樊友前 王瑞午 丁其達(dá) 辛加余 姜仁政 王耀鋒
摘????? 要: 酸性催化劑廣泛應(yīng)用于有機(jī)反應(yīng)中,但是傳統(tǒng)的液體酸催化劑具有毒性、腐蝕性、分離回收困難等缺點(diǎn),在工業(yè)應(yīng)用中具有一定的局限性,而固體酸催化劑具有無毒、無腐蝕、易分離等優(yōu)點(diǎn)。與其他固體酸相比,磷酸鈮具有高的熱穩(wěn)定性、耐水性、較高的比表面積、豐富的Lewis酸和Br?nsted酸位點(diǎn),在催化反應(yīng)中顯示出優(yōu)異的催化活性。而且,由于磷酸鈮可以作為載體負(fù)載其他金屬,制備復(fù)合多功能催化劑,這對(duì)于開發(fā)用于生物質(zhì)轉(zhuǎn)化、精細(xì)化工等領(lǐng)域的環(huán)境友好型催化劑具有重要意義。介紹了磷酸鈮類催化劑在催化應(yīng)用中的研究進(jìn)展,主要包括磷酸鈮在脫水反應(yīng)、酯化反應(yīng)、氫解反應(yīng)和烷基化反應(yīng)中的應(yīng)用,以及磷酸鈮復(fù)合其他金屬后在一些串聯(lián)反應(yīng)的應(yīng)用。
關(guān)? 鍵? 詞:固體酸;磷酸鈮;多功能催化劑;生物質(zhì)轉(zhuǎn)化
中圖分類號(hào):TQ032.41? ???文獻(xiàn)標(biāo)識(shí)碼: A???? 文章編號(hào): 1004-0935(2024)06-0824-05
酸性催化劑在有機(jī)反應(yīng)中廣泛存在,傳統(tǒng)的酸性催化劑主要為液體酸催化劑。隨著日益加劇的環(huán)境問題,傳統(tǒng)液體酸催化劑的毒性、腐蝕性、分離回收困難等缺點(diǎn),成了制約其發(fā)展的重要因素,為此研究人員開發(fā)了大量的固體酸催化劑代替?zhèn)鹘y(tǒng)的液體酸催化劑[1]。與常規(guī)有機(jī)溶劑相比,水是一種綠色的反應(yīng)介質(zhì),具有顯著的優(yōu)勢(shì),在大規(guī)模工業(yè)生產(chǎn)中具有顯著的經(jīng)濟(jì)性。然而,在高反應(yīng)溫度下水的存在會(huì)使大多數(shù)固體酸催化劑失活,因此,設(shè)計(jì)一種在高溫下仍然具有的耐水性能和適當(dāng)Br?nsted與Lewis酸位點(diǎn)比例的新型催化材料是一個(gè)挑戰(zhàn)[2]。在眾多固體酸材料中,磷酸鈮被認(rèn)為是一種很有價(jià)值的固體酸催化劑,其表面存在豐富的Lewis酸和Br?nsted酸位點(diǎn),其酸性強(qiáng)度相當(dāng)于90%的H2SO4,即使在水存在條件下也具有很強(qiáng)的表面酸性[3];同時(shí),可以通過元素?fù)诫s實(shí)現(xiàn)對(duì)磷酸鈮表面酸性的調(diào)控[4]。磷酸鈮還可被用作載體,實(shí)現(xiàn)多功能催化[5]。磷酸鈮由于其優(yōu)異性質(zhì)已被廣泛應(yīng)用于生物質(zhì)轉(zhuǎn)化、精細(xì)化工等領(lǐng)域[6]。本文主要對(duì)磷酸鈮在催化反應(yīng)中的應(yīng)用進(jìn)展進(jìn)行綜述。
1 ?磷酸鈮材料簡(jiǎn)介
磷酸鈮(NbOPO4)是典型的固體酸催化劑,由NbO6八面體和PO4四面體通過共享O角原子連接而成,NbO6八面體和PO4四面體分別由Nb和P與其最近的O原子形成,如圖1所示[7]。NbOPO4擁有很強(qiáng)的酸性(H0≤-8.2,相當(dāng)于90%的H2SO4),表面有豐富的Lewis酸和Br?nsted酸位點(diǎn),其Lewis酸位點(diǎn)通常被認(rèn)為是未飽和的Nb5+產(chǎn)生的,表面的P-OH和Nb-OH是Br?nsted酸位點(diǎn)的來源(圖2),其中P-OH的酸性比Nb-OH強(qiáng)[8-9]。而且,NbOPO4具有熱穩(wěn)定性,在770 K煅燒溫度下仍然存在大量酸位點(diǎn),在1 073 K的煅燒溫度下仍然保持無定形態(tài),這使得其在高溫下依然保持較強(qiáng)的酸性[3]。
可通過浸漬法、溶膠-凝膠法、水熱合成法制備得到不同結(jié)構(gòu)特征的磷酸鈮[10-12]。OKAZAKI[12]等用磷酸浸漬氧化鈮在其表面形成磷酸鈮物種。KAZUKI[10]等以草酸鈮銨為前體,使用聚丙烯酰胺(PAAm)和聚乙二醇(PEO)為模板用溶膠-凝膠法合成具有多級(jí)孔磷酸鈮,在600 ℃煅燒后磷酸鈮比表面積為140 m2·g-1,平均孔徑為9 nm。王艷琴[13]團(tuán)隊(duì)以酒石酸鈮為前體、十六烷基三甲基溴化銨為模板,通過水熱法合成具有高比表面積的介孔磷酸鈮(213~297 m2·g-1),孔徑分布在3~4 nm。
2? 磷酸鈮的催化應(yīng)用
2.1? 單一磷酸鈮材料的催化反應(yīng)研究
2.1.1? 脫水反應(yīng)
磷酸鈮表面具有豐富的Br?nsted酸和Lewis酸位點(diǎn),同時(shí)具有極強(qiáng)的耐水性,在脫水反應(yīng)中展現(xiàn)了優(yōu)異的性能。張濤[9]課題組通過氧化鈮浸漬磷酸制備磷酸鈮,在木糖脫水制糠醛中展現(xiàn)優(yōu)異的催化活性和穩(wěn)定性,Br?nsted酸和Lewis酸位點(diǎn)的協(xié)同作用實(shí)現(xiàn)了較高的木糖轉(zhuǎn)化和糠醛產(chǎn)率(44.7%)。ALINE[14]等用商化磷酸鈮催化果糖脫水制備5-羥甲基糠醛(HMF),其表面優(yōu)異的酸性展現(xiàn)出比氧化鈮更高的初始催化活性,果糖轉(zhuǎn)化率約為80%,HMF的選擇性可達(dá)30%。王艷琴[2]團(tuán)隊(duì)通過水熱法合成了具有不同酸性的介孔磷酸鈮,在溫和條件下有效地催化葡萄糖脫水制HMF,獲得39.4%的HMF產(chǎn)率,證明了同時(shí)具有Lewis酸和Br?nsted酸位點(diǎn)的磷酸鈮使得葡萄糖異構(gòu)過程和果糖脫水步驟結(jié)合,是有效地催化葡萄糖脫水制HMF的關(guān)鍵。
乙酰丙酸(LA)是一種理想的生物平臺(tái)化合物,可由葡萄糖在酸性催化劑的作用下直接獲得。轉(zhuǎn)化過程為:葡萄糖在Lewis酸位點(diǎn)異構(gòu)化為果糖,隨后果糖脫水生成LA。具有合適Lewis酸和Br?nsted酸位點(diǎn)且耐水的固體酸是催化葡萄糖轉(zhuǎn)化為L(zhǎng)A的理想催化劑。楊松[15]團(tuán)隊(duì)合成摻雜Fe的磷酸鈮(Fe-NbP)催化葡萄糖轉(zhuǎn)化為L(zhǎng)A,在180 ℃反應(yīng)?? 3 h內(nèi)獲得64%的LA收率。其表面Lewis酸和Br?nsted酸位點(diǎn)的協(xié)同效應(yīng)是葡萄糖轉(zhuǎn)化為L(zhǎng)A的關(guān)鍵。武書彬[4]團(tuán)隊(duì)合成了一系列具有不同 Cr 含量的介孔磷酸鈮材料(Cr/NbP),并將其用作葡萄糖轉(zhuǎn)化為L(zhǎng)A的催化劑,在180 ℃反應(yīng)3 h內(nèi)獲得100%的葡萄糖轉(zhuǎn)化率和62.4%的LA收率。Cr在鈮磷鈮中的摻雜提高了催化劑Lewis酸量,最終導(dǎo)致通過葡萄糖-果糖異構(gòu)化的LA產(chǎn)率增加,在循環(huán)使用4次后LA產(chǎn)率僅降低小于10.0%(摩爾分?jǐn)?shù))。
磷酸鈮在催化醇類脫水制備烯烴的反應(yīng)中也展現(xiàn)出優(yōu)異的催化活性。韓國(guó)首爾大學(xué)Jongheop Yi[16]教授用Si原子取代磷酸鈮NbO4四面體中的原子合成介孔磷酸鈮硅材料,在NbPSi-0.5催化劑上獲得了74%的丙烯醛選擇性,在評(píng)價(jià)25 h后甘油的轉(zhuǎn)化率仍有78%,其在高效穩(wěn)定催化甘油脫水制備丙烯醛方面展現(xiàn)巨大的應(yīng)用前景。TIMOTHY[17]等用商化的磷酸鈮在填充床流動(dòng)反應(yīng)器中催化3-羥基丁酸氣相脫水脫氫制丙烯醛,0~6 h的反應(yīng)時(shí)間內(nèi)丙烯醛選擇性為52.5%±6.4%,12~70 h反應(yīng)時(shí)間內(nèi)丙烯醛選擇性51.5%±4.0%。磷酸鈮比無定形的硅鋁催化劑有更好的催化活性和抗失活能力。JAMES[18]等合成的介孔磷酸鈮催化丁醇脫水反應(yīng),由于其優(yōu)異的耐水性,在富水環(huán)境下仍然獲得了較高的丁烯收率。
磷酸鈮也可以催化分子間脫水。ELIZABETH等首次運(yùn)用磷酸鈮催化劑在溫和且無溶劑條件下高效地催化2-乙基己醇和己醛脫水生成縮醛[1]。在反應(yīng)溫度為60 ℃、反應(yīng)時(shí)間1 h時(shí)縮醛的產(chǎn)率為98%,磷酸鈮表面強(qiáng)Br?nsted酸位點(diǎn)是其高效催化的?? 關(guān)鍵。
2,5-二甲基呋喃和乙烯反應(yīng)制備對(duì)二甲苯需要經(jīng)歷環(huán)加成和脫水步驟,尹佳濱[19]合成了具有多級(jí)孔磷酸鈮用于該反應(yīng),實(shí)現(xiàn)了87.2%的轉(zhuǎn)化率和92.7%的選擇性。與傳統(tǒng)的Sn-Beta催化劑相比,磷酸鈮具有高的催化活性、穩(wěn)定性和循環(huán)再生性。
2.1.2? 酯化反應(yīng)及酯交換反應(yīng)
液體酸如硫酸、鹽酸或?qū)妆交撬犭m然具有好的酯化活性,但也存在毒性和腐蝕性以及副產(chǎn)物難以分離等缺點(diǎn)。研究人員發(fā)現(xiàn)磷酸鈮具有良好的酯化反應(yīng)催化活性,其獨(dú)特的耐水性和強(qiáng)酸性,使其不需要苛刻的反應(yīng)條件,同時(shí),該非均相體系也極大降低了分離成本[20]。LUNA[21]等用磷酸溶液改性氧化鈮,在氧化鈮表面形成磷酸鈮物種,其在催化油酸和甲醇酯化反應(yīng)中轉(zhuǎn)化率高達(dá)78%,在5次的循環(huán)實(shí)驗(yàn)后催化劑酸度仍然保持不變,表明它具有很強(qiáng)的穩(wěn)定性。ELIZABETH[20]等在常壓下評(píng)價(jià)了磷酸鈮催化月桂酸與正丁醇酯化,重復(fù)使用3次后月桂酸丁酯的產(chǎn)率仍然高達(dá)96%。磷酸鈮表面的Br?nsted酸使得羰基上的氧原子質(zhì)子化形成碳正離子接受醇分子的親核進(jìn)攻,隨后脫水生成酯。CARLA[22]等研究不同溫度煅燒的磷酸鈮在填充床管式反應(yīng)器中催化油酸和乙醇酯化反應(yīng),在催化過程中磷酸鈮比鈮酸表現(xiàn)出更高的熱穩(wěn)定性,在乙醇和油酸摩爾比為1、反應(yīng)溫度279 ℃、磷酸鈮質(zhì)量為0.62 g條件下獲得了69%的酯收率。CASTILHOS等合成具有高比表面積的磷酸鈮催化油酸和乙酸甲酯反應(yīng),在230 ℃、6 h內(nèi)獲得76.88%油酸甲酯收率,5次循環(huán)后油酸甲酯收率下降至62.12%[23]。磷酸鈮的優(yōu)異催化活性,是合成生物柴油領(lǐng)域具有發(fā)展前景的多相催化劑。
2.1.3? 催化加氫反應(yīng)
V?NYA[24]等合成磷酸鈮催化劑用于植物油加氫脫氧反應(yīng)。磷酸鈮能夠僅在10 bar的H2分壓下,同時(shí)催化植物油進(jìn)行異構(gòu)化、環(huán)氧化和脫氧反應(yīng),產(chǎn)生大量如直連和支鏈烷烴、芳香化合物以及少量的環(huán)烷烴、烯烴和含氧化合物。產(chǎn)物中烴類產(chǎn)量高達(dá)97%,其中,生物基噴氣燃料為62%,生物柴油產(chǎn)率為40%。王艷琴[25]團(tuán)隊(duì)合成介孔磷酸鈮催化劑在苯基環(huán)己烷氫解反應(yīng)中表現(xiàn)出優(yōu)異的催化活性。實(shí)驗(yàn)證明,磷酸鈮中大量的氧空位可以穩(wěn)定H2裂解產(chǎn)物,磷酸鈮中NbOx物種能夠強(qiáng)烈吸附并活化芳香環(huán),Br?nsted酸位點(diǎn)的存在可以活化Csp2—Csp3鍵。這一結(jié)果為含氫反應(yīng)中無金屬催化劑的設(shè)計(jì)提供了新的見解。
2.1.4? 催化脫氫反應(yīng)
乙烯是化工行業(yè)最重要的原料之一,乙烷脫氫是制備乙烯的一個(gè)重要手段。STUART[26]等合成?? 3種磷酸鈮用于乙烷的催化脫氫反應(yīng),研究發(fā)現(xiàn)催化劑氧化還原性和酸性之間的平衡對(duì)于獲得高乙烯選擇性有重要意義。其中,NbPO4以氫氣在500 ℃還原3 h獲得正交晶系的Nb1.9P2.8O12具有最佳的催化性能,表現(xiàn)出最高的乙烯選擇性(91%)。
2.1.5? 烷基化反應(yīng)
固體酸用于傅克烷基化反應(yīng)有副反應(yīng)少、可重復(fù)使用、易于分離、無腐蝕性等優(yōu)點(diǎn)。WILMA[27]等合成了具有不同結(jié)晶度的磷酸鈮,作為苯甲醚與芐基氯芐基化的催化劑,與HZSM-5、Ga/SiO2、Fe/SBA-15相比磷酸鈮具有最佳的芐基氯轉(zhuǎn)化率,在40 min內(nèi)原料完全轉(zhuǎn)化,單芐基產(chǎn)物選擇性高于90%。其中,Lewis酸位點(diǎn)的數(shù)量極大影響催化劑的反應(yīng)速率。LACHTER[28-32]等對(duì)磷酸鈮分別催化苯甲醚與1-辛烯-3-醇、苯甲醇、芐醇、苯酚、苯乙烯等的烷基化反應(yīng)進(jìn)行了系統(tǒng)的研究。結(jié)果表明,磷酸鈮表面存在豐富的Br?nsted酸和Lewis酸位點(diǎn)是其表現(xiàn)出高的催化活性和高選擇性的原因。磷酸鈮良好催化穩(wěn)定性有可能替代傳統(tǒng)AlCl3催化劑。此外,芐醇、苯乙烯等烷基化試劑可替代有較大污染的芐基氯。
2.2? 多功能磷酸鈮類的催化反應(yīng)研究
磷酸鈮不僅可以作為優(yōu)良的催化劑,還可以通過負(fù)載其他組分或與其他組分直接混合獲得多功能催化能力,從而實(shí)現(xiàn)在一個(gè)反應(yīng)過程中完成多步不同類型的催化反應(yīng),特別是涉及酸催化的多步轉(zhuǎn)化,這進(jìn)一步拓寬了磷酸鈮催化劑的應(yīng)用。
纖維素可以采用雙功能催化劑一鍋法制備異山梨醇,該過程經(jīng)歷多個(gè)反應(yīng)步驟:首先多糖初始酸催化水解為葡萄糖,隨后在金屬催化劑上和氫氣反應(yīng)生成山梨醇,最后山梨醇通過酸催化脫水轉(zhuǎn)化為異山梨醇。李福偉[33]小組通過抗壞血酸還原Ru獲得不同尺寸的Ru納米顆粒負(fù)載于介孔磷酸鈮,該催化劑可以直接催化纖維素一步制備異山梨醇,具有適當(dāng)尺寸的Ru納米粒子避免山梨醇不必要的氫解,異山梨醇產(chǎn)率最高可以達(dá)到52%。王艷琴[34]團(tuán)隊(duì)通過氫氣還原浸漬Ru的磷酸鈮,作為纖維素直接生產(chǎn)異山梨醇的催化劑,獲得了59.6%異山梨醇產(chǎn)率。研究發(fā)現(xiàn),有強(qiáng)酸性、良好的水熱穩(wěn)定性和介孔特性的磷酸鈮有助于聚合纖維素水解成葡萄糖和山梨醇脫水成異山梨醇。
生物質(zhì)催化加氫脫氧反應(yīng)可用于生產(chǎn)液體生物油和化學(xué)品,是解決化石燃料日益短缺的一個(gè)有利途徑。王艷琴[35]團(tuán)隊(duì)合成鉑負(fù)載磷酸鈮(Pt/NbOPO4)催化劑在溫和條件下(190 ℃)實(shí)現(xiàn)原木生物質(zhì)到液態(tài)烷烴的直接轉(zhuǎn)化,其中,Pt 對(duì)H2的活化,NbOX對(duì)C—O鍵斷裂以及磷酸鈮表面酸性的共同作用是生物木質(zhì)高效加氫脫氧的關(guān)鍵。梁長(zhǎng)海[36]團(tuán)隊(duì)通過溶膠-凝膠法制備摻雜Zr的磷酸鈮(ZrNbPO4)與納米金屬鎳共同催化二芳基醚選擇性加氫脫氧獲得芳烴和烷烴。其中,具有中等酸強(qiáng)度的ZrNbPO4負(fù)責(zé)二芳基醚的氫解和脫氧,納米鎳負(fù)責(zé)對(duì)氫解產(chǎn)物進(jìn)行催化加氫,酸性和金屬活性位點(diǎn)之間良好的協(xié)同效應(yīng)獲得了46%的苯和環(huán)己烷產(chǎn)率。肖國(guó)民[37]教授報(bào)道了一種在溫和條件下用負(fù)載Ni和Mo的磷酸鈮催化油酸選擇性加氫脫氧為正構(gòu)烷烴的高效、穩(wěn)定的催化體系,在5個(gè)循環(huán)后,油酸的轉(zhuǎn)化率沒有明顯降低,對(duì)C18的選擇性從91.3%降至80.3%,而對(duì)C17的選擇性從7.4%增?? 至17.7%。
沈儉一[38]團(tuán)隊(duì)將傳統(tǒng)的銅鋅鋁催化劑與磷酸鈮混合,用于催化二甲氧基甲烷(DMM)蒸汽重整。其反應(yīng)過程是首先DMM在磷酸鈮酸性位水解成甲醇和甲醛,然后在金屬銅活性位點(diǎn)進(jìn)一步生成H2和CO2。453 K下,在CuZnAl催化劑上幾乎沒有發(fā)生DMM轉(zhuǎn)化,在添加了磷酸鈮后DMM轉(zhuǎn)化率達(dá)到100%,表明酸性對(duì)于DMM轉(zhuǎn)化極其重要。
3? 結(jié)束語
磷酸鈮催化劑在生物質(zhì)轉(zhuǎn)化、精細(xì)化工等領(lǐng)域被廣泛應(yīng)用,其中包括平臺(tái)化合物、生物燃料等高附加值化學(xué)品的制備。得益于磷酸鈮表面豐富的Lewis酸和Br?nsted酸位點(diǎn)以及強(qiáng)耐水性,其在催化脫水、水解、酯化、烷基化、加氫等反應(yīng)中展現(xiàn)優(yōu)異的催化活性和穩(wěn)定性。同時(shí),具有高比表面積的介孔磷酸鈮可用作載體與金屬元素復(fù)合制備雙功能催化劑,用于同時(shí)催化多個(gè)不同類型的反應(yīng),對(duì)簡(jiǎn)化工藝流程、降低工藝成本具有重要意義。此外,具有特定晶型的磷酸鈮在催化乙烷脫氫制乙烯中展現(xiàn)出高選擇性,表明結(jié)晶的磷酸鈮擁有獨(dú)特性質(zhì)。但是,目前對(duì)磷酸鈮催化劑的研究主要集中在其酸性性質(zhì)方面,其結(jié)晶態(tài)的性質(zhì)及應(yīng)用還有待開發(fā)??傊姿徕壌呋瘎┚哂袠O大的研究和應(yīng)用價(jià)值,對(duì)其深入研究與開發(fā)對(duì)于設(shè)計(jì)具有工業(yè)前景的綠色催化劑有重要意義。
參考文獻(xiàn):
[1]BARROS A O, FAíSCA A T, LACHTER E R, et al. Acetalization of hexanal with 2-ethyl hexanol catalyzed by solid acids[J]. Journal of the Brazilian Chemical Society, 2011, 22(2): 359-363.
[2]ZHANG Y, WANG J J, LI X C, et al. Direct conversion of biomass- derived carbohydrates to 5-hydroxymethylfurural over water- tolerant niobium-based catalysts[J]. Fuel, 2015, 139: 301-307.
[3]NOWAK I, ZIOLEK M. Niobium compounds: preparation, chara- cterization, and application in heterogeneous catalysis[J]. Chemical Reviews, 1999, 99(12): 3603-3624.
[4]WEIQI W, HE Y, SHUBIN W. Efficient conversion of carbohydrates into levulinic acid over chromium modified niobium phosphate catalyst[J]. Fuel, 2019, (256): 115940.
[5]MINYAO H, JIAXING G, XINCHENG W, et al. Direct conversion of cellulose into isosorbide over Ni doped NbOPO4 catalysts in water[J]. New Journal of Chemistry, 2020, 44: 10292-10299.
[6]KANG S, MIAO R, GUO J, et al. Sustainable production of fuels and chemicals from biomass over niobium based catalysts: a review[J]. Catalysis Today, 2020, 374: 61-76.
[7]LI T, FU X, CHANG D, et al.Negative thermal expansion properties in tetragonal NbPO5 from the first principles studies[J]. AIP Advances, 2017, 7(3): 035202.
[8]ZIOLEK M. Niobium-containing catalysts-the state of the art[J]. Catalysis Today, 2003, 78(1): 47-64.
[9]BOONRAT P, NING L, ZHIQIANG W, et al. Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system[J]. Journal of Energy Chemistry, 2014, 22(6): 826-832.
[10]GAO D M, ZHAO B, LIU H, et al. Synthesis of a hierarchically porous niobium phosphate monolith by a sol-gel method for fructose dehydration to 5-hydroxymethylfurfural[J]. Catalysis Science & Technology, 2018, 8(14): 3675-3685.
[11]BENEKE K, LAGALY G.Intercalation into niobium oxide phosphate hydrate (NbOPO4·3H2O) and comparison with vanadyl phosphate hydrate (VOPO4·2H2O)[J]. Inorganic Chemistry, 1983, 22(10): 1503-1507.
[12]SUSUMU O, MASAO K, TOKIO I, et al. The effect of phosphoric acid treatment on the catalytic property of niobic acid[J]. Bulletin of the Chemical Society of Japan, 1987, 60(1): 37-41.
[13]ZHANG Y, WANG J, REN J, et al. Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water[J]. Catalysis Science & Technology, 2012, (12): 2485-2491.
[14]CARNITI P, GERVASINI A, BIELLA S, et al. Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction[J]. Catalysis Today, 2006, 118(3-4): 373-378.
[15]LIU Y, LI H, HE J, et al. Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides[J]. Catalysis Communications, 2017, 93: 20-24.
[16]CHOI Y, PARK D S, YUN H J, et al. Mesoporous siliconiobium phosphate as a pure Br?nsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein[J]. ChemSusChem, 2012, 5(12): 2460-2468.
[17]LEOW S, KOEHLER A J, CRONMILLER L E, et al. Vapor-phase conversion of aqueous 3-hydroxybutyric acid and crotonic acid to propylene over solid acid catalysts[J]. Catalysis Science & Technology, 2021(20): 6866-6876.
[18]WEST R M, BRADEN D J, DUMESIC J A. Dehydration of butanol to butene over solid acid catalysts in high water environments[J]. Journal of Catalysis, 2009, 262(1): 134-143.
[19]尹佳濱. 多級(jí)孔磷酸鈮實(shí)現(xiàn)DMF向PX的高效定向催化轉(zhuǎn)化[D].北京:北京化工大學(xué),2019.
[20]BASSAN I A L, NASCIMENTO D R, SAN GIL R A S, et al. Esterification of fatty acids with alcohols over niobium phosphate[J]. Fuel Processing Technology, 2013, 106: 619-624.
[21]PIETRE M K, ALMEIDA L C P, LANDERS R, et al. H3PO4-and H2SO4-treated niobic acid as heterogeneous catalyst for methyl ester production[J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99: 269-280.
[22]RADE L L, LEMOS C O T, BARROZO M A D S, et al.Optimization of esterification reaction over niobium phosphate in a packed bed tubular reactor[J]. Renewable Energy, 2019, 131: 348-355.
[23]ALVES M A L, PINHEIRO N S C, BRONDANI L N, et al. Assessment of niobium phosphate as heterogeneous catalyst in esterification with methyl acetate[J]. Journal of Chemical Technology and Biotechnology, 2019, 74(10): 3172-3179.
[24]SCALDAFERRI C A, PASA V M D. Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst[J]. Fuel, 2019, 245: 458-466.
[25]ZHOU H, CHEN L, GUO Y, et al. Hydrogenolysis cleavage of the Csp2–Csp3 bond over a metal-free NbOPO4 catalyst[J]. ACS Catalysis, 2022, 12(9): 4806-4812.
[26]WEIHAO W, MATHEW D, GARETH W, et al. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane[J]. Physical Chemistry Chemical Physics,2011(38): 17395-17404.
[27]DE LA CRUZ M H C, ROCHA ? S, LACHTER E R, et al. Investigation of the catalytic activity of niobium phosphates for liquid phase alkylation of anisole with benzyl chloride[J]. Applied Catalysis A: General, 2010, 386(1-2): 60-64.
[28]PEREIRA C C M, LACHTER E R. Alkylation of toluene and anisole with 1-octen-3-ol over niobium catalysts[J]. Applied Catalysis A: General, 2004, 266 (1): 67-72.
[29]DELACRUZ M, DASILVA J, LACHTER E. Catalytic activity of niobium phosphate in the Friedel-Crafts reaction of anisole with alcohols[J]. Catalysis Today, 2006, 118(3-4): 379-384.
[30]ROCHA A S, FORRESTER A M S, DE LA CRUZ M H C, et al. Comparative performance of niobium phosphates in liquid phase anisole benzylation with benzyl alcohol[J]. Catalysis Communications, 2008, 9(10): 1959-1965.
[31]DE LA CRUZ M H C, ROCHA A S, DA SILVA J F C, et al. Catalytic activity of niobium phosphate in the benzylation of anisole with styrene, benzyl alcohol and benzyl chloride[J]. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122: 1081–1094.
[32]CYNTHIA C M P, MARCUS H C D L C, ELIZABETH R L. Liquid phase alkylation of anisole and phenol catalyzed by niobium phosphate[J]. Journal of the Brazilian Chemical Society, 2010, 21(2): 367-370.
[33]SUN P, LONG X, HE H, et al.Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate[J]. ChemSusChem, 2013, 6(11): 2190-2197.
[34]XI J, ZHANG Y, XIA Q, et al. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported ruthenium bifunctional catalyst[J]. Applied Catalysis A: General, 2013, 459: 52-58.
[35]QINENG X, ZONGJIA C, YI S, et al. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes[J]. Nature Communications, 2016, 7(1): 11162.
[36]JIN S, CHEN X, LI C, et al. Hydrodeoxygenation of lignin-derived diaryl ethers to aromatics and alkanes using nickel on Zr-doped niobium phosphate[J]. ChemistrySelect, 2016, 1(15): 4949-4956.
[37]RUIPING W, LIXIANG Z, MENGYUAN T, et al. Hydrodeoxygena- tion of oleic acid over NiMo bimetallic catalysts supported on niobium phosphate[J]. New Journal of Chemistry, 2023, 47: 3000-3009.
[38]QING S, ALINE A, JIANYI S. Surface acidity of niobium phosphate and steam reforming of dimethoxymethane over CuZnO/Al2O3-NbP complex catalysts[J]. Journal of Catalysis, 2006, 244(1): 1-9.
Research Progress of Niobium Phosphate for Catalytic Application
FAN Youqian1,2, WANG Ruiwu2, DING Qida3, XIN Jiayu2, JIANG Renzheng1*, WANG Yaofeng2*
(1. Shenyang University of Chemical Technology, Shenyang Liaoning 110142, China;
2. Beijing Key Laboratory of Ionic Liquids Clean process, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, China;
3. Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou Henan 450001, China)
Abstract:? Acid catalysts are widely used in organic reactions, but traditional liquid acid catalysts have limitations in industrial applications due to their toxicity, corrosion and difficulty in separation and recovery, while solid acid catalysts have the advantages of their non-toxicity, non-corrosiveness and ease of separating. Compared to other solid acids, niobium phosphate exhibits excellent catalytic activity on account of high thermal stability, water resistance, high specific surface area, and abundant Lewis acid and Br?nsted acid sites. Moreover, niobium phosphate can be used as a carrier to load other metals to prepare composite multifunctional catalysts, which is important for the development of environmentally friendly catalysts for biomass conversion, fine chemicals and other fields. In this paper, the research progress of phosphate-based catalysts in catalytic applications was presented, mainly including the application in dehydration, esterification, hydrolysis and alkylation reactions, as well as the application of niobium phosphate compounded with other metals in some tandem reactions.
Key words: Solid acid; Niobium phosphate; Multifunctional catalyst; Biomass conversion