国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

辣椒根際土壤細(xì)菌群落與理化性質(zhì)互作分析

2024-08-22 00:00:00羅路云王殿東趙志祥廖靜靜江波張卓
關(guān)鍵詞:高通量測(cè)序根際生育期

摘要:【目的】分析辣椒根際土壤細(xì)菌群落與理化性質(zhì)的互作,為科學(xué)防治辣椒土傳病害和辣椒高產(chǎn)優(yōu)質(zhì)栽培提 供參考依據(jù)?!痉椒ā恳岳苯访缙?、花期和坐果期根際土壤(分別標(biāo)記為SD、FR和FT)為研究對(duì)象,測(cè)定3組土壤樣本中 pH、有機(jī)質(zhì)、總氮、堿解氮、總磷、有效磷、總鉀和有效鉀含量,采用Illumina HiSeq2500測(cè)序平臺(tái)進(jìn)行高通量測(cè)序,分析辣椒不同生育期根際土壤細(xì)菌Alpha多樣性指數(shù)及門和屬分類水平上相對(duì)豐度,通過主坐標(biāo)分析(PCoA)和基于Bray_Curtis距離的細(xì)菌群落不相似性檢驗(yàn),分析辣椒不同生育期根際土壤細(xì)菌與理化因子的相關(guān)性。【結(jié)果】隨著辣椒生長(zhǎng),SD、FR和FT三者間的pH和堿解氮含量2個(gè)指標(biāo)具有顯著差異(Plt;0.05,下同);3個(gè)生育期土壤細(xì)菌的Alpha多樣性指數(shù)和豐富度、Chao1指數(shù)均無顯著差異(Pgt;0.05);SD中特有操作分類單元(OTUs)數(shù)目最多;3個(gè)生育期土壤中 變形菌門(Proteobacteria)、放線菌門(Actinobacteria)、酸桿菌門(Acidobacteria)、擬桿菌門(Bacteroidetes)和藍(lán)細(xì)菌門 (Cyanobacteria)均屬于優(yōu)勢(shì)菌門;SD根際土壤中鏈霉菌屬(Streptophyta)、嗜酸菌屬(Acidovorax)、亞硝化球菌屬(Nitrososphaera)和Gp6相對(duì)豐度較高,F(xiàn)R根際土壤中鏈霉菌屬、亞硝化球菌屬(Nitrososphaera)和紅游動(dòng)菌屬(Rho- doplanes)的相對(duì)豐度較高,F(xiàn)T以鏈霉菌屬和Trinickia為主。主坐標(biāo)分析(PCoA)和不相似性檢驗(yàn)結(jié)果顯示,不同生育 期根際土壤樣本細(xì)菌群落之間差異顯著。相關(guān)分析結(jié)果顯示,土壤pH和堿解氮與細(xì)菌群落呈極顯著正相關(guān)(Plt;0.01)?!窘Y(jié)論】辣椒根際土壤理化性質(zhì)及細(xì)菌群落結(jié)構(gòu)因生育期不同存在差異,pH和堿解氮是影響細(xì)菌群落變化的關(guān) 鍵因子。

關(guān)鍵詞:生育期;根際;細(xì)菌群落;高通量測(cè)序

中圖分類號(hào):S641.3

文章編號(hào):2095-1191(2024)04-0964-09

文獻(xiàn)標(biāo)志碼:A

Interaction analysis of bacterial communities and physicochemi-cal properties in rhizosphere soil of pepper LUO Lu-yun1, WANG Dian-dong1, ZHAO Zhi-xiang2, LIAO Jing-jing1,JIANG Bo1, ZHANG Zhuo3*

(1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China; 2Plant Protection Institute, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory for Control of Plant Diseases and Insect Pests, Haikou, Hainan 571100, China; 3Institute of Plant Protection, Hunan Academy of Agricultural Sciences/ Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Changsha, Hunan 410125, China)

Abstract: [Objective] To analyze interaction between pepper rhizosphere soil bacterial community structure and physicochemical properties, which could provide reference for scientific prevention and control of soil-borne diseases and high yield and high quality cultivation of pepper. 【Method]In this study, the rhizosphere soils of pepper plants at seedling stage (SD), flowering stage (FR), and fruiting stage (FT) were investigated. The pH, organic matter, total nitrogen, al- kaline nitrogen, total phosphorus, available phosphorus, total potassium, and available potassium contents in three soil samples were determined. High-throughput sequencing using the Illumina HiSeq 2500 platform was performed to analyzethe bacterial Alpha diversity indexes, relative abundance at phylum and genus levels in the rhizosphere soils of pepper plants at different growth stages. Principal coordinate analysis (PCoA) and dissimilarity analysis based on Bray-Curtis distance was conducted to assess the bacterial communities among different growth stages and the correlation with physicochemical factors. 【Result ]The results showed significant differences in pH and alkaline nitrogen content among SD, FR and FT as pepper plants grew (Plt;0.05, the same below). The Alpha diversity indexes, richness and Chaol index of soil bacterial communities in the three growth stages showed no significant differences (Pgt;0.05). The SD soil had the highest number of unique operational taxonomic units (OTUs). Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, and Cyanobacteria were dominant phyla in the rhizosphere soils of the three growth stages. Streptophyta, Acidovorax, Ni- trososphaera and Gp6 had relatively high abundance in the SD rhizosphere soil. Streptophyta, Nitrososphaera and Rhodo- planes had relatively high abundance in the FR rhizosphere soil. Streptophyta and Trinickia were dominant genera in the FT rhizosphere soil. Principal coordinate analysis (PCoA) and dissimilarity analysis revealed significant differences among bacterial communities in rhizosphere soil samples from different growth stages. The correlation analysis showed ex- tremely significant and strong positive correlation between pH and alkaline nitrogen with bacterial communities (Plt;0.01).【Conclusion】 The physical and chemical properties of pepper rhizosphere soil and the structure of bacterial community vary with different growth stages. PH and alkaline nitrogen are key factors influencing the change in bacterial communi- ties.

Key words: growth stage; rhizosphere; bacterial community; high-throughput sequencing

Foundation items: National Natural Science Foundation of China (32272517) ; Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX0307) ; Hunan Agricultural Science and Technology Innovation Fund Project (2022CX68) ; Scientific and Technological Research Project of Chongqing Education Commission (KJQN202001433)

0 引言

[研究意義]辣椒(Capsicum annuum L.)是起源于南美洲熱帶地區(qū)的一年生或多年生的草本植物(鄒學(xué)校和朱凡,2020),既用作香料、烹飪材料,也因富含辣椒素、類胡蘿卜素等成分用作傳統(tǒng)草藥治療疾?。⊿arpras et al.,2018)。目前,我國(guó)辣椒的種植面積、產(chǎn)量和產(chǎn)值分別占全國(guó)蔬菜的 9.28%、7.76%和 11.36%,且辣椒種植面積及產(chǎn)量均居世界第一(鄒學(xué)校等,2020)。辣椒在全球廣泛種植,我國(guó)主要在貴州、湖南、四川、新疆等地大量種植。近年來,隨著辣椒產(chǎn)業(yè)規(guī)模擴(kuò)大及種植品種單一等原因,辣椒病害發(fā)生日趨嚴(yán)重,產(chǎn)量和品質(zhì)嚴(yán)重下降,制約了辣椒產(chǎn)業(yè)可持續(xù)發(fā)展。應(yīng)用抗病品種和改良栽培環(huán)境是防治作物病害發(fā)生最有效方法。辣椒自明代傳入我國(guó),經(jīng)長(zhǎng)期栽培馴化,我國(guó)已成為辣椒次生起源中心,擁有大量?jī)?yōu)質(zhì)且抗病的辣椒種質(zhì)資源用來選育辣椒抗病品種(楊中周,2017;鄭井元等,2018);在栽培環(huán)境影響辣椒病害發(fā)生的各種因素中,諸如根與葉表面寄居著的多種拮抗微生物具多樣化功能(Schmidt et al.,2019),辣椒在生長(zhǎng)發(fā)育的各個(gè)時(shí)期都可能遭到病原菌侵染而發(fā)病,土壤微生物群落結(jié)構(gòu)可影響植物病害發(fā)生(韓鳳等,2021)。根系滲出物可吸引有益微生物并影響根際微生物群的組裝,從而提高植物適應(yīng)環(huán)境的能力,影響植物的生長(zhǎng)發(fā)育(Berendsen et al.,2012; Tkacz and Poole,2015)。根際微生物在土壤物質(zhì)循環(huán)和作物生長(zhǎng)發(fā)育中發(fā)揮著重要作用(劉福童等,2022),辣椒生長(zhǎng)和健康也必然受根際微生物影響。根際土壤微生物群落組成亦受到植物種類、生長(zhǎng)狀態(tài)及生育期的調(diào)節(jié),因此,分析辣椒根際土壤細(xì)菌群落與理化性質(zhì)互作對(duì)科學(xué)防治辣椒土傳病害及辣椒的高產(chǎn)優(yōu)質(zhì)栽培具有重要意義?!厩叭搜芯窟M(jìn)展】不同植物的根際微生物群落結(jié)構(gòu)和多樣性在一定程度均受到生育期影響。祝明煒等(2011)研究發(fā)現(xiàn)刺萼龍葵從生長(zhǎng)初期到開花期土壤真菌多樣性顯著增加,生長(zhǎng)初期、四葉期、現(xiàn)蕾期和開花期真菌群落也發(fā)生顯著變化。孫建波等(2016)的研究結(jié)果表明隨著香蕉生長(zhǎng)期增加,根際土壤細(xì)菌數(shù)量逐漸增加隨后逐漸減少,而根際細(xì)菌多樣性呈逐漸減少趨勢(shì)。Wang等(2016)研究表明作物、施肥方案和植物發(fā)育階段均影響小麥和水稻土壤微生物群落結(jié)構(gòu)。Na等(2019)研究發(fā)現(xiàn)谷子不同發(fā)育階段根際細(xì)菌群落的多樣性和組成存在顯著差異,隨著植物成熟,根際細(xì)菌群落的豐富度和均勻度顯著降低。李巧玲等(2021)發(fā)現(xiàn)辣椒各生育期土壤細(xì)菌多樣性呈先升高后降低的變化趨勢(shì),在果實(shí)膨大期多樣性最豐富。Sohn等(2021)發(fā)現(xiàn)根際和根瘤中的細(xì)菌群落因大豆品種和生長(zhǎng)階段不同而發(fā)生變化,放線菌在所有生長(zhǎng)階段的根際分布最為豐富,其次是α蛋白菌和酸桿菌,擬桿菌門(Bacte-roidetes)的變化最大。Ajilogba等(2022)發(fā)現(xiàn)在不同班巴拉花生的生長(zhǎng)階段,根際的細(xì)菌結(jié)構(gòu)發(fā)生顯著變化,具有更高豐度的潛在植物生長(zhǎng)促進(jìn)根際細(xì)菌,芽孢桿菌屬(Bacillus)和酸桿菌屬(Acidobacte-rium)數(shù)量顯著增加。魏宇飛等(2023)發(fā)現(xiàn)不同生育期番茄根際土壤微生物群落結(jié)構(gòu)和功能發(fā)生顯著變化。土壤養(yǎng)分是植物生長(zhǎng)的重要來源,根際微生物則參與養(yǎng)分的轉(zhuǎn)化和供應(yīng)。土壤養(yǎng)分也影響根際微生物的變化。Wu等(2018)利用高通量基因測(cè)序技術(shù)發(fā)現(xiàn)超級(jí)稻抽穗期的根際細(xì)菌群落與作物產(chǎn)量有顯著相關(guān),微生物與養(yǎng)分之間的正交互作用可能對(duì)產(chǎn)量有顯著貢獻(xiàn)。Wang等(2019)發(fā)現(xiàn)施用豬糞可降低氮磷鉀肥對(duì)水稻抽穗期和成熟期細(xì)菌群落的影響,pH、有機(jī)質(zhì)和有效鉀是影響各階段微生物群落變化的關(guān)鍵因素,土壤細(xì)菌及其功能在水稻關(guān)鍵生育期具有明顯演化史。Jia等(2020)發(fā)現(xiàn)葉際和根際真菌群落結(jié)構(gòu)在各個(gè)發(fā)育階段均不同,分別受植物碳和土壤硫介導(dǎo)。陳秋圓等(2022)研究發(fā)現(xiàn)水稻分蘗期和拔節(jié)、孕穗期的土壤細(xì)菌群落結(jié)構(gòu)存在差異,水稻產(chǎn)量與分蘗期土壤細(xì)菌數(shù)量呈顯著負(fù)相關(guān),而與拔節(jié)、孕穗期土壤細(xì)菌數(shù)量和全氮含量均呈顯著正相關(guān)?!颈狙芯壳腥朦c(diǎn)】目前,作物生長(zhǎng)期對(duì)土壤微生物群落結(jié)構(gòu)影響在其他園藝作物上研究較多,而有關(guān)辣椒不同生育期根際土壤微生物的研究鮮見報(bào)道?!緮M解決的關(guān)鍵問題】通過溫室試驗(yàn)采集辣椒不同生育期的根際土壤,利用高通量測(cè)序技術(shù)分析辣椒不同生育期對(duì)根際微環(huán)境的影響,以期揭示辣椒不同生育期根際微生物與土壤理化性質(zhì)的動(dòng)"態(tài)變化,為科學(xué)防治辣椒土傳病害及辣椒高產(chǎn)優(yōu)質(zhì)栽培提供參考依據(jù)。

1 材料與方法

1.1試驗(yàn)材料

辣椒品種為湘研15號(hào),種子購(gòu)自湖南湘研種業(yè)有限公司。主要試劑:FastDNA? Spin Kit for Soil試劑盒(美國(guó)MP Biomedicals公司)。主要儀器設(shè)備:NanoDrop 2000微量分光光度計(jì)(美國(guó)賽默飛公司)

1.2試驗(yàn)方法

1.2.1樣本采集及處理

試驗(yàn)土壤采集自重慶市涪陵區(qū)李渡鎮(zhèn)種植基地,2021年4月23日于花盆中播種辣椒種子,共播種180粒種子,每花盆播種1株。分別于2021年5月7日、6月5日和7月9日的辣椒苗期、花期和坐果期采集辣椒根際土壤樣本,3個(gè)時(shí)期土壤樣本分別標(biāo)記為SD、FR和FT,每生育期選擇長(zhǎng)勢(shì)均勻并具代表性的30株辣椒植株,平均分成6組,每組1個(gè)生物學(xué)重復(fù),將辣椒植株連同根部土壤一同拔出,采用抖根法抖去附著在根系的顆粒狀土壤及雜質(zhì)。將植株的根和莖分離后,選取同組5株辣椒根置于無菌袋中,收集根部黏附土壤,自然風(fēng)干后過2mm篩,用于土壤理化性質(zhì)測(cè)定。取辣椒根部于50mL離心管中,加入濃度為0.05mol/L的磷酸鹽緩沖液45.0mL,搖晃使土壤從根部分離,然后用鑷子

取出根,剩余液體于5000r/min離心10min后,放入 冷凍干燥機(jī)冷凍干燥,密封放入-20℃冰箱保存用于 高通量測(cè)序。

1.2.2土壤理化指標(biāo)測(cè)定

采用pH計(jì)(土水比為1:2.5)測(cè)定土壤pH。采用重鉻酸鉀容量法測(cè)定有 機(jī)質(zhì)含量,堿解法測(cè)定總氮和堿解氮含量,鉬銻抗比 色法測(cè)定總磷和有效磷含量,硝酸一鹽酸提取一火 焰光度法測(cè)定總鉀和有效鉀含量(魯如坤,2000)。

1.2.3總DNA提取

稱取土樣0.5g,用FastDNA? Spin Kit for Soil 試劑盒提取土壤總DNA,用Nano- Drop2000微量分光光度計(jì)測(cè)定總DNA濃度和純 度。將檢測(cè)合格樣本的DNA進(jìn)行擴(kuò)增前基因組DNA濃度定量。定量后終濃度稀釋為30 ng/uL備用。以樣本DNA為模板,使用通用引物515F(5'-GT GCCAGCMGCCGCGGTAA-3')和806R(5'-GGACT ACHVGGGTWTCTAAT-3')進(jìn)行PCR擴(kuò)增,反應(yīng)體 系和擴(kuò)增程序參照羅路云等(2017)。每條引物5端 使用12 bp的Barcode序列區(qū)分各樣本。將純化后 PCR產(chǎn)物送至北京新科開源基因科技有限公司采用 Illumina HiSeq 2500測(cè)序平臺(tái)進(jìn)行高通量測(cè)序。

1.2.4序列處理與分析

原始測(cè)序經(jīng)過雙端拼接、 過濾和去除嵌合體后,得到優(yōu)化序列。然后在相似 性97%的水平下使用Uparse軟件對(duì)優(yōu)化序列聚類 獲得操作分類單元(OTU),保留在所有樣本中總數(shù)大于1的OTUs,經(jīng)過標(biāo)準(zhǔn)化后生成Resample_OTU 表,計(jì)算樣本Alpha多樣性指數(shù)(Shannon、Simpson、豐富度和Chao1指數(shù))。采用主坐標(biāo)分析(PCoA)、非參數(shù)多反應(yīng)置換法(MRPP)、相似性分析(ANOSIM)和非參數(shù)多變量置換法(Adonis)方差分析鑒定比較組間(SD vs FR、SD vs FT和FR vs FT)細(xì)菌群落結(jié)構(gòu)差異。采用冗余分析法(RDA)分析細(xì)菌群落和 理化性質(zhì)之間相關(guān)性。原始測(cè)序處理及后續(xù)分析在 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心Galaxy分析平臺(tái)上 進(jìn)行。

1.3統(tǒng)計(jì)分析

使用SPSS20.0對(duì)土壤理化性質(zhì)、多樣性指數(shù)和 排名前15優(yōu)勢(shì)屬的相對(duì)豐度進(jìn)行單因素方差分析(One-way ANOVA)及Duncan's新復(fù)極差法進(jìn)行多重比較,并以Graphpad 8.0制圖。

2結(jié)果與分析

2.1辣椒不同生育期根際土壤理化分析結(jié)果

由辣椒不同生育期根際土壤理化性質(zhì)結(jié)果(圖1)可知,隨著辣椒生長(zhǎng),根際土壤pH和養(yǎng)分含量呈不同的變化趨勢(shì),pH、總磷、有效磷和堿解氮含量逐漸降低,其中SD、FR和FT三者間的pH和堿解氮含量具有顯著差異(Plt;0.05,下同);隨著辣椒生育 期延長(zhǎng),3組樣本的有效鉀、總鉀、總氮含量呈先降低 后升高的變化趨勢(shì),土壤有機(jī)質(zhì)含量則逐漸升高。 辣椒生長(zhǎng)的根際土壤為偏酸性環(huán)境,pH為4.64~ 6.70。從苗期到花期,土壤中有效磷和堿解氮含量 顯著降低;從花期到坐果期,土壤中有效鉀含量顯著 升高,堿解氮濃度顯著降低,有效磷無顯著變化。

2.2辣椒不同生育期根際土壤細(xì)菌Alpha多樣性 指數(shù)及OTU分析結(jié)果

對(duì)3個(gè)生育期18份辣椒根際土壤樣本進(jìn)行高通 量測(cè)序,原始序列經(jīng)過濾、雙端拼接獲得有效序列 997495條,平均每個(gè)樣本的有效序列數(shù)為55417條。 在97%的相似度水平下進(jìn)行OTU分類獲得6235個(gè)OTUs,樣本OTUs數(shù)為1848~2979。

對(duì)辣椒SD、FR和FT根際細(xì)菌群落進(jìn)行Alpha 多樣性分析,各樣本中的多樣性指數(shù)結(jié)果(表1)顯 示,3個(gè)生育期土壤細(xì)菌的Shannon和Simpson指數(shù)均無顯著差異(Pgt;0.05,下同);豐富度和Chao1指數(shù)也無顯著差異;FR多樣性和物種豐富度較高。

從圖2可知,3組樣本共有的OTUs2956個(gè),SD、FR和FT特有的OTUs數(shù)目分別為1163、231和300個(gè),其中SD中特有OTUs數(shù)目最多;SD和FR共有3462個(gè)OTUs,其次FR和FT共有3649個(gè)OTUs,SD和FT共有3342個(gè)OTUs。

2.3辣椒不同生育期根際土壤優(yōu)勢(shì)細(xì)菌在門和 屬分類水平上相對(duì)豐度分析結(jié)果

在門分類水平對(duì)辣椒不同生育期根際土壤細(xì)菌 種群進(jìn)行分析,結(jié)果(圖3)顯示,3個(gè)生育期土壤中 變形菌門(Proteobacteria)、放線菌門(Actinobacte- ria)、酸桿菌門(Acidobacteria)、擬桿菌門和藍(lán)細(xì)菌門(Cyanobacteria)均屬于優(yōu)勢(shì)菌門,5個(gè)門相對(duì)豐度 占比69.85%~81.24%。3個(gè)生育期細(xì)菌門組成基本 一致,但相對(duì)豐度存在差異,其中變形菌門相對(duì)豐度 最高,占比36.96%~48.99%,SD變形菌門相對(duì)豐度最高,F(xiàn)R相對(duì)豐度最低;其次為放線菌門,相對(duì)豐度為7.97%~12.81%,SD放線菌門相對(duì)豐度最低,F(xiàn)R的 相對(duì)豐度最高。

在屬分類水平上,將相對(duì)豐度排名前15的細(xì)菌進(jìn)行單因素方差分析(圖4)可知,從辣椒苗期到坐果期,鏈霉菌屬(Streptophyta)、Trinickia和放射土壤桿菌屬(Agrobacterium)相對(duì)豐度逐漸增加;嗜酸菌屬(Acidovorax)和Gp6相對(duì)豐度逐漸減少;亞硝化螺菌屬(Nitrososphaera)、紅游動(dòng)菌屬(Rhodoplanes)、鞘脂單胞菌屬(Sphingomonas)、慢生根瘤菌屬(Brady-rhizobium)、 Spartobacteria genera incertae sedis、Subdivision3 genera incertae sedis和亞硝化螺旋菌屬相對(duì)豐度先增加后減少;馬賽菌屬(Massilia)和黃桿菌屬(Flavobacterium)相對(duì)豐度先顯著減少后顯著增加。辣椒不同生育期根際細(xì)菌豐度各不相同,辣椒SD根際土壤細(xì)菌相對(duì)豐度大于3%的優(yōu)勢(shì)屬包括鏈霉菌屬、嗜酸菌屬、亞硝化球菌屬和Gp6,F(xiàn)R的鏈霉菌屬、亞硝化球菌屬和紅游動(dòng)菌屬的相對(duì)豐度較高,F(xiàn)T中鏈霉菌屬和Trinickia相對(duì)豐度較高。

2.4辣椒不同生育期根際土壤細(xì)菌群落結(jié)構(gòu)

由圖5可知,不同生育期根際土壤樣本明顯分 開,土壤樣本分布在坐標(biāo)軸上的不同區(qū)間,第一主坐 標(biāo)(PCoA1)解釋細(xì)菌群落37.28%差異,第二主坐標(biāo)(PCoA2)解釋細(xì)菌群落24.69%差異,二者共解釋辣 椒不同生育期根際土壤細(xì)菌群落總差異的61.97%。

相似性分析結(jié)果(表2)表明,不同生育期根際土 壤樣本細(xì)菌群落之間差異顯著,與非參數(shù)多反應(yīng)置 換法和非參數(shù)多變量置換法結(jié)果一致。

2.5辣椒不同生育期根際土壤細(xì)菌與理化因子相關(guān) 分析結(jié)果

通過RDA可進(jìn)一步了解環(huán)境因子和細(xì)菌群落 結(jié)構(gòu)之間的關(guān)系(圖6),2個(gè)坐標(biāo)軸共解釋55.3%的 細(xì)菌群落變異,其中第一軸(RDA1)解釋47.2%的細(xì)菌群落變異,第二軸(RDA2)解釋8.1%的細(xì)菌群落變異。此外,Mantel檢驗(yàn)結(jié)果(表3)表明,pH、堿解氮、有效磷和總鉀均與細(xì)菌群落顯著或極顯著(Plt;0.01)正相關(guān),其中pH和堿解氮與細(xì)菌群落相關(guān)系 數(shù)較高,是影響細(xì)菌群落變化的關(guān)鍵因子。

3討論

植物生長(zhǎng)所需養(yǎng)分直接來自土壤,土壤理化性 質(zhì)直接影響作物生長(zhǎng)發(fā)育。Wang等(2019)研究發(fā) 現(xiàn)施用豬糞可降低氮磷鉀肥對(duì)水稻抽穗期和成熟期 細(xì)菌群落的影響,pH、有機(jī)質(zhì)和有效鉀是影響各階 段微生物群落變化的關(guān)鍵因素。李巧玲等(2021)研 究發(fā)現(xiàn)梔子根際土壤養(yǎng)分、酶活性及根際細(xì)菌組成 均隨生育期改變發(fā)生動(dòng)態(tài)變化。本研究中對(duì)辣椒不 同生育期根際土壤pH和養(yǎng)分進(jìn)行分析,發(fā)現(xiàn)根際土 壤pH和養(yǎng)分含量隨著辣椒生長(zhǎng)演替而出現(xiàn)不同程 度變化,有效磷、堿解氮濃度隨著辣椒生長(zhǎng)逐漸降 低,有效鉀先降低后升高,表明隨著辣椒生長(zhǎng),植株 對(duì)土壤氮、磷元素的吸收更加活躍,花期植株對(duì)鉀元 素的吸收高于其他生育期;同時(shí)辣椒根際土壤有機(jī) 質(zhì)濃度逐漸升高,pH逐漸降低,表明隨著辣椒生長(zhǎng), pH逐漸降低促進(jìn)有機(jī)質(zhì)降解從而使養(yǎng)分更容易被 植株吸收利用。因此,辣椒不同生育期根際土壤pH 和養(yǎng)分含量均不同,與前人研究發(fā)現(xiàn)根際土壤理化 性質(zhì)受植物生育期影響的結(jié)果一致(Zhai et al.,2018;Guo et al.,2020)。

生物物種豐富度是農(nóng)業(yè)生態(tài)系統(tǒng)恢復(fù)力、可持續(xù)性和生產(chǎn)力的關(guān)鍵(Mace et al.,2012)。孫建波等(2016)研究發(fā)現(xiàn),隨著香蕉生長(zhǎng),根際土壤細(xì)菌數(shù)量先增加后逐漸減少,但根際細(xì)菌多樣性逐漸減少。Dong等(2018)發(fā)現(xiàn),相較幼齡人參,成年人參根際土壤中細(xì)菌多樣性降低,真菌多樣性增加,說明微生物群落與人參植株的不同年齡和發(fā)育階段有關(guān)。李巧玲等(2021)研究發(fā)現(xiàn)梔子各生育期土壤細(xì)菌多樣性呈先升高后降低的變化趨勢(shì),其中果實(shí)膨大期細(xì)菌群落多樣性最為豐富。本研究中根際細(xì)菌群落Alpha多樣性指數(shù)(Shannon和Simpson指數(shù))和豐富度指數(shù)(Chao1和豐富度指數(shù))在辣椒3個(gè)生育期差異均不顯著,但總體呈現(xiàn)先升高后降低的變化趨勢(shì)。與佘冬立等(2007)研究認(rèn)為花期時(shí)植株生長(zhǎng)代謝旺盛,分泌物和代謝物較多,有利于各種細(xì)菌生長(zhǎng)的結(jié)論一致。同時(shí)作物不同生育期富集的微生物也有一定差異。魏宇飛等(2023)發(fā)現(xiàn)不同生育期番茄植株根際土壤富集了種類與功能相異的微生物。本研究采集的辣椒3個(gè)生育期土壤樣本最豐富的為變形菌類群,不同生育期、同一細(xì)菌門類的相對(duì)豐度存在一定差異。變形菌被認(rèn)為是富營(yíng)養(yǎng)菌,具有相對(duì)較快的生長(zhǎng)速度和利用各種底物的能力,參與養(yǎng)分的再循環(huán)與氮代謝(Sun et al.,2019)。Akifumi等(2014)發(fā)現(xiàn)在土豆各個(gè)生長(zhǎng)階段,芽孢桿菌、緩生根瘤菌和根瘤菌等潛在植物促生菌的相對(duì)豐度較高,且具有階段特異性。轉(zhuǎn)基因抗蟲棉及其不同生育期根際土壤變形菌門、酸桿菌門、芽單胞菌門、藍(lán)細(xì)菌門和綠彎菌門的相對(duì)豐度存在顯著差異(王甜甜等,2021)。本研究中辣椒根際細(xì)菌相對(duì)豐度在各個(gè)生育期各不相同,進(jìn)一步證實(shí)辣椒對(duì)其根際定殖的土壤細(xì)菌具有選擇性,每個(gè)生育期的根際細(xì)菌種群在一定程度上受植物發(fā)育階段的顯著影響(Li et al.,2014;Yuanet al.,2015)。本研究中辣椒不同生育期根際土壤樣本明顯分開,根際土壤樣本細(xì)菌群落之間差異顯著,說明辣椒不同生育期影響土壤結(jié)構(gòu)并表現(xiàn)出顯著的根際效應(yīng),這些細(xì)菌在根際能夠大量定殖可能與該生育期植株的生理功能有關(guān),猜測(cè)是根系分泌物促使某些細(xì)菌在土壤中富集。

土壤微生態(tài)環(huán)境會(huì)影響植物生長(zhǎng),土壤微生物作為影響土壤肥力的重要因素參與土壤物質(zhì)循環(huán)調(diào)節(jié),根系分泌物可刺激或抑制土壤微生物釋放營(yíng)養(yǎng)物質(zhì)、感染根系或通過信號(hào)改變植物生長(zhǎng)(Watt etal.,2016)。Zhai等(2018)研究發(fā)現(xiàn),水稻分蘗期根際微生物群落組成與NH+、總氮、pH、微生物量和生物碳的相關(guān)性最強(qiáng),而成熟期微生物群落組成與磷、碳/氮、總碳和有效鉀相關(guān)。根系分泌物是促進(jìn)根際效應(yīng)的主要成分,改變了細(xì)菌群落(Li et al.,2019)。陳秋圓等(2022)也發(fā)現(xiàn)土壤細(xì)菌群落構(gòu)成及生態(tài)功能在分蘗期和拔節(jié)至孕穗期間存在明顯差異,并受到氮肥施用比例影響。本研究中相關(guān)分析結(jié)果顯示,pH和堿解氮與細(xì)菌群落呈極顯著正相關(guān),說明辣椒根際細(xì)菌群落結(jié)構(gòu)組成受土壤環(huán)境因子影響,其中pH與堿解氮是影響細(xì)菌群落變化的關(guān)鍵因子。堿解氮是土壤微生物最主要氮源,氮增加會(huì)刺激磷酸酶活性,有研究表明長(zhǎng)期氮輸入會(huì)降低土壤pH,抑制微生物生長(zhǎng),改變微生物群落組成(Rousk etal.,2010;Blanes et al.,2012)。在實(shí)際生產(chǎn)中,可通過適當(dāng)調(diào)整辣椒根際土壤微環(huán)境改善土壤質(zhì)量,進(jìn)而促進(jìn)辣椒生長(zhǎng)和防治病害。

4 結(jié)論

辣椒根際微生物群落結(jié)構(gòu)因生育期不同存在 差異,土壤pH和堿解氮是影響細(xì)菌群落變化的關(guān)鍵因子。

參考文獻(xiàn)(References):

陳秋圓,趙帥兵,梁賀,劉曄,崔燕妮,彭廷,趙全志,張靜.

2022.不同生育時(shí)期水稻土壤細(xì)菌群落特征與生態(tài)功能 預(yù)測(cè)[J].華北農(nóng)學(xué)報(bào),37(5):140-149.[Chen QY,Zhao S B,Liang H,Liu Y,Cui Y N,Peng T,Zhao Q Z,Zhang J. 2022. Soil bacterial community characteristics and ecologi- cal function prediction at different rice growth stages [J]. Acta Agriculturae Boreali-Sinica, 37 (5) : 140-149.] doi:10.7668/hbnxb.20193000.

韓鳳,林茂祥,章文偉,李巧玲,肖忠,譚秋生,楊毅,李品明.

2021.多花黃精根腐病對(duì)根際土壤酶活性及真菌群落變 化的影響[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),43(4):53- 61. [Han F,Lin M X,Zhang W W,Li Q L,Xiao Z, Tan Q S, Yang Y, Li P M. 2021. Effects of polygonatum cyrto- nema root rot on rhizosphere soil enzyme activity and fun- gal community[J]. Journal of Southwest University (Natu- ral Science Edition), 43 (4) : 53-61.] doi: 10.13718/j.cnki.xdzk.2021.04.007.

李巧玲,肖忠,任明波,韓鳳,胡開治.2021.梔子不同生育期 根際土壤細(xì)菌群落結(jié)構(gòu)的動(dòng)態(tài)變化[J].土壤通報(bào),52(2):346-354. [Li Q L, Xiao Z,Ren M B,Han F,Hu K Z.

2021. Variation of bacterial community structure in gardenia jasminoides rhizosphere at different growth stages [J].Chinese Journal of Soil Science, 52(2) : 346-354.] doi: 10.19336/j.cnki.trtb.2020050801.

劉福童,李茂森,陳敏,張賽,張福建,王生才,趙培炎,宋安 東,方明,任天寶,劉國(guó)順.2022.高碳基土壤修復(fù)肥對(duì)烤 煙根際土壤細(xì)菌群落結(jié)構(gòu)及煙葉產(chǎn)值的影響[J].河南農(nóng)業(yè)大學(xué)學(xué)報(bào),56(5):724-731.[Liu F T,Li M S,Chen M, Zhang S,Zhang F J,Wang S C,Zhao P Y,Song A D,F(xiàn)ang M, Ren T B, Liu G S. 2022. Effects of high carbon-based soil remediation fertilizer on bacterial community structure and output value of tobacco leaves in flue-cured tobacco rhizosphere soil [J]. Journal of Henan Agricultural Univer- sity,56(5):724-731.] doi: 10.16445/j.cnki.1000-2340.20220825.001.

魯如坤.2000.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社.[Lu R K.2000.Methods of soil agrochemi- cal analysis [M]. Beijing: China Agricultural Science and Technology Press.]

羅路云,金德才,左暉,張卓,譚新球,張德詠,盧向陽,劉勇.

2017.沼澤紅假單胞菌PSB06對(duì)辣椒根際微生物群落結(jié)構(gòu)的影響[J].環(huán)境科學(xué),38(2):735-742.[LuoLY,Jin D C,Zuo H, Zhang Z,Tan X Q,Zhang D Y,Lu X Y, Liu Y.2017. Effects of rhodopseudomonas palustris PSB06 on pepper rhizosphere microbial community structure[J]. Environmental Science,38(2): 735-742.] doi: 10.13227/j.hjkx.201606059.

佘冬立,王凱榮,謝小立,彭英湘,陳敏.2007.稻草還田與施 氮水平對(duì)土壤氮素供應(yīng)和水稻產(chǎn)量的影響[J].土壤通報(bào),38(2):296-300.[She DL,Wang KR,Xie XL,Peng Y X, Chen M. 2007. Impact of rice straw incorporation and N rates on soil nitrogen supply and rice yield[J]. Chi- nese Journal of Soil Science, 38 (2) : 296-300. ] doi : 10.19336/j.cnki.trtb.2007.02.019.

孫建波,鄒良平,李文彬,王宇光,彭明.2016.香蕉不同生育 期根際土壤細(xì)菌群落變化研究[J].熱帶作物學(xué)報(bào),37(6):1168-1171.[Sun J B,Zou L P,Li W B,Wang Y G, Peng M. 2016. The variation of bacterial community in the banana rhizosphere soil at different growth stages[J]. Chinese Journal of Tropical Crops,37(6):1168-1171.] doi: 10.3969/j.issn.1000-2561.2016.06.019.

王甜甜,閆冰,陳彥君,關(guān)瀟,李俊生.2021.不同生育期轉(zhuǎn)基因抗蟲棉根際土壤細(xì)菌群落特征[J].環(huán)境科學(xué)研究,34(7):1728-1736.[Wang TT,Yan B,Chen YJ,Guan X,LiJ S. 2021. Characteristics of bacterial community of rhizo-sphere soil of transgenic insectresistant cotton at differentgrowth stages[J]. Research of Environmental Sciences, 34(7):1728-1736.]doi:10.13198/j.issn.1001-6929.2021.04.11.

魏宇飛,覃仁柳,丁點(diǎn)草,黎永斌,謝源源,屈達(dá)才,趙天義,楊尚東.2023. 不同生育期番茄植株根際土壤微生物群落結(jié)構(gòu)特征[J/OL].華中農(nóng)業(yè)大學(xué)學(xué)報(bào).http://kns.cnki.net/

kcms/detail/42.1181.S.20230928.1303.002.html. [Wei Y F,Qin R L,Ding D C,Li Y B,Xie Y Y,Qu D C,Zhao T Y, Yang S D. 2023. Structural characteristics of soil microbial community in rhizospheres of tomatoes during different growth periods [J/OL]. Journal of Huazhong Agricultural

University. http://kns.cnki.net/kcms/detail/42.1181.S.20230928.1303.002.html.]

楊中周.2017.我國(guó)辣椒品種選育進(jìn)展與展望[J].中國(guó)瓜菜,

30(5): 1-6. [Yang Z Z. 2017. Research progress and prospect in pepper breeding in China [J]. China Cucurbits and Vegetables, 30 (5) : 1-6. ] doi: 10.16861/j.cnki.zggc.2017.0081.

鄭井元,李雪峰,周書棟,馬艷青.2018.2017年度辣椒科學(xué)研 究進(jìn)展[J].中國(guó)蔬菜,(5):9-15.[ZhengJY,LiXF, Zhou S D, Ma Y Q. 2018. Research progress in scientific research on capsicum in 2017[J]. China Vegetables, (5) : 9-15.] doi:10.19928/j.cnki.1000-6346.2018.05.002.

祝明煒,曲波,楊紅,陳旭輝,王承旭,付衛(wèi)東,張國(guó)良.2011.

刺萼龍葵不同生育期根際土壤酶活性和真菌多樣性變 化[J].生態(tài)學(xué)雜志,30(3):448-452.[Zhu M W,Qu B, Yang H,Chen X H,Wang C X,F(xiàn)u W D,Zhang G L. 2011. Changes of soil enzyme activities and fungal diversity in rhizosphere soil of solanum rostralum at different develop- ment stages [J]. Chinese Journal of Ecology, 30 (3) : 448-452.] doi: 10.13292/j.1000-4890.2011.0081.

鄒學(xué)校,朱凡.2020.辣椒傳入中國(guó)的途徑與傳播路徑[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),46(6):629-640.[ZouXX, Zhu F. 2020. The path of pepper introduction into China and its spreading route in China[J]. Journal of Hunan Agricultural University (Natural Sciences) , 46(6) :629-640.] doi:10.13331/j.cnki.jhau.2020.06.001.

鄒學(xué)校,馬艷青,戴雄澤,李雪峰,楊莎.2020.辣椒在中國(guó)的 傳播與產(chǎn)業(yè)發(fā)展[J].園藝學(xué)報(bào),47(9):1715-1726.[Zou X X, Ma Y Q, Dai X Z, Li X F, Yang S. 2020. Spread and industry development of pepper in China[J]. Acta Horti- culturae Sinica, 47 (9) : 1715-1726. ] doi: 10.16420/j.issn.0513-353x.2020-0103.

Ajilogba C F, Olanrewaju O S, Babalola O O. 2022. Plant growth stage drives the temporal and spatial dynamics of the bacterial microbiome in the rhizosphere of Vigna subterranea[J]. Frontiers in Microbiology, 13: 825377. doi:10.3389/fmicb.2022.825377.

Berendsen R L,Pieterse C M J,Bakker P A H M. 2012. The rhizosphere microbiome and plant health [J]. Trends in Plant Science , 17 ( 8) : 478-486. doi : 10.1016/j.tplants.2012.04.001. Blanes M C, Vi?egla B, Salido M T, Carreira J A. 2012. Coupled soil-availability and tree-limitation nutritional shifts induced by N deposition: Insights from N to P rela- tionships in abies pinsapo forests[J]. Plant and Soil, 366(1-2):67-81. doi:10.1007/s11104-012-1397-y.

Dong L L,Xu J,Zhang L J,Cheng R Y,Wei G F,Su H, YangJ, Qian J, Xu R, Chen S L. 2018. Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality[J]. Acta Pharmaceutica Sinica B, 8(2): 272-282.

doi: 10.1016/j.apsb.2017.12.011.

Guo Z B,Wan S X,Hua,K K,Yin Y,Chu H Y,Wang D Z, Guo X S. 2020. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem[J]. Applied Soil Ecology, 149:103510. doi: 10.1016/j.apsoil.2020.103510.

Jia T,Yao Y H,Wang R H,Wu T H,Chai B F. 2020. Dynamics relationship of phyllosphere and rhizosphere bacterial communities during the development of Bothriochloa ischaemum in copper tailings[J]. Frontiers in Microbiology,11: 869. doi:10.3389/fmicb.2020.00869.

Li H, Su J Q, Yang X R, Zhu Y G. 2019. Distinct rhizosphere effect on active and total bacterial communities in paddy soils [J]. Science of the Total Environment, 649: 422-430.

doi: 10.1016/j.scitotenv.2018.08.373.

Li X Z, Rui J P, Mao Y J, Yannarell A C, Mackie R. 2014. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biology and Biochemistry,68:392-401. doi:10.1016/j.soilbio.2013.10.017.

Mace G M, Norris K,F(xiàn)itter A H. 2012. Biodiversity and ecosys-tem services:A multilayered relationship[J]. Trends in Ecology amp; Evolution, 27 (1) : 19-26. doi: 10.1016/j.tree.2011.08.006.

Na X F,Cao X N,Ma C X,Ma S L,Xu P X,Liu S C,Wang J J, Wang H G, Chen L, Qiao Z J. 2019. Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.)[J].Frontiers in Microbiology, 10:828. doi: 10.3389/fmicb.2019.00828.

Rousk J, B??th E, Brookes P C, Lauber C L, Lozupone C, Caporaso J G, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. The ISME Journal, 4: 1340-1351. doi: 10.1038/ismej.2010.58.

Sarpras M,Chhapekar S S,Ahmad I,Abraham S K,Ramchiary

N. 2018. Analysis of bioactive components in ghost chili (Capsicum chinense) for antioxidant, genotoxic,and apoptotic effects in mice[J]. Drug and Chemical Toxicology,43

(2):182-191. doi:10.1080/01480545.2018.1483945.

Schmidt T M, Thomé A H E, Sperotto R A, Granada C E. 2019. Effect of rhizobia inoculation on the development of soil- borne pathogens infecting common bean plants [J]. Euro- pean Journal of Plant Pathology, 153 (3) :687-694. doi: 10.1007/s10658-018-1600-y.

Sohn S I, Ahn J H, Pandian S, Oh Y J, Shin E K, Kang H J, Cho W S, Cho Y S,Shin K H. 2021. Dynamics of bacterial community structure in the rhizosphere and root nodule of soybean: Impacts of growth stages and varieties[J]. International Journal of Molecular Sciences, 22 (11): 5577. doi :10.3390/ijms22115577.

Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K. 2014. Changes in the bacterial community of soybean rhizospheres during growth in the field [J]. PLoS One, 9(6):e100709. doi: 10.1371/journal.pone.

Sun Y P, Guan Y T, Wang H Y, Wu G X. 2019. Autotrophic nitrogen removal in combined nitritation and anammox systems through intermittent aeration and possible microbial interactions by quorum sensing analysis[J]. Bioresource Technology,272: 146-155. doi:10.1016/j.biortech.2018.10.017. Tkacz A, Poole P. 2015. Role of root microbiota in plant productivity[J]. Journal of Experimental Botany,66(8) : 21672175. doi: 10.1093/jxb/erv157.

Wang J C, Xue C, Song Y, Wang L Huang Q, Shen Q. 2016. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity [J]. Frontiers in Microbiology,7:1207. doi: 10.3389/fmicb.2016.01207.

Wang W H,Luo X,Chen Y,Ye X F,Wang H,Cao Z,Ran W, Cui Z L. 2019. Succession of composition and function of soil bacterial communities during key rice growth stages [J]. Frontiers in Microbiology, 10:421. doi: 10.3389/fmicb.2019.00421.

Watt M, Silk W K, Passioura J B. 2006. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere [J]. Annals of Botany, 97(5):839-855. doi:10.1093/aob/mcl028.

Wu Z H, Liu Q S,Li Z Y, Cheng W,Sun J M, Guo Z H, Li Y M, Zhou J Q, Meng D L, Li H B, Lei P, Yin H Q. 2018. Environmental factors shaping the diversity of bacterial communities that promote rice production[J]. BMC Microbiology,18(1):1-11. doi:10.1186/s12866-018-1174-z.

Yuan J, Chaparro J M, Manter D K,Zhang R F, Vivanco J M, Shen Q R. 2015. Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors[J]. Soil Biology and Biochemistry, 89:206-209.doi:10.1016/j.soilbio.2015.07.009.

Zhai Y M, Hou M M, Nie S A. 2018. Variance of microbial composition and structure and relation with soil properties in rhizospheric and non-rhizospheric soil of a flooded paddy[J]. Paddy and Water Environment, 16(1):163-172.doi:10.1007/s10333-017-0627-6.

(責(zé)任編輯李洪艷)

猜你喜歡
高通量測(cè)序根際生育期
根際微生物對(duì)植物與土壤交互調(diào)控的研究進(jìn)展
黃花蒿葉水提物對(duì)三七根際尖孢鐮刀菌生長(zhǎng)的抑制作用
川明參輪作對(duì)煙地土壤微生物群落結(jié)構(gòu)的影響
多穗柯轉(zhuǎn)錄組分析及黃酮類化合物合成相關(guān)基因的挖掘
人參根際真菌群落多樣性及組成的變化
LncRNAs作為miRNA的靶模擬物調(diào)節(jié)miRNA
促植物生長(zhǎng)根際細(xì)菌HG28-5對(duì)黃瓜苗期生長(zhǎng)及根際土壤微生態(tài)的影響
基于作物生育期的潛在蒸散的時(shí)空演變特征及R/S 分析
西藏科技(2015年5期)2015-09-26 11:55:25
2013-2014年度二二二團(tuán)冬小麥各生育期氣象條件分析
阿拉爾市2012年棉花生育期氣象條件分析
普格县| 珲春市| 边坝县| 新闻| 沂水县| 龙江县| 志丹县| 石狮市| 永宁县| 新龙县| 新巴尔虎右旗| 文化| 青冈县| 江永县| 永德县| 鄂温| 西吉县| 唐山市| 黄骅市| 铁岭县| 新沂市| 阿拉善盟| 台山市| 云和县| 正蓝旗| 崇信县| 彝良县| 桃源县| 吉林省| 昌都县| 齐齐哈尔市| 壶关县| 西充县| 长海县| 海南省| 苏尼特右旗| 刚察县| 安平县| 延庆县| 琼中| 盘山县|