国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

納米顆粒在動(dòng)脈粥樣硬化易損斑塊靶向診斷成像中應(yīng)用研究進(jìn)展

2024-07-13 06:59劉培新王丹劉雪玲張秀玲莫秋艷郝二偉
新醫(yī)學(xué) 2024年6期
關(guān)鍵詞:動(dòng)脈粥樣硬化造影劑

劉培新 王丹 劉雪玲 張秀玲 莫秋艷 郝二偉

【摘要】動(dòng)脈粥樣硬化是一種常見(jiàn)的血管疾病,其特征是脂質(zhì)的沉積及發(fā)生相關(guān)的炎性反應(yīng)。動(dòng)脈粥樣硬化易損斑塊是急性心血管事件的主要病理原因。因此,易損斑塊的早期發(fā)現(xiàn)和及時(shí)干預(yù)治療具有重要的臨床意義。盡管臨床上已開發(fā)出多種針對(duì)易損斑塊的診療方法,但其導(dǎo)致的急性臨床事件仍居高不下,而納米顆粒在這方面表現(xiàn)出了巨大的潛力。納米顆粒在影像學(xué)中應(yīng)用廣泛,因其獨(dú)特的光學(xué)特性,可以高效標(biāo)記組織和細(xì)胞以檢測(cè)疾病狀態(tài);金屬納米顆粒能實(shí)現(xiàn)高分辨率成像;還可用作藥物遞送載體,提高治療效果。文章回顧了納米顆粒用于動(dòng)脈粥樣硬化易損斑塊靶向診斷的研究進(jìn)展,探討納米顆粒在相關(guān)領(lǐng)域的未來(lái)發(fā)展以及向臨床轉(zhuǎn)化的挑戰(zhàn)與機(jī)遇。

【關(guān)鍵詞】動(dòng)脈粥樣硬化;易損斑塊;納米顆粒;靶向診斷;造影劑;分子成像技術(shù)

Research progress in nanoparticles in targeted diagnosis of vulnerable atherosclerotic plaques

LIU Peixin, WANG Dan, LIU Xueling , ZHANG Xiuling, MO Qiuyan, HAO Erwei

(Department of Ultrasound, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China)

Corresponding author: LIU Xueling, E-mail: nnlxl@sina.com

【Abstract】Atherosclerosis is a common vascular disease, which is characterized by lipid deposition and related inflammatory reactions. Vulnerable atherosclerotic plaque is the main pathological cause of acute cardiovascular events. Therefore, early detection and timely interventional treatment of vulnerable plaques are of clinical significance. Although a variety of clinical methods have been developed for the diagnosis and treatment of vulnerable plaques, the acute clinical events caused by vulnerable plaques frequently occur. Nanoparticles have shown huge potential in this regard. Nanoparticles are widely applied in imaging because their unique optical properties can efficiently label tissues and cells to detect the state of disease. Metal nanoparticles can achieve high-resolution imaging, which can also be used as drug delivery carriers to improve therapeutic effect. In this article, recent research progress in the use of nanoparticles in targeted diagnosis of vulnerable atherosclerotic plaques was reviewed, and the future development of nanoparticles in related fields and the challenges and opportunities for clinical transformation were also illustrated.

【Key words】Atherosclerosis; Vulnerable plaque; Nanoparticles; Targeted diagnosis; Contrast medium;

Molecular imaging technique

動(dòng)脈粥樣硬化(atherosclerosis,AS)是一種慢性炎癥性疾病,其發(fā)生發(fā)展與內(nèi)皮細(xì)胞損傷、脂質(zhì)沉積、炎癥細(xì)胞浸潤(rùn)密切相關(guān)。AS在西方國(guó)家是主要死因之一,而隨著中國(guó)人民生活水平的提高,其病死率在中國(guó)也逐漸上升。流行病學(xué)研究顯示,由易損斑塊破裂引起的心血管事件病死率從1990年的11%上升到2016年的25%[1]。AS是進(jìn)行性疾病,早期無(wú)明顯癥狀,但會(huì)逐漸形成斑塊。斑塊容易破裂形成血栓,引發(fā)心腦血管事件。準(zhǔn)確評(píng)估斑塊進(jìn)展和易損程度對(duì)預(yù)防心腦血管病至關(guān)重要。因此,迫切需要一種長(zhǎng)期可重復(fù)評(píng)估且風(fēng)險(xiǎn)最小的非侵入性診斷方法。而納米科技的發(fā)展為AS的診斷提供了新工具,納米顆粒具有均一粒徑,可到達(dá)全身各組織和病變部位,甚至能夠主動(dòng)或被動(dòng)地穿透血管到達(dá)病變部位[2],并在不同成像模態(tài)下成像。同時(shí)納米顆粒的比表面積較大,這使得在其表面可以修飾大量的化學(xué)基團(tuán)(包括氨基、羧基或巰基)[3]。所以納米顆粒可設(shè)計(jì)為新型診斷AS的分子水平成像平臺(tái)[4]。

1 AS發(fā)展過(guò)程中可作為納米顆粒靶向表位的分子細(xì)胞事件

AS的發(fā)展過(guò)程通常從內(nèi)皮細(xì)胞損傷和炎癥反應(yīng)開始,隨后脂質(zhì)和膽固醇積聚在血管壁上形成脂質(zhì)斑,逐漸發(fā)展為斑塊。過(guò)程中一系列特異性細(xì)胞和分子事件發(fā)揮著重要作用,例如平滑肌細(xì)胞的增殖和遷移、炎癥細(xì)胞的浸潤(rùn)、氧化應(yīng)激和細(xì)胞凋亡等。而納米顆??梢詫⑦@些特異性的分子事件作為局部靶向表位,用于探測(cè)和治療AS[5]。

內(nèi)皮細(xì)胞功能障礙是AS發(fā)展的起始階段[6],可引發(fā)炎癥反應(yīng)和細(xì)胞黏附分子的表達(dá),吸引炎癥細(xì)胞的遷移和聚集,導(dǎo)致動(dòng)脈壁的永久性炎癥狀態(tài)[7-8]。因此,內(nèi)皮細(xì)胞功能障礙被認(rèn)為是檢測(cè)早期或仍然可逆的AS的特定特征之一[9]。泡沫巨噬細(xì)胞是AS斑塊從穩(wěn)定階段進(jìn)展到不穩(wěn)定階段的關(guān)鍵特征。巨噬細(xì)胞在脂質(zhì)攝入的刺激下轉(zhuǎn)化為泡沫細(xì)胞[10]。在這個(gè)階段,促炎性巨噬細(xì)胞會(huì)表達(dá)清道夫受體(包括巨噬細(xì)胞清道夫受體1、CD36受體和凝集素樣氧化受體),以促進(jìn)炎癥反應(yīng),因此被認(rèn)為是斑塊不穩(wěn)定性的理想標(biāo)志物[11]。除了巨噬細(xì)胞,血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)也在泡沫巨噬細(xì)胞形成中發(fā)揮重要作用[12]。一些直接對(duì)VSMC具有致AS作用的蛋白質(zhì)(如profilin-1),被認(rèn)為是泡沫巨噬細(xì)胞在不穩(wěn)定斑塊中的可靶向治療的目標(biāo)[13]。新血管形成也是AS進(jìn)展的重要特征之一[14],斑塊內(nèi)缺氧和炎癥刺激促使血管壁釋放血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)等[15],促進(jìn)血管的新生和擴(kuò)張,容易導(dǎo)致斑塊出血,加劇炎癥反應(yīng)和斑塊的不穩(wěn)定[16]。易損斑塊的形成和破裂是AS發(fā)展的關(guān)鍵過(guò)程。氧化低密度脂蛋白(oxidized low density lipoprotein,OX-LDL)導(dǎo)致巨噬細(xì)胞形成泡沫細(xì)胞,造成斑塊侵蝕、組織溶解和纖維帽破裂[17],引起炎癥反應(yīng)[18]。一般認(rèn)為易損斑塊具有薄的纖維帽、大的脂質(zhì)核心和大量巨噬細(xì)胞,容易破裂引發(fā)心血管事件[19]。

以上事件為納米顆粒輔助診斷AS提供了很多有潛力的目標(biāo),同時(shí)有研究者發(fā)現(xiàn)AS與腫瘤發(fā)生存在相似的病理過(guò)程和炎癥反應(yīng)[20],因此腫瘤診斷中使用的關(guān)鍵靶向成像原理可以為AS的診斷提供一種有希望的策略。

2 納米顆粒在AS靶向診斷成像中的應(yīng)用

目前,被用于AS斑塊風(fēng)險(xiǎn)分層的非侵入性成像模式有CT、MRI、超聲成像、PET、單光子發(fā)射計(jì)算機(jī)斷層掃描(single photon emission computed tomography,SPECT)[21],但這些方法在評(píng)估斑塊特征和監(jiān)測(cè)AS進(jìn)展方面存在局限性。納米科技的發(fā)展為醫(yī)學(xué)帶來(lái)新機(jī)遇,納米顆粒直徑在

1 nm~10 μm,可被精確控制物理特性(如形狀、尺寸、表面電荷和生物降解性)[22],并可作為成像造影劑,如Gd3+和Fe3+用于MRI、金用于X射線和CT、64Cu用于PET以及111In用于SPECT、熒光團(tuán)和量子點(diǎn)則常用于光學(xué)成像[23-25]。納米顆粒成像利用納米顆粒作為載體,表面修飾靶向性分子以定位特定目標(biāo),并可添加其他功能性分子增強(qiáng)信號(hào)或提供生物活性。修飾后的納米顆粒通過(guò)血液循環(huán)到目標(biāo)區(qū)域,可使用成像技術(shù)檢測(cè)納米顆粒的存在和分布。這為AS斑塊的高風(fēng)險(xiǎn)識(shí)別、病情監(jiān)測(cè)和治療評(píng)估提供了新的工具。

2.1 納米顆粒在CT診斷AS中的應(yīng)用

CT是一種常用的醫(yī)學(xué)影像技術(shù),用X線探測(cè)人體組織并對(duì)不同組織對(duì)于X線的吸收程度進(jìn)行測(cè)量,以獲得人體內(nèi)部結(jié)構(gòu)和病變信息。在AS的診斷中,斑塊鈣化被認(rèn)為是AS的標(biāo)志,長(zhǎng)期以來(lái)鈣評(píng)分被用于冠狀動(dòng)脈斑塊負(fù)荷,高分辨率CT可用于檢測(cè)斑塊鈣化[26]。然而,大多數(shù)斑塊并沒(méi)有鈣化,軟組織對(duì)X線的吸收程度低,因此用CT來(lái)診斷非鈣化斑塊的易損性比較困難。為了更好地診斷易損性,通常使用碘化造影劑,但血液循環(huán)中的小分子碘化劑被快速清除,需要使用高劑量才能獲得清晰的CT圖像,這又可能引發(fā)腎毒性和碘超敏反應(yīng)。因此,可以考慮利用納米顆粒來(lái)提高循環(huán)時(shí)間和遞送效率,開發(fā)新一代的高性能斑塊成像CT造影劑。

研究人員為了解決無(wú)機(jī)小分子碘造影劑在體內(nèi)的問(wèn)題,對(duì)比了各種元素及物理化學(xué)方法,合成了一系列新型的碘造影劑,包括碘納米脂質(zhì)體、碘酰胺乳以及聚合物納米粒子和其他碘化納米造影劑。這些創(chuàng)新材料和造影劑可以改善體內(nèi)非特異性分布和體內(nèi)循環(huán)時(shí)間短等問(wèn)題,并減少過(guò)敏反應(yīng)。研究人員設(shè)計(jì)了用于CT檢測(cè)巨噬細(xì)胞的碘化納米顆粒造影劑N1177[27]和一種直徑80 nm的量子點(diǎn)碘化油納米乳液[28]作為CT/熒光雙模態(tài)造影劑,結(jié)果表明這兩種造影劑都可以特異性靶向巨噬細(xì)胞并可用于AS斑塊成像。研究表明,金屬納米粒子如金、鉭、鎢、鉍等具有強(qiáng)X射線吸收能力,已作為CT造影劑引起廣泛關(guān)注。Khademi等[29]報(bào)道了一種通過(guò)半胱胺連接的葉酸金納米粒子(AuNPs)的體內(nèi)靶向成像,用于CT靶向鼻咽頭頸癌可獲得清晰的影像,且相比傳統(tǒng)碘造影劑具有更長(zhǎng)的最佳檢測(cè)時(shí)間和高水平的CT衰減值。金是具有高X射線吸收能力的元素,其單位質(zhì)量的X射線吸收效果是碘的2.7倍[30]。Cormode等[31]用含有金納米顆粒的納米晶體制作了多模態(tài)HDL模擬納米顆粒,可用于小鼠AS斑塊巨噬細(xì)胞的成像。并且這個(gè)研究小組還開發(fā)了Au-HDL在多色CT上的應(yīng)用,用于檢測(cè)巨噬細(xì)胞負(fù)荷、鈣化和AS斑塊狹窄[32]。Si-Mohamed等[33]也證實(shí)了利用多色CT與金納米顆粒相結(jié)合來(lái)檢測(cè)鈣化AS斑塊中巨噬細(xì)胞負(fù)荷的可行性,該技術(shù)有望用于評(píng)估AS等多種診斷任務(wù)。

2.2 納米顆粒在MRI診斷AS中的應(yīng)用

MRI是一種能夠提供高軟組織對(duì)比度、高信噪比和高分辨率的成像工具,被廣泛應(yīng)用于AS斑塊的臨床診斷和評(píng)估[34]。MRI與其他成像方式相比具有獨(dú)特優(yōu)勢(shì),不同的斑塊結(jié)構(gòu)(如纖維帽和壞死核心)可生成不同的參數(shù)圖像序列[35],T1加權(quán)像可顯示脂質(zhì)核心的高信號(hào)強(qiáng)度,T2加權(quán)像可顯示出血或水分的高信號(hào)強(qiáng)度。然而,MRI成像時(shí)間較長(zhǎng)、敏感性較低,對(duì)患者合作度要求較高,而且運(yùn)動(dòng)偽影會(huì)擾亂其在AS易損斑塊早期識(shí)別和風(fēng)險(xiǎn)評(píng)估方面的應(yīng)用。隨著對(duì)醫(yī)學(xué)和納米技術(shù)的深入研究,未來(lái)可以通過(guò)納米材料在分子水平上檢測(cè)生物學(xué)過(guò)程,評(píng)估斑塊易損性。

MRI造影劑分為正性和負(fù)性[36],正造影劑T1含有鉻絡(luò)合物和Gd2O3及MnO納米材料等順磁性物質(zhì),負(fù)造影劑T2使用Fe3O4、ZnFe2O4、Fe5C2等超順磁性氧化鐵納米材料。這些納米顆??梢酝ㄟ^(guò)表面修飾被特定細(xì)胞攝取,從而在特定組織或細(xì)胞中積聚并增強(qiáng)磁共振信號(hào)?;阢t的T1造影劑可產(chǎn)生“亮”信號(hào),增強(qiáng)靶組織的對(duì)比度。然而,MRI分辨率有限,識(shí)別纖維帽等微結(jié)構(gòu)仍具挑戰(zhàn)性,而纖維帽的完整性對(duì)斑塊的診斷和治療具有重要意義。為了克服分辨率限制,Ramirez-Carracedo等[37]通過(guò)使用富含鉻的順磁性熒光膠束納米顆粒檢測(cè)出斑塊內(nèi)基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)誘導(dǎo)劑的水平,證實(shí)纖維帽的脆性與相關(guān)酶的變化存在可靠的關(guān)系。Wei等[38]采用血小板膜作為鉻仿生納米顆粒的功能涂層,增強(qiáng)了纖維帽區(qū)域在體內(nèi)的對(duì)比度,靶向檢測(cè)出AS部位。這種方法還提供了關(guān)于靶向區(qū)域的潛在生物學(xué)信息,可能有助于更完整地揭示疾病隨時(shí)間發(fā)展的過(guò)程。

T2造影劑則是MRI圖像中的“暗”信號(hào),用于更清晰地觀察和診斷病變區(qū)域。它們被廣泛應(yīng)用于腫瘤診斷、血管成像和炎癥檢測(cè)。T2造影劑包含超順磁性氧化鐵納米顆粒(superparamagnetic iron oxide,SPIO),它們具有小體積和較長(zhǎng)的半衰期,可以在體內(nèi)保持較長(zhǎng)時(shí)間,而且易于在體內(nèi)擴(kuò)散和分布,并最終被生物降解,減少潛在副作用。因此,T2造影劑被認(rèn)為是重要的MRI對(duì)比劑之一[13]。右旋糖酐包被的超小超順磁性氧化鐵顆粒(ultrasmall superparamagnetic iron oxide,USPIO)

易被巨噬細(xì)胞吸收,引起T2縮短效應(yīng)。注射USPIO后,MRI可檢測(cè)到斑塊中的信號(hào)空洞,并定位于積累鐵顆粒的巨噬細(xì)胞區(qū)域。因此USPIO可用于靶向檢測(cè)斑塊中的巨噬細(xì)胞含量[39],評(píng)估易破裂斑塊的進(jìn)展或脆弱性[40]。Mo等[41]將白介素(IL)-6當(dāng)作靶點(diǎn)來(lái)構(gòu)建抗IL-6-USPIO,可檢測(cè)巨噬細(xì)胞滲透和斑塊穩(wěn)定性。組織因子是一種存在于細(xì)胞表面的跨膜糖蛋白,可以促進(jìn)斑塊的內(nèi)膜和血管生成[42],魏求哲[43]將增強(qiáng)型綠色熒光蛋白(enhanced green fluorescent protein,EGFP)標(biāo)記的 EGF1 融合蛋白(EGFP-EGF1)和SPIONs通過(guò)縮合反應(yīng)構(gòu)建了EGFP-EGF1-SPIONs納米探針,可靶向組織因子高表達(dá)的細(xì)胞、組織或器官,有效靶向AS斑塊。

2.3 納米顆粒在PET/SPECT診斷AS中的應(yīng)用

PET和SPECT是核成像技術(shù),使用放射性示蹤劑檢測(cè)動(dòng)脈系統(tǒng)內(nèi)病理過(guò)程的分子靶標(biāo)。PET通過(guò)測(cè)量正電子放射示蹤劑在體內(nèi)分布和動(dòng)態(tài)變化,反映器官或組織的生理功能和代謝活動(dòng)。SPECT則用γ射線示蹤劑測(cè)量組織或血流情況[44]。18F-氟脫氧葡萄糖(18F-FDG)是最常見(jiàn)的示蹤劑,可檢測(cè)斑塊破壞的關(guān)鍵特征,包括新生血管的形成[45]。研究人員開發(fā)了68Gapentixafor(對(duì)炎性細(xì)胞上表達(dá)的CXCR4受體成像)和68Ga-DOTATATE(對(duì)生長(zhǎng)抑素受體亞型-2的高特異性結(jié)合親和力)兩種68Ga標(biāo)記的示蹤劑,用于研究AS斑塊相關(guān)受體的表達(dá)情況[46-47]。但PET/SPECT的空間分辨率較低,難以提供高清晰度的圖像,且不能提供解剖學(xué)信息[48],需與CT或MRI聯(lián)合使用。所以優(yōu)化放射性示蹤劑以提高AS斑塊靶向的精準(zhǔn)度和分辨率是關(guān)鍵。

有學(xué)者研究發(fā)現(xiàn)葉酸受體是檢測(cè)炎性疾病和腫瘤病變的理想標(biāo)志物[49]。葉酸探針99mTc-EC20的肽衍生物能夠靶向葉酸受體陽(yáng)性活化巨噬細(xì)胞,對(duì)病理部位進(jìn)行成像[50]。18氟化鋁標(biāo)記的1,4,7-三氮雜環(huán)壬烷-1,4,7-三乙酸偶聯(lián)葉酸(18F-FOL)通過(guò)PET/CT成像,成為一種新的AS斑塊檢測(cè)工具[51]。在這些研究中,CT可以更準(zhǔn)確地界定病理特征,多模式成像平臺(tái)結(jié)合了CT和SPECT的高靈敏度和高分辨率,為臨床醫(yī)生提供了更全面、更準(zhǔn)確的信息。Guo等[52]開發(fā)了一種葉酸綴合的Pd@Au納米材料(Pd@Au-PEG-FA),通過(guò)SPECT、CT和光聲多模式成像,為葉酸受體存在的情況下AS斑塊的檢測(cè)提供了有效方法。PET/MRI也是靶向檢測(cè)易損斑塊的常用方法,Beldman等[53]使用68Zr標(biāo)記的透明質(zhì)酸納米顆粒(68Zr-HA NP)進(jìn)行PET/MRI,對(duì)小鼠AS斑塊相關(guān)巨噬細(xì)胞表現(xiàn)出高度選擇性。另一項(xiàng)研究利用锝99m標(biāo)記的天然人重鏈鐵蛋白納米籠(humen heavy chain ferritin,HFn)(99mTc-HFn)可用于SPECT和CT聯(lián)合檢測(cè),識(shí)別小鼠富含巨噬細(xì)胞的AS斑塊[54]。這些研究為利用生物工程化的內(nèi)源性人鐵蛋白納米籠識(shí)別易損和早期活性斑塊以及評(píng)估抗炎治療的潛力奠定了基礎(chǔ)。

2.4 納米顆粒在超聲成像診斷AS中的應(yīng)用

超聲成像在血管疾病診斷中應(yīng)用廣泛,可實(shí)現(xiàn)實(shí)時(shí)成像,檢測(cè)動(dòng)脈病變,還具有無(wú)創(chuàng)、方便、經(jīng)濟(jì)等優(yōu)點(diǎn)。但因物理特性所限,檢測(cè)深部和小血管結(jié)構(gòu)中的斑塊以及確定斑塊組成還有難度,通常需要使用造影劑增強(qiáng)成像效果。微泡或納米泡是常用的造影劑[55],微泡或納米泡的外殼由生物可降解聚合物以及其他表面活性劑組成,其內(nèi)部含有氣體[56]??梢酝ㄟ^(guò)靜脈注射或直接注入體內(nèi),與超聲波產(chǎn)生回聲信號(hào),被接收器捕獲并轉(zhuǎn)換成圖像,顯示出血管、器官或組織的形態(tài)和功能。所以分子超聲成像可在AS早期非侵入性評(píng)估易損斑塊。

動(dòng)物AS模型中的研究中,微泡或納米泡可用于檢測(cè)炎癥分子及血管細(xì)胞黏附分子(vascular cell adhesion molecular-1,VCAM-1)、細(xì)胞間黏附分子(intercellular cell adhesion molecule-1,ICAM-1)、P-選擇素或von-Willebrand因子的變化[57]。Kaufmann等[58]成功使用VCAM-1靶向微泡來(lái)檢測(cè)AS斑塊中的血管炎癥變化,針對(duì)VEGF-2[59]和IL-8[60]的靶向研究也取得了同樣的成果。正如前文所述,巨噬細(xì)胞的凋亡對(duì)斑塊的易損性有影響,而膜聯(lián)蛋白V-PS結(jié)合物可以作為巨噬細(xì)胞凋亡早期階段的指標(biāo)。所以Ma等[61]通過(guò)優(yōu)化膜水合和生物素-抗生物素蛋白方法制備了攜帶凋亡分子探針AV的納米泡,可以靶向凋亡的巨噬細(xì)胞來(lái)評(píng)估AS病變和識(shí)別易損斑塊。這些研究主要關(guān)注斑塊內(nèi)皮細(xì)胞表面的細(xì)胞因子,但利用血小板和血栓來(lái)檢測(cè)AS斑塊表型的研究較少,盡管血小板活化和血栓形成在AS斑塊的發(fā)展和破裂中起著關(guān)鍵作用。郭勝存[62]針對(duì)這一研究空白,通過(guò)靶向活化血小板上的GPIIb/IIa受體來(lái)評(píng)價(jià)AS易損斑塊。采用共價(jià)結(jié)合的方法構(gòu)建出攜帶環(huán)精氨酸-甘氨酸-天冬氨酸(RGD)寡肽的靶向超聲微泡(MB-cRGD),證實(shí)這些微泡能夠在流體沖擊下與GPⅡb/Ⅱa受體特異結(jié)合,成功實(shí)現(xiàn)了血流速度大、剪切應(yīng)力高的大動(dòng)脈血栓的超聲分子成像。

2.5 納米顆粒在光學(xué)成像診斷AS中的應(yīng)用

光學(xué)成像是一種常用的血管病變觀察方法,具有高分辨率、高靈敏度、無(wú)輻射等優(yōu)點(diǎn),但由于光在組織中穿透深度有限,深部器官中的斑塊成像會(huì)受到限制。光學(xué)造影劑可以幫助定位斑塊中的特定生物標(biāo)志物,提供更清晰的圖像信息,并可以通過(guò)特定的熒光特性增強(qiáng)對(duì)斑塊的特異性和定量分析能力。

近紅外熒光成像(near-infrared fluorescence,NIRF)技術(shù)解決了組織穿透力差的問(wèn)題,通過(guò)降低組織自發(fā)熒光產(chǎn)生的噪聲,可以精確檢測(cè)小動(dòng)物體內(nèi)深層組織,提高了血管壁成像的準(zhǔn)確性。NIRF成像具有高靈敏度,可以通過(guò)修飾具有近紅外熒光發(fā)射的染料分子來(lái)靶向斑塊,是具有熒光成像功能的雙功能生物納米材料[63]。Narita等[64]開發(fā)了新的熒光成像系統(tǒng),以吲哚菁綠包裹肽標(biāo)記的磷脂酰絲氨酸(phosphatidylerine,PS)脂質(zhì)體(P-ICG2-PS-Lip),可檢測(cè)易發(fā)生栓塞的AS斑塊。Kim等[65]將巰基乙二醇?xì)ぞ厶桥c氯甲酸膽甾醇等化學(xué)偶聯(lián),特異性靶向高風(fēng)險(xiǎn)斑塊中豐富的巨噬細(xì)胞亞群。Qiao等[66]通過(guò)將NaGdF4∶Yb, Er@NaGdF4納米粒子與骨橋蛋白抗體(anti-OPN)相結(jié)合,構(gòu)建出一種具有特異性的上轉(zhuǎn)換發(fā)光探針,對(duì)于檢測(cè)體內(nèi)易損斑塊具有重要意義。脆弱和穩(wěn)定斑塊可以引發(fā)不同的信號(hào),分別降低剪切應(yīng)力和振蕩剪切應(yīng)力,并產(chǎn)生不同強(qiáng)度的信號(hào)。核殼粒子的平均尺寸為18.3 nm,可區(qū)分脆弱和穩(wěn)定斑塊所誘發(fā)的信號(hào),為精確診斷提供潛在價(jià)值。

近紅外Ⅱ區(qū)域(1 000~1 700 nm)的光學(xué)成像技術(shù)是一種在生物醫(yī)學(xué)中應(yīng)用廣泛的技術(shù)。近紅外Ⅱ區(qū)域的光子能夠穿透更深的生物組織,同時(shí)不會(huì)對(duì)組織造成明顯的熱損傷或化學(xué)損傷。常見(jiàn)的是利用近紅外Ⅱ區(qū)域的光吸收效應(yīng),通過(guò)測(cè)量組織對(duì)特定波長(zhǎng)光線的吸收程度,來(lái)獲取組織的結(jié)構(gòu)和功能信息[67]。例如,Zhang等[68]開發(fā)了一種新的人源單鏈可變片段(scFv)抗體ASA6-NPs,通過(guò)NIR-Ⅱ成像技術(shù)的高分辨率和出色的信號(hào)背景比,在較短時(shí)間內(nèi)準(zhǔn)確地識(shí)別斑塊中的氧化特異性表位(oxidation specific epitopes,OSE)水平,從而間接評(píng)估易損斑塊的程度。

2.6 納米顆粒在多模態(tài)成像診斷AS中的應(yīng)用

多種成像技術(shù)和診斷模式聯(lián)合使用可以克服單一成像模式引導(dǎo)的診斷方法的局限性,從而獲得更可靠、全面和準(zhǔn)確的診斷信息[69]。AS斑塊具有復(fù)雜的細(xì)胞和組織成分,所以綜合MRI、NIRF、PET/SPECT的多模態(tài)成像平臺(tái)是未來(lái)的發(fā)展趨勢(shì),多模態(tài)成像技術(shù)的發(fā)展和成像對(duì)比劑的進(jìn)步帶來(lái)了巨大創(chuàng)新。例如,Li等[70]合成了膜聯(lián)蛋白V(Annexin V)修飾的雜化金納米成像探針99mTc-GNPsAnnexin V用于SPECT/CT成像。Cheng等[71]同樣通過(guò)結(jié)合Annexin V成功制備了基于USPIO的混合靶向納米顆粒系統(tǒng),可作為PET/MRI或SPECT/MRI的靶向成像探針,有望應(yīng)用于更多疾病。

在材料科學(xué)的推動(dòng)下,針對(duì)AS的多模態(tài)成像納米顆粒正在深入探索。其中,Sun等[72]利用生物礦化反應(yīng)成功制備了光學(xué)成像/MRI雙模態(tài)的納米探針Gd2O3/AuNCs@BSA,修飾靶向多肽RGD后實(shí)現(xiàn)了在體內(nèi)腫瘤的靶向富集;Wang等[73]通過(guò)縮合反應(yīng)將多克隆MARCO抗體綴合至NaGdF4:Yb,Er@NaGdF4表面來(lái)構(gòu)建了光學(xué)成像/MRI雙模態(tài)成像探針,光學(xué)成像具有高靈敏度和高空間分辨率,而MRI提供解剖信息,可以可視化M1巨噬細(xì)胞和識(shí)別易損斑塊;Yao等[74]將鐵酸錳、血卟啉單甲醚和全氟戊烷包封到聚乳酸-乙醇酸殼中,并與抗VEGFR-2抗體進(jìn)行偶聯(lián),設(shè)計(jì)成用于斑塊血管生成治療診斷中的多模態(tài)(超聲成像/MRI/PA)成像顆粒。

通過(guò)將納米顆粒與不同成像技術(shù)相結(jié)合,可以提供疾病的多參數(shù)信息,非侵入性地評(píng)估斑塊中的血管生成和診斷早期不穩(wěn)定的AS斑塊。同時(shí)多模態(tài)成像引導(dǎo)的治療提高了成像的靈敏度和特異性,實(shí)現(xiàn)了深層組織成像,實(shí)時(shí)監(jiān)測(cè)和治療,減少了不良反應(yīng),提高患者依從性。

3 納米顆粒的代謝與排出人體過(guò)程

納米顆粒在體內(nèi)代謝時(shí)會(huì)失去原有結(jié)構(gòu),納米結(jié)構(gòu)裂解,藥物釋放到病變部位發(fā)揮作用。納米材料是納米顆粒代謝的關(guān)鍵,金、銀、二氧化硅等有機(jī)納米顆粒能在體內(nèi)穩(wěn)定存在長(zhǎng)達(dá)數(shù)月甚至數(shù)年[75],而一些無(wú)機(jī)納米粒子可以被降解,釋放出金屬離子并與生物分子發(fā)生反應(yīng)。生物可降解的有機(jī)納米顆粒可以被降解成小分子并排出體外,但其代謝物可能具有藥理學(xué)活性,影響藥物運(yùn)輸并產(chǎn)生毒性[76]。

納米顆粒在完成其特定功能后,同樣需要盡快從體內(nèi)排出,以防潛在的毒性反應(yīng)。在人體內(nèi),肝臟和腎臟是主要的排泄器官,尤其是腎臟的濾過(guò)作用,研究發(fā)現(xiàn),直徑>15 nm的納米粒子無(wú)法通過(guò)腎臟進(jìn)行排出;相反,對(duì)于那些直徑≤5.5 nm

的納米粒子來(lái)說(shuō),它們能夠高效地經(jīng)由尿液途徑被排出體外[77]。未通過(guò)腎臟排出的納米顆粒主要由肝膽系統(tǒng)處理。肝膽排泄比腎臟慢,但對(duì)于難以降解或無(wú)法通過(guò)腎臟排出的納米顆粒,可以通過(guò)靶向配體修飾促進(jìn)肝細(xì)胞吸收和肝膽清除[78],顆粒大小和電荷均影響膽汁排泄。

4 總 結(jié)

現(xiàn)代成像技術(shù)快速進(jìn)步,提高了心血管疾病檢測(cè)和表征的能力。相較于傳統(tǒng)醫(yī)學(xué)影像技術(shù),現(xiàn)代成像技術(shù)具有早期特異性診斷、動(dòng)態(tài)觀察病情發(fā)展、深入了解疾病發(fā)生和發(fā)展的分子機(jī)制、無(wú)創(chuàng)性評(píng)估、對(duì)特定分子標(biāo)記物具有高親和力等優(yōu)勢(shì),實(shí)現(xiàn)靶向診斷和治療,并提高診斷準(zhǔn)確性,為心血管疾病的早期診斷和治療提供了新的機(jī)會(huì)。

納米顆粒在AS易損斑塊靶向診斷中取得成果,但仍面臨生產(chǎn)過(guò)程復(fù)雜、成本高、缺乏直接診斷斑塊易損性的方法等挑戰(zhàn)和限制,另外其生物相容性與安全性也需深入研究。需進(jìn)一步研究易損斑塊的形成機(jī)制與演變過(guò)程,優(yōu)化制備工藝,尋找更具針對(duì)性的標(biāo)志物與治療靶點(diǎn)。同時(shí)納米技術(shù)在心血管疾病中的應(yīng)用遠(yuǎn)不止于可注射納米顆粒,其在心血管疾病治療和管理的其他方面也發(fā)揮著重要作用。

參 考 文 獻(xiàn)

[1] ZHAO D, LIU J, WANG M, et al. Epidemiology of cardiovascular disease in China: current features and implications[J]. Nat Rev Cardiol, 2019, 16(4): 203-212. DOI: 10.1038/s41569-018-0119-4.

[2] PARK C M, KIM Y M, KIM K H, et al. Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: a mini review[J]. Chemosphere, 2019, 221: 392-402. DOI: 10.1016/j.chemosphere.2019.01.063.

[3] RUNOWSKI M, STOPIKOWSKA N, SZEREMETA D, et al. Upconverting lanthanide fluoride Core@Shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF4: Yb3+- Er3+@SiO2 temperature sensor[J]. ACS Appl Mater Interfaces, 2019, 11(14): 13389-13396. DOI: 10.1021/acsami.9b00445.

[4] GUO B, LI Z, TU P, et al. Molecular imaging and non-molecular imaging of atherosclerotic plaque thrombosis[J]. Front Cardiovasc Med, 2021, 8: 692915. DOI: 10.3389/fcvm.2021.692915.

[5] B?CK M, YURDAGUL A Jr, TABAS I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities[J]. Nat Rev Cardiol, 2019, 16(7): 389-406. DOI: 10.1038/s41569-019-0169-2.

[6] SU Z, WANG J, XIAO C, et al. Functional role of Ash2l in oxLDL induced endothelial dysfunction and atherosclerosis[J]. Cell Mol Life Sci, 2024, 81(1): 62. DOI: 10.1007/s00018-024-05130-5.

[7] JIN T, WANG H, LIU Y, et al. Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis[J]. J Mol Med, 2024, 102(3): 313-335. DOI: 10.1007/s00109-023-02413-5.

[8] KWON S P, JEON S, LEE S H, et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging[J]. Biomaterials, 2018, 150: 125-136. DOI: 10.1016/j.biomaterials.2017.10.017.

[9] TIWARI A, ELGRABLY B, SAAR G, et al. Multi-scale imaging of vascular pathologies in cardiovascular disease[J]. Front Med, 2021, 8: 754369. DOI: 10.3389/fmed.2021.754369.

[10] 黃松雄, 張玉琴, 劉巧婷, 等. 基于巨噬細(xì)胞自噬探討暢脈樂(lè)膠囊對(duì)動(dòng)脈粥樣硬化大鼠斑塊穩(wěn)定性及凝血功能影響的機(jī)制[J]. 中國(guó)老年學(xué)雜志, 2024, 44(4): 871-876. DOI: 10.3969/j.issn.1005-9202.2024.04.030.

HUANG S X, ZHANG Y Q, LIU Q T, et al. Based on macrophage autophagy, the mechanism of Changmaile capsule on plaque stability and coagulation function in atherosclerotic rats was discussed[J]. Chin J Gerontol, 2024, 44(4): 871-876. DOI: 10.3969/j.issn.1005-9202.2024.04.030.

[11] BENTZON J F, OTSUKA F, VIRMANI R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res, 2014, 114(12): 1852-1866. DOI: 10.1161/CIRCRESAHA.114.302721.

[12] LIU P, WANG Y, TIAN K, et al. Artesunate inhibits macrophage-like phenotype switching of vascular smooth muscle cells and attenuates vascular inflammatory injury in atherosclerosis via NLRP3[J]. Biomedecine Pharmacother, 2024, 172: 116255. DOI: 10.1016/j.biopha.2024.116255.

[13] 王亞斌. Profilin-1靶向的多模態(tài)納米探針對(duì)動(dòng)脈粥樣硬化斑塊的分子影像研究[D]. 西安: 第四軍醫(yī)大學(xué), 2014.

WANG Y B. Multimodality molecular imaging of the features of atherosclerotic plaque via profilin-1 targeted multifunctional nanoprobe[D]. Xian: Fourth-Military-Medical-University, 2014.

[14] BALMOS I A, SLEVIN M, BRINZANIUC K, et al. Intraplaque neovascularization, CD68+ and iNOS2+ macrophage infiltrate intensity are associated with atherothrombosis and intraplaque hemorrhage in severe carotid atherosclerosis[J]. Biomedicines, 2023, 11(12): 3275. DOI: 10.3390/biomedicines11123275.

[15] ABELA G S, KATKOORI V R, PATHAK D R, et al. Cholesterol crystals induce mechanical trauma, inflammation, and neo-vascularization in solid cancers as in atherosclerosis[J]. Am Heart J Plus, 2023, 35: 100317. DOI: 10.1016/j.ahjo.2023.100317.

[16] SLEPZOF A, BELYAEVA S, NAZARENKO M. Low T-cell content associated with high rate of neovascularization in atherosclerosis of carotid arteries[J]. Atherosclerosis, 2023, 379: S26. DOI: 10.1016/j.atherosclerosis.2023.06.132.

[17] TING K K Y, YU P, IYAYI M, et al. Oxidized low-density lipoprotein accumulation in macrophages impairs lipopolysaccharide-induced activation of AKT2, ATP citrate lyase, acetyl-coenzyme A production, and inflammatory gene H3K27 acetylation[J]. Immunohorizons, 2024, 8(1): 57-73. DOI: 10.4049/immunohorizons.2300101.

[18] KARUNAKARAN D, GEOFFRION M, WEI L, et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis[J]. Sci Adv, 2016, 2(7): e1600224. DOI: 10.1126/sciadv.1600224.

[19] 丁恩慈, 陸東燕, 魏利娟, 等. 動(dòng)脈粥樣硬化易損斑塊無(wú)創(chuàng)檢測(cè)的分子影像研究進(jìn)展[J]. 中國(guó)CT和MRI雜志, 2022, 20(12): 184-185, 187. DOI: 10.3969/j.issn.1672-

5131.2022.12.068.

DING E C, LU D Y, WEI L J, et al. The progress of molecular imaging in non-invasive detection of atherosclerotic vulnerable plaque[J]. Chin J CT MRI, 2022, 20(12): 184-185, 187. DOI: 10.3969/j.issn.1672-5131.2022.12.068.

[20] 高曉宇, 王文萍. 基于“血脈癥積” 理論探討動(dòng)脈粥樣硬化與腫瘤的關(guān)系[J]. 遼寧中醫(yī)藥大學(xué)學(xué)報(bào), 2022, 24(9): 141-145. DOI: 10.13194/j.issn.1673-842x.2022.09.031.

GAO X Y, WANG W P. Exploration of the relationship between atherosclerosis and cancer based on the theory of “gynecologic abdominal lumps arise from vessels”[J]. J Liaoning Univ Tradit Chin Med, 2022, 24(9): 141-145. DOI: 10.13194/j.issn.1673-842x.2022.09.031.

[21] LANGER H, SCH?NBERGER T, BIGALKE B, et al. Where is the trace? Molecular imaging of vulnerable atherosclerotic plaques[J]. Semin Thromb Hemost, 2007, 33(2): 151-158. DOI: 10.1055/s-2007-969028.

[22] 胡皖華, 胥義周, 白正林, 等. 巨噬細(xì)胞靶向的納米載藥平臺(tái)治療RA滑膜炎研究新進(jìn)展[J]. 新醫(yī)學(xué), 2024, 55(2): 101-105. DOI: 10.3969/j.issn.0253-9802.2024.02.005.

HU W H, XU Y Z, BAI Z L, et al. Recent advances in macrophage-targeted nanoparticle drug delivery platforms for treating synovitis in rheumatoid arthritis[J]. J New Med, 2024, 55(2): 101-105. DOI: 10.3969/j.issn.0253-9802.2024.02.005.

[23] CHEN J, ZHANG X, MILLICAN R, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis[J]. Adv Drug Deliv Rev, 2021, 170: 142-199. DOI: 10.1016/j.addr.2021.01.005.

[24] HU B, BOAKYE-YIADOM K O, YU W, et al. Nanomedicine approaches for advanced diagnosis and treatment of atherosclerosis and related ischemic diseases[J]. Adv Healthc Mater, 2020, 9(16): e2000336. DOI: 10.1002/adhm.202000336.

[25] SHI C, XIE H, MA Y, et al. Nanoscale technologies in highly sensitive diagnosis of cardiovascular diseases[J]. Front Bioeng Biotechnol, 2020, 8: 531. DOI: 10.3389/fbioe.2020.00531.

[26] 姚杏紅, 邱艷, 曾燁, 等. 動(dòng)脈粥樣硬化斑塊鈣化機(jī)制的研究進(jìn)展[J]. 生物化學(xué)與生物物理進(jìn)展, 2020, 47(7): 574-581. DOI: 10.16476/j.pibb.2020.0039.

YAO X H, QIU Y, ZENG Y, et al. Recent advances in calcification mechanism of atherosclerotic plaque[J]. Prog Biochem Biophys, 2020, 47(7): 574-581. DOI: 10.16476/j.pibb.2020.0039.

[27] HYAFIL F, CORNILY J C, FEIG J E, et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography[J]. Nat Med, 2007, 13(5): 636-641. DOI: 10.1038/nm1571.

[28] DING J, WANG Y, MA M, et al. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques[J]. Biomaterials, 2013, 34(1): 209-216. DOI: 10.1016/j.biomaterials.2012.09.025.

[29] KHADEMI S, SARKAR S, SHAKERI-ZADEH A, et al. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study[J]. Int J Biochem Cell Biol, 2019, 114: 105554. DOI: 10.1016/j.biocel.2019.06.002.

[30] VEDHANAYAGAM M, NAIR B U, SREERAM K J. Effect of functionalized gold nanoparticle on collagen stabilization for tissue engineering application[J]. Int J Biol Macromol, 2019, 123: 1211-1220. DOI: 10.1016/j.ijbiomac.2018.11.179.

[31] CORMODE D P, SKAJAA T, VAN SCHOONEVELD M M, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform[J]. Nano Lett, 2008, 8(11): 3715-3723. DOI: 10.1021/nl801958b.

[32] CORMODE D P, ROESSL E, THRAN A, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles[J]. Radiology, 2010, 256(3): 774-782. DOI: 10.1148/radiol.10092473.

[33] SI-MOHAMED S A, SIGOVAN M, HSU J C, et al. In vivo molecular K-edge imaging of atherosclerotic plaque using photon-counting CT[J]. Radiology, 2021, 300(1): 98-107. DOI: 10.1148/radiol.2021203968.

[34] GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol,2021,31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.

[35] THOMAS K E, FOTAKI A, BOTNAR R M, et al. Imaging methods: magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2023, 16(1): e014068. DOI: 10.1161/CIRCIMAGING.122.014068.

[36] CASPANI S, MAGALH?ES R, ARA?JO J P, et al. Magnetic nanomaterials as contrast agents for MRI[J]. Materials (Basel), 2020, 13(11): 2586. DOI: 10.3390/ma13112586.

[37] RAMIREZ-CARRACEDO R, TESORO L, HERNANDEZ I, et al. Non-invasive detection of extracellular matrix metalloproteinase inducer EMMPRIN, a new therapeutic target against atherosclerosis, inhibited by endothelial nitric oxide[J]. Int J Mol Sci, 2018, 19(10): 3248. DOI: 10.3390/ijms19103248.

[38] WEI X, YING M, DEHAINI D, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis[J]. ACS Nano, 2018, 12(1): 109-116. DOI: 10.1021/acsnano.7b07720.

[39] SATO H, FUJIMOTO S, KOGURE Y, et al. Feasibility of macrophage plaque imaging using novel ultrasmall superparamagnetic iron oxide in dual energy CT [J]. Eur J Radiol Open, 2018, 5: 87-91. DOI : 10.1016/j.ejro.2018.05.003.

[40] LI Y, PAN Y, WU X, et al. Dual-modality imaging of atherosclerotic plaques using ultrasmall superparamagnetic iron oxide labeled with rhodamine[J]. Nanomedicine (Lond), 2019, 14(15): 1935-1944. DOI: 10.2217/nnm-2019-0062.

[41] MO H, FU C, WU Z, et al. IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits[J]. RSC Adv, 2020, 10(26): 15346-15353. DOI: 10.1039/C9RA10509C.

[42] 馬曉菊. AV納米微泡靶向凋亡巨噬細(xì)胞抑制組織因子表達(dá)對(duì)動(dòng)脈粥樣硬化易損斑塊影響實(shí)驗(yàn)研究[D].西安:中國(guó)人民解放軍空軍軍醫(yī)大學(xué),2021.

MA X J. Experimental study on the effect of AV nanobubbles on atherosclerotic vulnerable plaques by targeting apoptotic macrophages to inhibit tissue factor expressi[D]. Xian: Chinese Peoples Liberation Army Air Force Military Medical University,2021.

[43] 魏求哲. 組織因子靶向性磁性納米探針對(duì)動(dòng)脈粥樣斑塊的檢測(cè)研究[D]. 武漢: 華中科技大學(xué), 2019.

WEI Q Z. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nano probe[D]. Wuhan:Huazhong University of Science and Technology, 2019.

[44] 朱德建, 韓瑤瑤, 吳利生, 等. 易損斑塊的診斷進(jìn)展[J]. 遼寧醫(yī)學(xué)雜志, 2020, 34(6): 54-59.

ZHU D J, HAN Y Y, WU L S, et al. Advances in the diagnosis of vulnerable plaques[J]. Med J Liaoning, 2020, 34(6): 54-59.

[45] 丁恩慈, 陸東燕, 魏利娟, 等. 18F-N a F及18F-FDG PET/CT顯像對(duì)動(dòng)脈粥樣硬化易損斑塊的診斷價(jià)值[J]. 中國(guó)CT和MRI雜志, 2022, 20(11): 170-173. DOI: 10.3969/j.issn.1672-

5131.2022.11.062.

DING E C, LU D Y, WEI L J, et al. The diagnostic value of 18F-NaF and 18F-FDG PET/CT imaging in atherosclerotic vulnerable plaque[J]. Chin J CT MRI, 2022, 20(11): 170-173. DOI: 10.3969/j.issn.1672-5131.2022.11.062.

[46] TARKIN J M, JOSHI F R, EVANS N R, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F] FDG PET imaging[J]. J Am Coll Cardiol,2017,69(14): 1774-1791. DOI: 10.1016/j.jacc.2017.01.060.

[47] HYAFIL F, PELISEK J, LAITINEN I, et al. Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-pentixafor for PET[J]. J Nucl Med, 2017, 58(3): 499-506. DOI: 10.2967/jnumed.116.179663.

[48] BALAJI V, SONG T A, MALEKZADEH M, et al. Artificial intelligence for PET and SPECT image enhancement[J]. J Nucl Med, 2024, 65(1): 4-12. DOI: 10.2967/jnumed.122.265000.

[49] LIAN S, YANG L, FENG Q, et al. Folate-receptor positive circulating tumor cell is a potential diagnostic marker of prostate cancer[J]. Front Oncol, 2021, 11: 708214. DOI: 10.3389/fonc.2021.708214.

[50] AYALA-L?PEZ W, XIA W, VARGHESE B, et al. Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages[J]. J Nucl Med,2010,51(5): 768-774.

[51] SILVOLA J M U, LI X G, VIRTA J, et al. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography[J]. Sci Rep, 2018, 8(1): 9720. DOI: 10.1038/s41598-018-27618-4.

[52] GUO Z, YANG L, CHEN M, et al. Molecular imaging of advanced atherosclerotic plaques with folate receptor-targeted 2D nanoprobes[J]. Nano Res, 2020, 13(1): 173-182. DOI: 10.1007/s12274-019-2592-4.

[53] BELDMAN T J, SENDERS M L, ALAARG A, et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis[J]. ACS Nano,2017,11(6): 5785-5799. DOI: 10.1021/acsnano.7b01385.

[54] LIANG M, TAN H, ZHOU J, et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano, 2018, 12(9): 9300-9308. DOI: 10.1021/acsnano.8b04158.

[55] ALPHAND?RY E. Nanomaterials as ultrasound theragnostic tools for heart disease treatment/diagnosis[J]. Int J Mol Sci, 2022, 23(3): 1683. DOI: 10.3390/ijms23031683.

[56] HO Y J, HUANG C C, FAN C H, et al. Ultrasonic technologies in imaging and drug delivery[J]. Cell Mol Life Sci, 2021, 78(17/18): 6119-6141. DOI: 10.1007/s00018-021-03904-9.

[57] JANSEN K, VAN DER STEEN A F, WU M, et al. Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis[J]. J Biomed Opt, 2014, 19(2): 026006. DOI: 10.1117/1.JBO.19.2.026006.

[58] KAUFMANN B A, CARR C L, BELCIK J T, et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease[J]. Arterioscler Thromb Vasc Biol, 2010, 30(1): 54-59. DOI: 10.1161/ATVBAHA.109.196386.

[59] LIU H, WANG X, TAN K B, et al. Molecular imaging of vulnerable plaques in rabbits using contrast-enhanced ultrasound targeting to vascular endothelial growth factor receptor-2[J]. J Clin Ultrasound, 2011, 39(2): 83-90. DOI: 10.1002/jcu.20759.

[60] LU Y, WEI J, SHAO Q, et al. Assessment of atherosclerotic plaques in the rabbit abdominal aorta with interleukin-8 monoclonal antibody-targeted ultrasound microbubbles[J]. Mol Biol Rep, 2013, 40(4): 3083-3092. DOI: 10.1007/s11033-012-2382-5.

[61] MA X, WANG J, LI Z, et al. Early assessment of atherosclerotic lesions and vulnerable plaques in vivo by targeting apoptotic macrophages with AV nanobubbles. Int J Nanomedicine,2022,17: 4933-4946. doi: 10.2147/IJN.S382738.

[62] 郭勝存.超聲分子成像靶向活化血小板上的糖蛋白Ⅱb/Ⅲa受體評(píng)價(jià)動(dòng)脈粥樣硬化易損斑塊[D].廣州:南方醫(yī)科大學(xué),2016.

GUO S C. Evaluation of atherosclerotic vulnerable plaques with ultrasound molecular imaging of glycoprotein IIb/IIa receptor on activated platelets[D].Guangzhou:Southern Medical University,2016.

[63] HU Z, CHEN W H, TIAN J, et al. NIRF nanoprobes for cancer molecular imaging: approaching clinic[J]. Trends Mol Med, 2020, 26(5): 469-482. DOI: 10.1016/j.molmed.2020.02.003.

[64] NARITA Y, SHIMIZU K, IKEMOTO K, et al. Macrophage-targeted, enzyme-triggered fluorescence switch-on system for detection of embolism-vulnerable atherosclerotic plaques[J]. J Control Release,2019,302: 105-115. DOI: 10.1016/j.jconrel.2019.03.025.

[65] KIM J B, PARK K, RYU J, et al. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors[J]. Sci Rep, 2016, 6: 22608. DOI: 10.1038/srep22608.

[66] QIAO R, QIAO H, ZHANG Y, et al. Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin-specific upconversion nanoprobes. ACS Nano,2017,11(2): 1816-1825. DOI: 10.1021/acsnano.6b07842.

[67] WANG Z, WANG X, WAN J B, et al. Optical imaging in the second near infrared window for vascular bioimaging[J]. Small,2021,17(43): e2103780. DOI: 10.1002/smll.202103780.

[68] ZHANG L, XUE S, REN F, et al. An atherosclerotic plaque-targeted single-chain antibody for MR/NIR-II imaging of atherosclerosis and anti-atherosclerosis therapy[J]. J Nanobiotechnology, 2021, 19(1): 296. DOI: 10.1186/s12951-021-01047-4.

[69] WANG Y, HU Y, YE D. Activatable multimodal probes for in vivo imaging and theranostics[J]. Angew Chem Int Ed Engl, 2022, 61(50): e202209512. DOI: 10.1002/anie.202209512.

[70] LI X, WANG C, TAN H, et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques[J]. Biomaterials, 2016, 108: 71-80. DOI: 10.1016/j.biomaterials.2016.08.048.

[71] CHENG D, LI X, ZHANG C, et al. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages[J]. ACS Appl Mater Interfaces, 2015, 7(4): 2847-2855. DOI: 10.1021/am508118x.

[72] SUN S K, DONG L X, CAO Y, et al.Fabrication of multifunctional Gd2O3/Au hybrid nanoprobe via a one-step approach for near-infrared fluorescence and magnetic resonance multimodal imaging in vivo[J]. Anal Chem,2013,85(17): 8436-8441. DOI: 10.1021/ac401879y.

[73] WANG Y, ZHANG Y, WANG Z, et al. Optical/MRI dual-modality imaging of M1 macrophage polarization in atherosclerotic plaque with MARCO-targeted upconversion luminescence probe[J]. Biomaterials, 2019, 219: 119378. DOI: 10.1016/j.biomaterials.2019.119378.

[74] YAO J, YANG Z, HUANG L, et al. Low-intensity focused ultrasound-responsive ferrite-encapsulated nanoparticles for atherosclerotic plaque neovascularization theranostics[J]. Adv Sci(Weinh), 2021, 8(19): e2100850. DOI: 10.1002/advs.202100850.

[75] SU C, LIU Y, LI R , et al. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems[J]. Adv Drug Deliv Rev, 2019, 143: 97-114. DOI: 10.1016/j.addr.2019.06.008.

[76] ZHANG A, MENG K, LIU Y, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences[J]. Adv Colloid Interfac, 2020, 284: 102261. DOI: 10.1016/j.cis.2020.102261.

[77] ZHANG C, MOONSHI S S, WANG W, et al. High F-content perfluoropolyether-based nanoparticles for targeted detection of breast cancer by 19F magnetic resonance and optical imaging[J]. ACS Nano, 2018, 12(9):9162-9176. DOI:10.1021/acsnano.8b03726.

[78] ZHANG Y N, POON W, TAVARES A J, et al. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination[J]. J Control Release, 2016, 240: 332-348. DOI: 10.1016/j.jconrel.2016.01.020.

(責(zé)任編輯:楊江瑜)

猜你喜歡
動(dòng)脈粥樣硬化造影劑
循證護(hù)理在增強(qiáng)CT檢查中減少造影劑外漏發(fā)生的作用
造影劑腎病的研究進(jìn)展
帕金森病伴動(dòng)脈粥樣硬化老年患者給予辛伐他汀聯(lián)合美多芭治療的臨床效果觀察
阿托伐他汀聯(lián)合普羅布考對(duì)41例動(dòng)脈粥樣硬化的治療效果分析
擴(kuò)大的血管周圍間隙與腦小血管病變關(guān)系的臨床研究
短暫性腦缺血發(fā)作患者ABCD2評(píng)分與血漿同型半胱氨酸水平的關(guān)系
山楂水煎液對(duì)高脂血癥大鼠早期動(dòng)脈粥樣硬化形成過(guò)程的干預(yù)機(jī)制
“造影劑腎病”你了解嗎
瑞舒伐他汀聯(lián)合苯磺酸氨氯地平對(duì)造影劑腎病的保護(hù)作用
靶向超聲造影劑在冠心病中的應(yīng)用