国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

海藻希瓦菌對(duì)小鼠結(jié)直腸腺瘤發(fā)生發(fā)展及其免疫微環(huán)境的影響

2024-07-13 14:02徐微微陽柳思徐婧周有連王紅
新醫(yī)學(xué) 2024年6期

徐微微 陽柳思 徐婧 周有連 王紅

【摘要】目的 明確海藻希瓦菌(S.algae)對(duì)小鼠結(jié)直腸腺瘤發(fā)生發(fā)展的影響及探討其對(duì)免疫微環(huán)境的調(diào)控作用。方法 將24只小鼠分為3組:對(duì)照組、偶氮甲烷(AOM)/葡聚糖硫酸鈉(DSS)組、AOM/DSS+S.algae組。比較各組小鼠的生存狀態(tài)和結(jié)直腸腺瘤情況。取AOM/DSS組、AOM/DSS+S.algae組小鼠結(jié)直腸組織進(jìn)行轉(zhuǎn)錄組測序,利用基因集富集分析和免疫浸潤分析其免疫相關(guān)通路、免疫細(xì)胞和免疫因子的變化。結(jié)果 與AOM/DSS組相比,AOM/DSS+S.algae組小鼠體質(zhì)量、存活率均下降,血便情況加重,生存狀態(tài)較差、結(jié)直腸長度縮短(P均< 0.05),平均腺瘤數(shù)量及大小增多(P均< 0.05)。與AOM/DSS組相比,AOM/DSS+S.algae組炎癥反應(yīng)增強(qiáng)(P < 0.05),促炎細(xì)胞因子白介素(IL)-2、IL-6、IL-12、IL-17、干擾素、腫瘤壞死因子(P均< 0.05)和IL-1β的產(chǎn)生呈上升趨勢,抑炎細(xì)胞因子IL-4、IL-10、IL-13(P均< 0.05)和轉(zhuǎn)化生長因子β呈抑制趨勢,初始B細(xì)胞和效應(yīng)B細(xì)胞(P < 0.05)呈增多趨勢,且激活小鼠體內(nèi)核因子-κB(NF-κB)信號(hào)通路。結(jié)論 S.algae可能通過激活免疫信號(hào)(如活化B細(xì)胞和激活NF-κB通路),形成促腫瘤免疫微環(huán)境,進(jìn)而促進(jìn)結(jié)直腸腺瘤發(fā)展。

【關(guān)鍵詞】海藻希瓦菌;結(jié)直腸腺瘤;免疫微環(huán)境;NF-κB;B細(xì)胞

Effect of Shewanella algae on the incidence and progression of colorectal adenoma and immune microenvironment in mice

XU Weiwei1, YANG Liusi1, XU Jing1, ZHOU Youlian2, WANG Hong1, 2

(1.School of Medicine, South China University of Technology, Guangzhou 510006, China; 2.Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China)

Corresponding author: WANG Hong, E-mail: eywanghong@scut.edu.cn

【Abstract】Objective To investigate the effect of Shewanella algae (S.algae) on the occurrence and development of colorectal adenoma and its regulatory effect on the immune microenvironment in mice. Methods ? Twenty-four mice were divided into three groups: control group, azoxymethane (AOM)/ dextran sodium sulfate (DSS) group, AOM/DSS+S.algae group. The survival status and colorectal adenoma of mice were compared among three groups. Colorectal tissues in the AOM/DSS group and AOM/DSS+

S.algae group were collected for high-throughput RNA-seq. Gene set enrichment analysis (GSEA)and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) were used to analyze the changes of immune-related pathways, immune cells and immune factors. Results Compared with the AOM/DSS group, the body weight (P < 0.05) and survival rate were decreased, the hematochezia was aggravated, the survival status was worsened,the colorectal length was shortened (all P < 0.05), and the average number and size of adenomas were significantly increased (both P < 0.05) in the AOM/DSS+S.algae group. Compared with the AOM/DSS group, the inflammatory responses were significantly enhanced in AOM/DSS+S.algae group (P < 0.05). The production of pro-inflammatory cytokines including interleukin (IL)-2, IL-6, IL-12, IL-17, interferon (IFN), tumor necrosis factor (TNF) (all P < 0.05) and IL-1β showed an upward trend in the AOM/DSS+S.algae group, while the production of anti-inflammatory cytokines including IL-4, IL-10, IL-13 (all P < 0.05) and transforming growth factor β showed an inhibitory trend. Both naive B cells and plasma cells (both P < 0.05) were increased in AOM/DSS+S.algae group, and the nuclear factor -κB (NF-κB) signaling pathway was activated. Conclusion S.algae may form a tumor-promoting immune microenvironment by activating immune signals, such as activation of B cells and activation of the NF-κB pathway, and then promote the development of colorectal adenoma.

【Key words】 Shewanella algae; Colorectal adenoma; Immune microenvironment; NF-κB; B cell

結(jié)直腸癌(colorectal cancer,CRC)是全球癌癥相關(guān)死亡的第二大原因,在最新發(fā)布的全球癌癥統(tǒng)計(jì)中,2022年全球估計(jì)有2 000萬例新發(fā)病例和970萬例癌癥死亡。其中在2 000萬例新發(fā)病例中CRC占9.6%(僅次于肺癌和女性乳腺癌),在970萬例癌癥死亡病例中CRC占9.3%(僅次于肺癌)[1]。在美國每年約有15萬例CRC新發(fā)病例[2],近年來,由于飲食及生活方式的改變,我國CRC發(fā)病率和病死率逐年上升,發(fā)病模式也逐漸接近發(fā)達(dá)國家[3]。結(jié)直腸腺瘤(colorectal adenoma, CRA)是由正常結(jié)直腸黏膜組織逐漸演變?yōu)楫惓T錾ㄏ⑷?、腺瘤),被公認(rèn)為CRC癌前病變[4]?!跋倭?癌”為大多數(shù)CRC的發(fā)生模式[5]。

腸道菌群失衡已被證實(shí)是與CRA形成及CRC 發(fā)生發(fā)展密切相關(guān)的重要因素[6-7]。課題組前期研究發(fā)現(xiàn),作為CRC的早期事件,CRA患者亦存在腸菌失衡現(xiàn)象,進(jìn)展期CRA患者腸道菌群結(jié)構(gòu)顯著區(qū)別于正常人和CRC患者[8-9],其中,海藻希瓦菌(Shewanella algae,S.algae)的過度增殖與CRA形成和CRC發(fā)生發(fā)展呈正相關(guān)[10],提示S.algae在CRA的發(fā)病機(jī)制中可能發(fā)揮關(guān)鍵作用。

S.algae的相關(guān)臨床研究很少,對(duì)結(jié)直腸的作用不清楚,其真正臨床意義尚未可知。本研究通過對(duì)結(jié)直腸腺瘤小鼠模型灌胃S.algae,明確S.algae在CRA發(fā)生發(fā)展中的作用及對(duì)腸道炎癥微環(huán)境的影響。

1 材料與方法

1.1 實(shí)驗(yàn)動(dòng)物

24只C57BL/6J小鼠(雄性;8~9周齡;體質(zhì)量

20~24 g)均購買于斯貝福(北京)生物技術(shù)有限公司。所有程序均根據(jù)動(dòng)物護(hù)理指導(dǎo)方案進(jìn)行,并經(jīng)華南理工大學(xué)醫(yī)學(xué)院第二附屬醫(yī)院的動(dòng)物倫理機(jī)構(gòu)委員會(huì)批準(zhǔn)(批件號(hào):K-2021-139)。小鼠飼養(yǎng)在特定的無病原體條件下,并處于穩(wěn)定的溫度(22±2)℃和濕度(40%~70%)屏障系統(tǒng)中,具有12 h的光/暗循環(huán),并提供食物和水。

1.2 實(shí)驗(yàn)方法

1.2.1 實(shí)驗(yàn)設(shè)計(jì)

將24只小鼠隨機(jī)分為3組(每組n = 8):對(duì)照組(Control)、偶氮甲烷(azoxymethane,AOM)/

葡聚糖硫酸鈉(dextran sodium sulfate,DSS)組、AOM/DSS+S.algae組。除Control組外,其余小鼠于實(shí)驗(yàn)開始當(dāng)日予AOM(10 mg/kg),方式為腹腔注射。休息1周,根據(jù)小鼠此時(shí)體質(zhì)量重新分組。之后飲用2.5%的DSS 6 d后,改用正常飲用水(高壓滅菌)2周[11],AOM/DSS+S.algae組在飲用DSS 日開始每隔1 d灌胃S.algae(1×108 CFU/mL,

0.2 mL)1次,直至實(shí)驗(yàn)終點(diǎn)(28 d),對(duì)照組小鼠予等體積生理鹽水灌胃。

1.2.2 細(xì)菌培養(yǎng)

S.algae購買于北納生物,并在2216E培養(yǎng)基中生長,培養(yǎng)于37℃培養(yǎng)箱中。將對(duì)數(shù)生長期(OD600 nm=0.6~1.0)的細(xì)菌以5 000 r/min離心

10 min,PBS洗滌2次后,在細(xì)菌沉淀加入適量生理鹽水至OD600 nm=1.0,此時(shí)重懸液中菌液的濃度約為1×108 CFU/mL,用于小鼠灌胃。

1.2.3 生存分?jǐn)?shù)記錄

每周測量小鼠體質(zhì)量1~2次,根據(jù)表1進(jìn)行生存評(píng)分并記錄。

1.2.4 小鼠取材

第28日通過腹膜內(nèi)注射戊巴比妥(50 mg/kg)麻醉實(shí)驗(yàn)小鼠進(jìn)行腸組織和脾的取樣。用預(yù)冷的1%牛血清白蛋白清洗腸道,測量腸道長度,稱量大腸質(zhì)量及脾質(zhì)量。用剪刀沿長軸方向剖開腸腔,拍照記錄腺瘤的有無、數(shù)量、生長位置和大小等。

1.2.5 RNA抽提和文庫構(gòu)建

采用TRIzol試劑依照說明書提取總RNA。使用 NanoDrop 2000分光光度計(jì)(Thermo Scientific, 美國)鑒定RNA純度和定量,使用Agilent 2100 Bioanalyzer(Agilent Technologies,Santa Clara,CA,

美國)評(píng)估RNA完整性。使用VAHTS Universal V5 RNA-seq Library Prep試劑盒依照說明書構(gòu)建轉(zhuǎn)錄組文庫。轉(zhuǎn)錄組測序和分析由上海歐易生物技術(shù)有限公司(上海,中國)進(jìn)行。

1.2.6 RNA測序和差異表達(dá)基因分析

采用Illumina Novaseq 6000測序平臺(tái)對(duì)文庫進(jìn)行測序,并生成150 bp雙端reads。采用fastp軟件對(duì)fastq格式的raw reads進(jìn)行處理,去除低質(zhì)量reads后獲得clean reads用于后續(xù)數(shù)據(jù)分析。使用HISAT2軟件進(jìn)行參考基因組比對(duì),并進(jìn)行基因表達(dá)量(fragments per kilobase million,F(xiàn)PKM)[12]計(jì)算,并通過HTSeq-count獲得每個(gè)基因的reads 計(jì)數(shù)(counts)。使用基因集富集分析(gene set enrichment analysis,GSEA)[13-14]軟件進(jìn)行基因集富集分析,使用預(yù)定義的基因集,將基因按照在2類樣本中的差異表達(dá)程度排序,然后檢驗(yàn)預(yù)先設(shè)定的基因集是否在這個(gè)排序表的頂端或者底端富集。

1.2.7 免疫浸潤分析

CIBERSORT (cell-type identification by estimating

relative subsets of RNA transcripts)[15]是一種常用的免疫浸潤分析方法,該方法基于已知參考數(shù)據(jù)集,默認(rèn)提供22種免疫細(xì)胞亞型的基因表達(dá)特征集:LM22。

1.3 統(tǒng)計(jì)學(xué)處理

應(yīng)用GraphPad Prism 9、Adobe Illustrator 2023進(jìn)行分析與繪圖。計(jì)量資料采用Shapiro-Wilk進(jìn)行正態(tài)性檢驗(yàn),實(shí)驗(yàn)數(shù)據(jù)均符合正態(tài)分布,以表示,2組間比較采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,兩兩比較用LSD-t檢驗(yàn)。P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。

2 結(jié) 果

2.1 S.algae對(duì)結(jié)直腸腺瘤小鼠生存狀態(tài)的影響

在AOM/DSS基礎(chǔ)上對(duì)小鼠進(jìn)行S.algae的灌胃,可以發(fā)現(xiàn)灌胃后,AOM/DSS+S.algae組體質(zhì)量較AOM/DSS組有所下降,其中在第26日和第28日,AOM/DSS+S.algae與AOM/DSS組體質(zhì)量有較大差異(P均< 0.01),在其他天數(shù)時(shí),差異無統(tǒng)計(jì)學(xué)意義(圖1A)。與AOM/DSS組相比,AOM/DSS+S.algae組精神狀態(tài)明顯較差、毛色不光澤,進(jìn)食和飲水有下降,同時(shí)有嚴(yán)重的血便現(xiàn)象(圖1B、C),對(duì)末次即第26日的生存分?jǐn)?shù)進(jìn)行分析,各單項(xiàng)指標(biāo)的差異均無統(tǒng)計(jì)學(xué)意義,但AOM/DSS+S.algae組的生存總分低于AOM/DSS組的總分(P < 0.05,表2)。在實(shí)驗(yàn)終點(diǎn)結(jié)束前,AOM/DSS+S.algae組生存率有下降,而AOM/DSS組和野生對(duì)照組生存率都沒有變化,未有小鼠死亡現(xiàn)象的發(fā)生(圖1D)。

2.2 S.algae對(duì)小鼠結(jié)直腸腺瘤發(fā)生發(fā)展的影響

對(duì)各組小鼠結(jié)直腸段和脾取材測量觀察,AOM/DSS+S.algae組和AOM/DSS組的脾質(zhì)量和腸質(zhì)量均高于Control組,差異均有統(tǒng)計(jì)學(xué)意義。AOM/DSS組和AOM/DSS+S.algae組的脾和腸質(zhì)量差異雖無統(tǒng)計(jì)意義,但與AOM/DSS組相比,AOM/DSS+S.algae組的脾和腸質(zhì)量顯示出更重的趨勢(表3)。而結(jié)直腸長度AOM/DSS+S.algae組和AOM/DSS組較Control組有所下降,其中AOM/DSS+S.algae組下降得更為明顯(表3和圖2A)。把腸道清洗后縱向剖開,肉眼觀察到與AOM/DSS組相比,AOM/DSS+S.algae組腺瘤數(shù)量增多(P < 0.05,圖2B、C),在腸道的上中下段都有分布而且體積也較大。與AOM/DSS組相比,AOM/DSS+

S.algae組直徑大于2 mm的腺瘤數(shù)量較多(P < 0.001,圖2D)。

2.3 S.algae促進(jìn)小鼠體內(nèi)炎癥反應(yīng)

用AOM/DSS+S.algae組和AOM/DSS組的小鼠結(jié)腸部分提取總RNA構(gòu)建cDNA文庫,通過高通量測序檢測差異基因與變化的通路。對(duì)測序結(jié)果進(jìn)行GSEA分析,結(jié)果顯示,與AOM/DSS組相比,AOM/DSS+S.algae組中炎癥反應(yīng)通路活化程度更高(P < 0.001,圖3A),此外還顯示出AOM/DSS+

S.algae組B細(xì)胞的增殖較高(P = 0.004,圖3B)。結(jié)果提示與AOM/DSS組相比,加入S.algae后,小鼠體內(nèi)的炎癥反應(yīng)可能有所增強(qiáng)。

2.4 S.algae干預(yù)后小鼠體內(nèi)免疫微環(huán)境的改變

利用CIBERSORT法評(píng)估小鼠結(jié)直腸腺瘤組織免疫浸潤情況。CIBERSORT可通過不同免疫細(xì)胞中標(biāo)志基因的差異表達(dá)分析出樣品中各種免疫細(xì)胞的種類和分布,提供22種免疫細(xì)胞亞型的基因表達(dá)特征集。結(jié)果顯示,初始B細(xì)胞、M0巨噬細(xì)胞、M1巨噬細(xì)胞、M2巨噬細(xì)胞、肥大細(xì)胞、自然殺傷(natural killer,NK)細(xì)胞和漿細(xì)胞(效應(yīng)B細(xì)胞)占比較高(圖4A)。AOM/DSS+S.algae組與AOM/DSS組初始B細(xì)胞比較差異雖無統(tǒng)計(jì)學(xué)意義,但AOM/DSS+S.algae組有增多的趨勢(圖4B)。與AOM/DSS組相比,AOM/DSS+S.algae組效應(yīng)B細(xì)胞增多(P < 0.05,圖4C)。與上述GSEA分析中顯示AOM/DSS+S.algae組B細(xì)胞增殖較高的結(jié)果一致(圖3B),推測加入S.algae后可能促進(jìn)了B細(xì)胞的增殖。

進(jìn)一步對(duì)免疫微環(huán)境中細(xì)胞因子分析,GSEA結(jié)果顯示,與AOM/DSS組相比,AOM/DSS+S.algae

組中促炎細(xì)胞因子IL-1β、IL-2、IL-6、IL-12、IL-17、IFN和TNF的產(chǎn)生都呈上升趨勢(圖5A、B),而抑炎細(xì)胞因子IL-4、IL-10、IL-13和轉(zhuǎn)化生長因子β(transforming growth factor β,TGF-β)呈現(xiàn)下降趨勢(圖5C)。同時(shí)也發(fā)現(xiàn)AOM/DSS+S.algae組中核因子-κB(nuclear factor-κB,NF-κB)活性上升和NF-κB 誘導(dǎo)激酶(NF-κB-inducing kinase,NIK)及Kappa B 抑制因子激酶(inhibitor of kappa B kinase,IKK)被激活(圖5D),表明加入S.algae

后可能激活了小鼠體內(nèi)NF-κB信號(hào)通路。S.algae可能通過細(xì)胞因子活化B細(xì)胞和激活NF-κB通路,形成促腫瘤免疫微環(huán)境,進(jìn)而促進(jìn)結(jié)直腸腺瘤發(fā)生發(fā)展。

3 討 論

CRC的發(fā)病率和病死率在世界范圍內(nèi)呈上升趨勢[16],一直威脅著人群健康,給社會(huì)經(jīng)濟(jì)和患者家庭帶來了沉重的負(fù)擔(dān)[17]。CRC有多種病理類型,其中最常見的為腺癌[18]。CRA是公認(rèn)的CRC癌前病變,大約85%的CRC是由CRA演變而來的[19]。

因此,深入了解CRA發(fā)生發(fā)展的過程,是實(shí)現(xiàn)CRC早期預(yù)防和早期治療中亟待解決的關(guān)鍵問題,具有重要的臨床意義。

人類結(jié)直腸定植了一種由微生物組成的共生群落,估計(jì)有1014個(gè)細(xì)菌,與哺乳動(dòng)物細(xì)胞的總數(shù)近似[20]。一些細(xì)菌可能通過產(chǎn)生微生物基因毒素引入致癌突變[21],而另一些細(xì)菌則產(chǎn)生干擾癌細(xì)胞核心代謝過程的代謝物[22]。此外,腸道內(nèi)的細(xì)菌種類會(huì)改變局部和全身的細(xì)胞或代謝特征,從而影響治療效果[23]。微生物群對(duì)腫瘤發(fā)生的廣泛影響導(dǎo)致其成為癌癥的標(biāo)志物[24]。通過前期工作,我們發(fā)現(xiàn)與正常結(jié)直腸組織相比,S.algae在CRA中含量升高,S.algae在CRA發(fā)病中可能發(fā)揮關(guān)鍵作用。S.algae是一種革蘭陰性菌,它的致病性現(xiàn)已確定,主要感染于體弱患者,可能與高病死率有關(guān)[25]。在臨床中,S.algae經(jīng)常與腐敗希瓦氏菌(Shewanella putrefaciens, S.putrefaciens)相混淆,但似乎有越來越多的證據(jù)表明,在S.algae和S.putrefaciens之間,S.algae引起的人類疾病最多,此外對(duì)小鼠的致病性研究也表明,S.algae似乎是毒性更強(qiáng)的物種[26]。但S.algae一般是個(gè)案報(bào)道,相關(guān)研究較少,臨床意義及致病機(jī)制不太清楚且與結(jié)直腸疾病的關(guān)系仍未知。本研究為探索S.algae對(duì)CRA發(fā)生發(fā)展的作用,我們?cè)贏OM/DSS組小鼠的基礎(chǔ)上進(jìn)行S.algae灌胃,結(jié)果顯示與AOM/DSS組相比,AOM/DSS+S.algae組小鼠生存狀態(tài)更差,血便和體質(zhì)量下降都很嚴(yán)重,同時(shí),結(jié)直腸長度縮短且顯示出更多更大的腺瘤,因此S.algae加重了疾病,促進(jìn)了CRA的發(fā)生、發(fā)展。

19世紀(jì)中期,Rudolf Virchow首先根據(jù)癌癥起源于慢性炎癥的部位,提出了炎癥和癌癥之間的相關(guān)性[27]。事實(shí)上,慢性、失調(diào)、持續(xù)和未解決的炎癥與惡性腫瘤的風(fēng)險(xiǎn)增加以及大多數(shù)類型癌癥的惡性進(jìn)展相關(guān)[28-29]。從正常結(jié)腸上皮發(fā)展為結(jié)直腸癌需要一系列遺傳和炎癥免疫學(xué)因素來促成和塑造致瘤環(huán)境。結(jié)直腸癌發(fā)生過程中涉及的炎癥特征包括炎癥小體的激活[29]和 NF-κB 通路的激活[30],這兩者都可以通過對(duì)微生物刺激或細(xì)胞因子的反應(yīng)而發(fā)生。在本研究中,我們發(fā)現(xiàn)對(duì)小鼠進(jìn)行S.algae干預(yù)后,小鼠體內(nèi)炎癥與免疫反應(yīng)明顯增強(qiáng),進(jìn)一步分析發(fā)現(xiàn)AOM/DSS+S.algae組促炎因子IL-1β、IL-6、IL-17和TNF等的水平都呈現(xiàn)出高表達(dá),抑炎細(xì)胞因子IL-4、IL-10和TGF-β水平顯示出低表達(dá)。同時(shí)AOM/DSS+S.algae組中B細(xì)胞表現(xiàn)出更高的增殖和浸潤占比。盡管迄今為止的免疫療法研究主要集中在 T 細(xì)胞上,但越來越多的證據(jù)表明,腫瘤浸潤性B細(xì)胞和漿細(xì)胞在腫瘤控制中具有至關(guān)重要的協(xié)同作用,在疾病的診斷和治療中顯示出很強(qiáng)的預(yù)測和預(yù)后意義[31]。此外我們還發(fā)現(xiàn)S.algae干預(yù)后,小鼠體內(nèi)NF-κB通路明顯被激活。NF-κB是一種多效性轉(zhuǎn)錄因子,在先天性和適應(yīng)性免疫中起關(guān)鍵作用,是各種促炎因子表達(dá)所必需的[32]。除了在炎癥中的關(guān)鍵功能外,NF-κB激活還可以通過增加細(xì)胞增殖和血管生成、抑制細(xì)胞死亡以及促進(jìn)細(xì)胞侵襲和轉(zhuǎn)移來支持癌變[33]。Greten等[34]研究表明,阻斷腸上皮細(xì)胞中的NF-κB激活可顯著降低CRC的發(fā)生率。結(jié)腸炎期間IL-6和TNF-α等細(xì)胞因子的釋放可以促進(jìn)腫瘤生長,而TGF-β和IL-10等免疫抑制細(xì)胞因子的低表達(dá)會(huì)加劇這一過程。

在健康的結(jié)腸組織中,即使是輕微的炎癥,在結(jié)腸向發(fā)育不良結(jié)腸的轉(zhuǎn)化中也起著重要作用。隨著隱窩的發(fā)育異常,微生物群與固有層免疫細(xì)胞之間的屏障被破壞,進(jìn)而促進(jìn)細(xì)菌移位,最終使免疫原性微生物暴露于上皮細(xì)胞和抗原呈遞細(xì)胞[35]。細(xì)菌刺激激活免疫信號(hào)通路導(dǎo)致體內(nèi)平衡喪失,從而驅(qū)動(dòng)促腫瘤炎癥環(huán)境[36]。綜上所述,在結(jié)直腸腺瘤發(fā)生發(fā)展過程中,S.algae可能通過激活免疫信號(hào)(如活化B細(xì)胞和激活NF-κB通路),形成促腫瘤免疫微環(huán)境,進(jìn)而促進(jìn)結(jié)直腸腺瘤的發(fā)生發(fā)展。

參 考 文 獻(xiàn)

[1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.

[2] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.

[3] 王露堯, 張鷺鷺. 中國結(jié)直腸癌發(fā)病和死亡情況及防控策略[J]. 解放軍醫(yī)院管理雜志, 2021, 28(12): 1195-1197. DOI: 10.16770/J.cnki.1008-9985.2021.12.036.

WANG L Y, ZHANG L L. Incidence and mortality of colorectal cancer and prevention-control strategies in China[J]. Hosp Adm J Chin Peoples Liberation Army, 2021, 28(12): 1195-1197. DOI: 10.16770/J.cnki.1008-9985.2021.12.036.

[4] TERZIC J, GRIVENNIKOV S, KARIN E, et al. Inflammation and colon cancer[J]. Gastroenterology, 2010, 138(6): 2101-2114.e5.

[5] FENG Q, LIANG S, JIA H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence[J]. Nat Commun, 2015, 6: 6528. DOI: 10.1038/ncomms7528.

[6] LIU W, ZHANG R, SHU R, et al. Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing[J]. Biomed Res Int, 2020, 2020: 7828392. DOI: 10.1155/2020/7828392.

[7] VACANTE M, CIUNI R, BASILE F, et al. Gut microbiota and colorectal cancer development: a closer look to the adenoma-carcinoma sequence[J]. Biomedicines, 2020, 8(11): 489. DOI: 10.3390/biomedicines8110489.

[8] WANG W J, ZHOU Y L, HE J, et al. Characterizing the composition of intestinal microflora by 16S rRNA gene sequencing[J]. World J Gastroenterol, 2020, 26(6): 614-626. DOI: 10.3748/wjg.v26.i6.614.

[9] ZHOU J X, YANG Z, XI D H, et al. Enhanced segmentation of gastrointestinal polyps from capsule endoscopy images with artifacts using ensemble learning[J]. World J Gastroenterol, 2022, 28(41): 5931-5943. DOI: 10.3748/wjg.v28.i41.5931.

[10] 周俊瀟, 李俊彥, 劉凱杰, 等. 海藻希瓦氏菌及其特異性脂多糖對(duì)結(jié)直腸腺瘤的影響及機(jī)制[J]. 實(shí)用醫(yī)學(xué)雜志, 2021, 37(21): 2717-2726. DOI: 10.3969/j.issn.1006-5725.2021.21.004.

ZHOU J X, LI J Y, LIU K J, et al. The effect of lipopolysaccharide from Shewanella algae on the occurrence and development of colorectal adenoma[J]. J Pract Med, 2021, 37(21): 2717-2726. DOI: 10.3969/j.issn.1006-5725.2021.21.004.

[11] ANGELOU A, ANDREATOS N, ANTONIOU E, et al. A novel modification of the AOM/DSS model for inducing intestinal adenomas in mice[J]. Anticancer Res, 2018, 38(6): 3467-3470. DOI: 10.21873/anticanres.12616.

[12] ROBERTS A, TRAPNELL C, DONAGHEY J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biol, 2011, 12(3): R22. DOI: 10.1186/gb-2011-12-3-r22.

[13] SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005, 102(43): 15545-15550. DOI: 10.1073/pnas.0506580102.

[14] MOOTHA V K, LINDGREN C M, ERIKSSON K F, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J]. Nat Genet, 2003, 34(3): 267-273. DOI: 10.1038/ng1180.

[15] ZENG D, YE Z, SHEN R, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures[J]. Front Immunol, 2021, 12: 687975. DOI: 10.3389/fimmu.2021.687975.

[16] MURPHY C C, ZAKI T A. Changing epidemiology of colorectal cancer-birth cohort effects and emerging risk factors[J]. Nat Rev Gastroenterol Hepatol, 2024, 21: 25-34. DOI: 10.1038/s41575-023-00841-9.

[17] FAVORITI P, CARBONE G, GRECO M, et al. Worldwide burden of colorectal cancer: a review[J]. Updates Surg, 2016, 68(1): 7-11. DOI: 10.1007/s13304-016-0359-y.

[18] 黃慶, 鄒旻紅, 蔣葉, 等. 結(jié)直腸黏液腺癌術(shù)后患者的預(yù)后影響因素分析[J]. 新醫(yī)學(xué), 2021, 52(1): 26-31. DOI: 10.3969/j.issn.0253-9802.2021.01.006.

HUANG Q, ZOU M H, JIANG Y, et al. Analysis of prognostic factors in patients with colorectal mucinous adenocarcinoma after radical surgery[J]. J New Med, 2021, 52(1): 26-31. DOI: 10.3969/j.issn.0253-9802.2021.01.006.

[19] BAILE-MAX?A S, MANGAS-SANJU?N C, LADABAUM U, et al. Risk factors for metachronous colorectal cancer or advanced adenomas after endoscopic resection of high-risk adenomas[J]. Clin Gastroenterol Hepatol, 2023, 21(3): 630-643. DOI: 10.1016/j.cgh.2022.12.005.

[20] SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533. DOI: 10.1371/journal.pbio.1002533.

[21] PLEGUEZUELOS-MANZANO C, PUSCHHOF J, ROSENDAHL H A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli[J]. Nature, 2020, 580(7802): 269-273. DOI: 10.1038/s41586-020-2080-8.

[22] BELL H N, REBERNICK R J, GOYERT J, et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance[J]. Cancer Cell, 2022, 40(2): 185-200.e6. DOI: 10.1016/j.ccell.2021.12.001.

[23] GOPALAKRISHNAN V, HELMINK B A, SPENCER C N, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy[J]. Cancer Cell, 2018, 33(4): 570-580. DOI: 10.1016/j.ccell.2018.03.015.

[24] HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.

[25] PAGNIEZ H, BERCHE P. Opportunistic infections caused by Shewanella, new emergent bacteria[J]. Med Mal Infect, 2005, 35(4): 186-191. DOI: 10.1016/j.medmal.2005.03.008.

[26] KHASHE S, JANDA J M. Biochemical and pathogenic properties of Shewanella alga and Shewanella putrefaciens[J]. J Clin Microbiol, 1998, 36(3): 783-787. DOI: 10.1128/JCM.36.3.783-787.1998.

[27] BALKWILL F, MANTOVANI A. Inflammation and cancer: back to Virchow[J]. Lancet, 2001, 357(9255): 539-545. DOI: 10.1016/S0140-6736(00)04046-0.

[28] COUSSENS L M, WERB Z. Inflammation and cancer [J]. Nature,

2002, 420(6917): 860-867.

[29] ELINAV E, NOWARSKI R, THAISS C A, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms[J]. Nat Rev Cancer, 2013, 13(11): 759-771. DOI: 10.1038/nrc3611.

[30] KARIN M, GRETEN F R. NF-kappaB: linking inflammation and immunity to cancer development and progression[J]. Nat Rev Immunol, 2005, 5(10): 749-759. DOI: 10.1038/nri1703.

[31] LAUMONT C M, BANVILLE A C, GILARDI M, et al. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities[J]. Nat Rev Cancer, 2022, 22(7): 414-430. DOI: 10.1038/s41568-022-00466-1.

[32] H?CKER H, KARIN M. Regulation and function of IKK and IKK-related kinases[J]. Sci STKE, 2006, 2006(357): re13. DOI: 10.1126/stke.3572006re13.

[33] NAUGLER W E, KARIN M. NF-kappaB and cancer-identifying targets and mechanisms[J]. Curr Opin Genet Dev, 2008, 18(1): 19-26. DOI: 10.1016/j.gde.2008.01.020.

[34] GRETEN F R, ECKMANN L, GRETEN T F, et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer[J]. Cell, 2004, 118(3): 285-296. DOI: 10.1016/j.cell.2004.07.013.

[35] BRENNAN C A, GARRETT W S. Gut microbiota, inflammation, and colorectal cancer[J]. Annu Rev Microbiol, 2016, 70: 395-411. DOI: 10.1146/annurev-micro-102215-095513.

[36] LOUIS P, HOLD G L, FLINT H J. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol, 2014, 12(10): 661-672. DOI: 10.1038/nrmicro3344.

(責(zé)任編輯:楊江瑜)