duncan, K., Doyle, W. K., Thesen, T., Devinsky, O., & Davachi, L. (2018). Time-resolved neural reinstatement and pattern separation during memory decisions in human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 115(31), E7418?E7427.
Lopatina, O. L., Malinovskaya, N. A., Komleva, Y. K., Gorina, Y. V., Shuvaev, A. N., Olovyannikova, R. Y., ... Salmina, A. B. (2019). Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative?disorders. Reviews in the Neurosciences, 30(8), 807?820.
Ly, M., Murray, E., & Yassa, M. A. (2013). Perceptual versus conceptual interference and pattern separation of verbal stimuli in young and older adults. Hippocampus, 23(6), 425?430.
Maass, A., Berron, D., Harrison, T. M., Adams, J. N., La Joie, R., Baker, S., ... Jagust, W. J. (2019). Alzheimer's pathology targets distinct memory networks in the ageing brain. Brain, 142(8), 2492?2509.
Maillet, D., & Rajah, M. N. (2013). Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: A review. Ageing Research Reviews, 12(2), 479?489.
Malik, R., Li, Y., Schamiloglu, S., & Sohal, V. S. (2022). Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell, 185(9), 1602?1617.
Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 262(841), 23?81.
Martín-Belmonte, A., Aguado, C., Alfaro-Ruíz, R., Moreno-?Martínez, A. E., de la Ossa, L., Martínez-Hernández, J., ... Luján, R. (2020). Density of GABAB?receptors is reduced in granule cells of the hippocampus in a mouse model of Alzheimer's disease. International Journal of Molecular Sciences, 21(7), 2459.
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419?457.
McCormick, D. A. (1989). GABA as an inhibitory neurotransmitter in human cerebral cortex. Journal of Neurophysiology, 62(5), 1018?1027.
Moscoso, A., Silva-Rodríguez, J., Aldrey, J. M., Cortés, J., Fernández-Ferreiro, A., Gómez-Lado, N., ... Alzheimer's Dis Neuroimaging, I. (2019). Staging the cognitive continuum in prodromal Alzheimer's disease with episodic memory. Neurobiology of Aging, 84, 1?8.
Nash, M. I., Hodges, C. B., Muncy, N. M., & Kirwan, C. B. (2021). Pattern separation beyond the hippocampus: A high-resolution whole-brain investigation of mnemonic discrimination in healthy adults. Hippocampus, 31(4), 408?421.
Neunuebel, J. P., & Knierim, J. J. (2014). CA3 retrieves coherent representations from degraded input: Direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron, 81(2), 416?427.
Norman, K. A., & O'Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611?646.
Nyberg, L., Andersson, M., Lundquist, A., Salami, A., & W?hlin, A. (2019). Frontal contribution to hippocampal hyperactivity during memory encoding in aging. Frontiers in Molecular Neuroscience, 12, 229.
Orth, M., Wagnon, C., Neumann-Dunayevska, E., Kaller, C. P., Kl?ppel, S., Meier, B., Henke, K., & Peter, J. (2023). The left prefrontal cortex determines relevance at encoding and governs episodic memory formation. Cerebral Cortex, 33(3), 612?621.
Pagen, L. H. G., Poser, B. A., van Boxtel, M. P. J., Priovoulos, N., van Hooren, R. W. E., Verhey, F. R. J., & Jacobs, H. I. L. (2022). Worry modifies the relationship between locus coeruleus activity and emotional mnemonic discrimination. Brain Sciences, 12(3), 381.
Papp, K. V., Rentz, D. M., Maruff, P., Sun, C. K., Raman, R., Donohue, M. C., ... Team, A. S. (2021a). The computerized cognitive composite (C3) in A4, an Alzheimer's disease secondary prevention trial. The Journal of Prevention of Alzheimer's Disease, 8(1), 59?67.
Papp, K. V., Samaroo, A., Chou, H. C., Buckley, R., Schneider, O. R., Hsieh, S., ... Amariglio, R. E. (2021b). Unsupervised mobile cognitive testing for use in preclinical Alzheimers disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12243.
Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109?119.
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299?320.
Pereira, J. B., Valls-Pedret, C., Ros, E., Palacios, E., Falcon, C., Bargallo, N., ... Junque, C. (2014). Regional vulnerability of hippocampal subfields to aging measured by structural and diffusion MRI. Hippocampus, 24(4), 403?414.
Pidgeon, L. M., & Morcom, A. M. (2016). Cortical pattern separation and item-specific memory encoding. Neuropsychologia, 85, 256?271.
Pishdadian, S., Hoang, N. V., Baker, S., Moscovitch, M., & Rosenbaum, R. S. (2020). Not only memory: Investigating the sensitivity and specificity of the mnemonic similarity task in older adults. Neuropsychologia, 149, 107670.
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., ... Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676?1689.
Reagh, Z. M., Ho, H. D., Leal, S. L., Noche, J. A., Chun, A., Murray, E. A., & Yassa, M. A. (2016). Greater loss of object than spatial mnemonic discrimination in aged adults. Hippocampus, 26(4), 417?422.
Reagh, Z. M., Noche, J. A., Tustison, N. J., Delisle, D., Murray, E. A., & Yassa, M. A. (2018). Functional imbalance of anterolateral entorhinal cortex and hippocampal dentate/CA3 underlies age-related object pattern separation?deficits. Neuron, 97(5), 1187?1198.
Reagh, Z. M., & Yassa, M. A. (2014). Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans. Proceedings of the National Academy of Sciences of the United States of America, 111(40), E4264?E4273.
Riphagen, J. M., Schmiedek, L., Gronenschild, E. H. B. M., Yassa, M. A., Priovoulos, N., Sack, A. T., Verhey, F. R. J., & Jacobs, H. I. L. (2020). Associations between pattern separation and hippocampal subfield structure and function vary along the lifespan: A 7 T imaging study. Scientific Reports, 10, 7572.
Rizzolo, L., Narbutas, J., Van Egroo, M., Chylinski, D., Besson, G., Baillet, M., ... Collette, F. (2021). Relationship between brain AD biomarkers and episodic memory performance in healthy aging. Brain and Cognition, 148, 105680.
Rosenberg, A., Ngandu, T., Rusanen, M., Antikainen, R., Backman, L., Havulinna, S., ... Kivipelto, M. (2018). Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: The FINGER trial. Alzheimer's & Dementia, 14(3), 263?270.
Sakon, J. J., & Suzuki, W. A. (2019). A neural signature of pattern separation in the monkey hippocampus. Proceedings?of the National Academy of Sciences of the United States of America, 116(19), 9634?9643.
Schaeverbeke, J. M., Gabel, S., Meersmans, K., Luckett, E. S., De Meyer, S., Adamczuk, K., ... Vandenberghe, R. (2021). Baseline cognition is the best predictor of 4-year cognitive change in cognitively intact older adults. Alzheimer's Research & Therapy, 13(1), 75.
Shao, X. H., Liu, W. Z., Guo, Y., & Zhu, B. (2022). Age effects on neural discriminability and monitoring process during memory retrieval for auditory words. Frontiers in Aging Neuroscience, 14, 884993.
Sinha, N., Berg, C. N., Tustison, N. J., Shaw, A., Hill, D., Yassa, M. A., & Gluck, M. A. (2018). APOE ε4 status in healthy older African Americans is associated with deficits in pattern separation and hippocampal hyperactivation. Neurobiology of Aging, 69, 221?229.
Stark, C. E. L., Noche, J. A., Ebersberger, J. R., Mayer, L., & Stark, S. M. (2023). Optimizing the mnemonic similarity task for efficient, widespread use. Frontiers in Behavioral Neuroscience, 17, 1080366.
Stark, S. M., Frithsen, A., & Stark, C. E. L. (2021). Age-related alterations in functional connectivity along the longitudinal axis of the hippocampus and its subfields. Hippocampus, 31(1), 11?27.
Stark, S. M., Kirwan, C. B., & Stark, C. E. L. (2019). Mnemonic similarity task: A tool for assessing hippocampal?integrity. Trends in Cognitive Sciences, 23(11), 938?951.
Stark, S. M., & Stark, C. E. L. (2017). Age-related deficits in the mnemonic similarity task for objects and scenes. Behavioural Brain Research, 333, 109?117.
Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51(12), 2442?2449.
Stevenson, R. F., Reagh, Z. M., Chun, A. P., Murray, E. A., & Yassa, M. A. (2020). Pattern separation and source memory engage distinct hippocampal and neocortical regions during retrieval. The Journal of Neuroscience, 40(4), 843?851.
Stiernstr?mer, E. S., Wolgast, M., Johansson, M., Innes-Ker, ?., & Carde?a, E. (2018). The effect of variations of emotional expressions on mnemonic discrimination and traditional recognition memory. Journal of Cognitive Psychology, 30(5?6), 547?557.
Suwabe, K., Byun, K., Hyodo, K., Reagh, Z. M., Roberts, J. M., Matsushita, A., ... Soya, H. (2018). Rapid stimulation of human dentate gyrus function with acute mild exercise. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10487?10492.
Szollosi, A., Keri, S., & Racsmany, M. (2022). The key to superior memory encoding under stress: The relationship between cortisol response and mnemonic discrimination. Learning & Memory, 29(1), 7?15.
Tang, Y., Yan, Y., Mao, J., Ni, J., & Qing, H. (2023). The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimers disease. Ageing Research Reviews, 86, 101865.
Tran, T. T., Speck, C. L., Gallagher, M., & Bakker, A. (2022). Lateral entorhinal cortex dysfunction in amnestic mild cognitive impairment. Neurobiology of Aging, 112, 151?160.
Tran, T. T., Speck, C. L., Pisupati, A., Gallagher, M., & Bakker, A. (2017). Increased hippocampal activation in ApoE-4 carriers and non-carriers with amnestic mild cognitive impairment. NeuroImage Clinical, 13(C), 237?245.
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1?25.
Vazdarjanova, A., & Guzowski, J. F. (2004). Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. The Journal of Neuroscience, 24(29), 6489?6496.
Villarreal, M., Stark, C. E. L., & Lee, M. D. (2022). Adaptive design optimization for a mnemonic similarity task. Journal of Mathematical Psychology, 108, 102665.
Wahlheim, C. N., Christensen, A. P., Reagh, Z. M., & Cassidy, B. S. (2022). Intrinsic functional connectivity in the default mode network predicts mnemonic discrimination:?A connectome-based modeling approach. Hippocampus, 32(1), 21?37.
Wais, P. E., Jahanikia, S., Steiner, D., Stark, C. E. L., & Gazzaley, A. (2017). Retrieval of high-fidelity memory arises from distributed cortical networks. NeuroImage, 149, 178?189.
Wais, P. E., Montgomery, O., Stark, C. E. L., & Gazzaley, A. (2018). Evidence of a causal role for mid-ventrolateral prefrontal cortex based functional networks in retrieving high-fidelity memory. Scientific Reports, 8, 14877.
Xiong, B., Chen, C., Tian, Y., Zhang, S., Liu, C., Evans, T. M., … Qin, S. (2021). Brain preparedness: The proactive role of the cortisol awakening response in hippocampal-?prefrontal functional interactions. Progress in Neurobiology,?205, 102127.
Yassa, M. A., Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E. L. (2011a). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21(9), 968?979.
Yassa, M. A., Mattfeld, A. T., Stark, S. M., & Stark, C. E. L. (2011b). Age-related memory deficits linked to circuit-?specific disruptions in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8873?8878.
Yassa, M. A., Muftuler, L. T., Stark, C. E. L., & Squire, L. R. (2010b). Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12687?12691.
Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515?525.
Yassa, M. A., Stark, S. M., Bakker, A., Albert, M. S., Gallagher, M., & Stark, C. E. L. (2010a). High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. NeuroImage, 51(3), 1242?1252.
Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., Ogshea, D. J., ... Deisseroth, K. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477(7363), 171?178.
Yun, S. H., Soler, I., Tran, F. H., Haas, H. A., Shi, R., Bancroft, G. L., ... Eisch, A. J. (2023). Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Frontiers in Behavioral Neuroscience, 17, 1151877.
Zheng, L., Gao, Z. Y., McAvan, A. S., Isham, E. A., & Ekstrom, A. D. (2021). Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nature Communications, 12(1), 6231.
The cognitive neural mechanisms of age-related decline in mnemonic discrimination and its application
ZENG Qinghe, CUI Xiaoyu, TANG Wei, LI Juan
(CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101,?China)(Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: Mnemonic discrimination (MD) refers to the ability to accurately distinguish similar memory experiences, which relies on a neural computing mechanism known as pattern separation. Currently, mnemonic similarity task (MST) is commonly employed to measure and study MD. The elderly tend to exhibit a noticeable decline in MD. This decline is proved to be associated with damage to the structural and functional integrity of the medial temporal lobe, which occurs during the aging process. Some researchers have also suggested that the aging of the neocortex can influence MD. Given its reliance on the medial temporal lobe, MD can reflect abnormal brain structural damage and functional decline in the early stages of cognitive impairment. Thus, MST has significant potential in early identification of cognitive impairment. To further explore the causes of the decline in MD, future studies should employ more advanced imaging techniques to separately investigate the impact of aging in the dentate gyrus and CA3 subregions on MD. It is also critical to research more about the cognitive neural mechanisms underlying the impact of neocortical dysfunction on MD, with a particular focus on age-related changes in cortical-hippocampal interaction mechanisms. Large-scale prospective cohorts should also be established to validate the effectiveness of MST in early identification of cognitive impairment.
Keywords:?mnemonic discrimination, pattern separation, aging, cognitive neural mechanism, cognitive impairment