国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

種植抗異丙隆轉(zhuǎn)基因水稻和施用異丙隆對(duì)轉(zhuǎn)基因水稻根際微生物群落的影響

2024-08-22 00:00:00蘇湘寧李傳瑛劉雪松章玉蘋
關(guān)鍵詞:高通量測(cè)序除草劑

摘要:【目的】明確種植抗異丙隆轉(zhuǎn)基因水稻和施用除草劑異丙隆對(duì)轉(zhuǎn)基因水稻根際微生物群落的影響,為抗異 丙隆水稻種植的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供科學(xué)依據(jù)?!痉椒ā炕谂柙栽囼?yàn),采用高通量測(cè)序技術(shù)分析2個(gè)抗異丙隆轉(zhuǎn)基因水 稻株系及其親本和施用異丙隆轉(zhuǎn)基因在不同水稻生長階段的根際微生物群落多樣性與組成的差異?!窘Y(jié)果】高通 量測(cè)序結(jié)果顯示,在水稻所有生長階段,變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、芽單胞菌門(Gemmati- monadota)、擬桿菌門(Bacteroidota)和粘球菌門(Myxococcota)是根際微生物中的優(yōu)勢(shì)細(xì)菌門;羅茲菌門(Rozellomy- cota)、子囊菌門(Ascomycota)、擔(dān)子菌門(Basidiomycota)、球囊菌門(Glomeromycota)和被孢霉門(Mortierellomy- cota)是根際微生物中的優(yōu)勢(shì)真菌門。在水稻相同生長階段,無論是種植抗異丙隆轉(zhuǎn)基因水稻、非轉(zhuǎn)基因水稻還是 施用除草劑異丙隆,水稻根際微生物群落的豐富度指數(shù)、辛普森多樣性指數(shù)和香農(nóng)多樣性指數(shù)均未受到顯著影 響(Pgt;0.05,下同);抗異丙隆轉(zhuǎn)基因水稻、施用異丙隆的轉(zhuǎn)基因水稻與非轉(zhuǎn)基因水稻根際微生物中多數(shù)優(yōu)勢(shì)微生物門 類相對(duì)豐度無顯著差異,個(gè)別優(yōu)勢(shì)微生物門在水稻特定的生長階段發(fā)生變化。基于相對(duì)豐度前15位微生物屬的聚類 分析顯示,在水稻某些生長階段根際微生物群落的組成在抗異丙隆轉(zhuǎn)基因水稻、施用異丙隆的轉(zhuǎn)基因水稻與非轉(zhuǎn)基 因水稻間存在一定差異。根際微生物群落的主成分分析顯示,抗異丙隆轉(zhuǎn)基因水稻、施用異丙隆的轉(zhuǎn)基因水稻和非 轉(zhuǎn)基因水稻根際微生物群落組成間無顯著差異,但不同生長階段的根際微生物群落組成出現(xiàn)空間分異。根際微生物 群落變差分解分析顯示,水稻生長階段對(duì)根際土壤中的細(xì)菌群落結(jié)構(gòu)變化的影響為45.62%,而品種和施用異丙隆對(duì) 根際土壤中細(xì)菌群落結(jié)構(gòu)變化的影響分別為1.15%和2.76%;水稻生長階段對(duì)根際土壤中真菌群落結(jié)構(gòu)變化的影響 為48.36%,而品種和施用異丙隆對(duì)根際土壤中真菌群落結(jié)構(gòu)變化的影響分別為1.36%和2.45%?!窘Y(jié)論】種植抗異丙隆 轉(zhuǎn)基因水稻和施用異丙隆并未對(duì)轉(zhuǎn)基因水稻根際微生物群落產(chǎn)生顯著影響,但根際土壤中的細(xì)菌和真菌群落一定程 度上受水稻生長階段的影響。

關(guān)鍵詞:轉(zhuǎn)基因水稻;除草劑;異丙隆;根際微生物群落;高通量測(cè)序

文章編號(hào):2095-1191(2024)04-1010-13

中圖分類號(hào):S154.3;S511

文獻(xiàn)標(biāo)志碼:A

Effects of planting isoproturon–resistant transgenic rice (Oryza sativa) and applying isoproturon on rhizospheric microbial communities of transgenic rice

SU Xiang-ning1, LI Chuan-ying1, LIU Xue-song2, ZHANG Yu-ping1*

(1Research Institute of Plant Protection, Guangdong Academy of Agricultural Sciences/Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, Guangdong 510640, China; 2Institute of

Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China)

Abstract:[Objective]The effects of planting isoproturon-resistant transgenic rice and application of herbicide isopro-turon on rhizospheric microbial communities of transgenic rice were studied to provide a scientific basis for ecological risk assessment of herbicide-resistant rice cultivation. 【Method】Based on pot experiments, the differences in rhizosphere mi- crobial community diversity and composition between two isoproturon-resistant transgenic rice lines and their parents and isoproturon-treated transgenic rice at different rice growth stages were analyzed by high-throughput sequencing technique.【Result 】The results of high-throughput sequencing showed that the dominant bacterial phyla in rhizospheric microbial communities at all growth stages of rice were Proteobacteria, Acidobacteriota, Gemmatimonadota, Bacteroidota, and Myxococcota. The dominant fungal phyla in the rhizosphere microorganisms were Rozellomycota, Ascomycota, Basidio- mycota, Glomeromycota, and Mortierellomycota. Regardless of the cultivation of isoproturon-resistant transgenic rice, non-transgenic rice or the application of herbicide isoproturon, the richness index, Simpson diversity index, and Shannon diversity index of rice rhizosphere microbial communities were not significantly affected at the same growth stage of rice (Pgt;0.05, the same below). There was no significant difference in the relative abundance of most dominant microbial phyla in the rhizosphere microorganisms of isoproturon-resistant transgenic rice, isoproturon-treated transgenic rice and non-transgenic rice. Individual dominant phyla changed at specific growth stages of rice. The cluster analysis based on the top 15 abundant microbial genera also showed that there were some differences in the composition of rhizospheric micro- bial communities among isoproturon-resistant transgenic rice, isoproturon-treated transgenic rice, and non-transgenic rice at some growth stages of rice. The principal component analysis of rhizosphere microbial communities showed that there was no significant difference in the composition of rhizospheric microbial communities among isoproturon-resistant trans- genic rice, isoproturon-treated transgenic rice, and non-transgenic rice, but there were spatial differentiation at different growth stages in the composition of rhizosphere microbial communities. The results of variation partitioning analysis of rhizosphere microbial community showed that the influence of rice growth stage on bacterial community structure varia- tions in rhizospheric soil was 45.62%, while the influences of varieties and application of isoproturon on bacterial commu- nity structure variations in rhizospheric soil were 1.15% and 2.76% respectively. The influence of rice growth stage on fun- gal community structure variations in rhizospheric soil was 48.36%, while the influence of varieties and application of isoproturon on fungal community structure variations in rhizospheric soil were only 1.36% and 2.45% respectively. 【Con- clusion JThe planting isoproturon-resistant transgenic rice and application of isoproturon causes no significant effect on rhi- zosphere microbial communities of transgenic rice. However, the bacterial and fungal communities in rhizosphere soils are influenced by the growth stages of rice to some extent.

Key words: transgenic rice; herbicide; isoproturon; rhizospheric microbial communities; high-throughput sequencing

Foundation items: National Natural Science Foundation of China (32001451); Guangdong Basic and Applied Basic Research Project (2021A1515111108)

0引言

[研究意義]轉(zhuǎn)基因作物商業(yè)化的23年間,轉(zhuǎn)基因作物在全球的累計(jì)種植面積達(dá)27億ha,為全球帶來2249億美元的經(jīng)濟(jì)效益(國際農(nóng)業(yè)生物技術(shù)應(yīng)用服務(wù)組織,2021)。統(tǒng)計(jì)數(shù)據(jù)顯示,2019年全球共種植1.904億ha的轉(zhuǎn)基因作物,其中我國轉(zhuǎn)基因作物種植面積為320萬ha,包括棉花和木瓜等作物(宋亞娜等,2024)。近3年來,農(nóng)業(yè)農(nóng)村部先后批準(zhǔn)了一批轉(zhuǎn)基因玉米生產(chǎn)應(yīng)用的安全證書,轉(zhuǎn)基因玉米即將加人我國轉(zhuǎn)基因作物商業(yè)化種植。可見,種植轉(zhuǎn)基因作物能帶來一定的經(jīng)濟(jì)效益,但同時(shí)其潛在環(huán)境風(fēng)險(xiǎn)問題也引起了公眾的廣泛關(guān)注,如對(duì)根際微生物群落組成及功能的影響(Lu et al.,2017)。土壤是生命賴以生存的基礎(chǔ),根際土壤是靠近植物根系的狹窄土層,是植物一土壤一微生物互作的主要發(fā)生場(chǎng)所,土壤中根際微生物的數(shù)量和豐度遠(yuǎn)大于非根際(Bardgctt ct al.,1999)。根際微生物參與了許多植物和土壤的生理生化過程,如土壤有機(jī)質(zhì)分解、腐殖質(zhì)形成和養(yǎng)分轉(zhuǎn)化循環(huán)等(Wiehe and Hoflich,1995;劉智等,2022;唐芬芬等,2023)。此外,根際微生物還具有平衡土壤生態(tài)系統(tǒng)、凈化土壤環(huán)境和生物修復(fù)等重要作用(陳曉雯等,2011)。轉(zhuǎn)基因作物可能會(huì)通過基因平移和根系分泌外源蛋白等方式影響根際微生物群落的組成和結(jié)構(gòu),最終影響土壤物質(zhì)能量循環(huán)和土壤生態(tài)系統(tǒng)的穩(wěn)定性和可持續(xù)性(Aira et al.,2010; Inccoglu et al.,2010; Yang, 2011)。此外,種植轉(zhuǎn)基因抗除草劑作物導(dǎo)致除草劑的大量使用,可能會(huì)影響根際微生物群落的多樣性(Tanget al.,2019)。因此,研究種植轉(zhuǎn)基因作物和施用除草劑對(duì)根際微生物的影響具有重要的生態(tài)學(xué)意義?!厩叭搜芯窟M(jìn)展】多年來,種植轉(zhuǎn)基因作物對(duì)土壤微生物群落是否具有影響一直存在爭(zhēng)議。部分研究認(rèn)為,種植轉(zhuǎn)基因作物對(duì)土壤微生物群落的影響很小或無影響,而且這種影響往往是暫時(shí)的。如,SUV3轉(zhuǎn)基因耐鹽水稻(Oryza sativa)、原卟啉氧化酶(PPO)轉(zhuǎn)基因水稻和Bt轉(zhuǎn)基因水稻對(duì)根際土壤細(xì)菌和真菌的多樣性及豐度無影響(Liu et al.,2008;Chun et al.,2012;Sahoo et al.,2015);crylAc/cpti抗蟲轉(zhuǎn)基因水稻連續(xù)種植4年后對(duì)稻田土壤細(xì)菌或真菌的群落組成及豐度無顯著影響(Song et al.,2014);抗真菌合成幾丁質(zhì)酶(NiC)轉(zhuǎn)基因油菜(Brassica napus)對(duì)根際土壤中細(xì)菌、真菌和放線菌的數(shù)量、多樣性及群落結(jié)構(gòu)無顯著影響(Khan et al.,2017);2種抗草銨膦油菜及施用草銨膦對(duì)根際微生物群落的多樣性影響相對(duì)較小,但其受油菜生長階段的影響更大(Gyamfi et al.,2002;Tang et al.,2019);CrylAb/Ac轉(zhuǎn)基因棉花根際土壤中細(xì)菌和真菌的群落多樣性、優(yōu)勢(shì)菌群和物種相對(duì)豐度等指標(biāo)與對(duì)照相比差異不顯著(Xie et al.,2016;Qi et al.,2018)。但也有部分研究表明轉(zhuǎn)基因作物對(duì)根際微生物有特定的影響。如,不同生長階段轉(zhuǎn)Bt抗蟲棉通過Bt蛋白對(duì)根際土壤細(xì)菌的相對(duì)豐度和群落結(jié)構(gòu)產(chǎn)生影響,但不影響其Alpha多樣性,(王甜甜等,2021);Bt轉(zhuǎn)基因抗蟲水稻及其轉(zhuǎn)基因雜交水稻提高了稻田土壤細(xì)菌或真菌群落多樣性,改變了細(xì)菌或真菌主要種類的相對(duì)豐度,但對(duì)細(xì)菌或真菌群落及功能組成的影響不顯著(宋亞娜等,2024)。還有研究表明,抗蟲轉(zhuǎn)基因棉花使根際土壤中細(xì)菌或真菌的多樣性和豐度均發(fā)生變化(Donegan et al.,1995);抗蟲轉(zhuǎn)基因玉米對(duì)根際土壤細(xì)菌群落也能產(chǎn)生一定影響(Castaldini et al.,2005);轉(zhuǎn)Bt玉米和非轉(zhuǎn)Bt玉米在Alpha多樣性和根際土壤細(xì)菌群落組成方面存在顯著差異(vanWyk"Deidré et al.,2017)。關(guān)于轉(zhuǎn)基因作物對(duì)根際微生物影響的研究結(jié)果不一,部分原因是由根際微生物群落組成的高度復(fù)雜性及檢測(cè)技術(shù)的局限性所致。隨著高通量測(cè)序技術(shù)的發(fā)展,實(shí)現(xiàn)了根際微生物大規(guī)?;驕y(cè)序,為研究根際微生物的種類、結(jié)構(gòu)和多樣性提供了豐富信息(Zhang et al.,2021)。水稻是全球超過35億人口的主要糧食作物。全球約90%的水稻種植在亞洲,我國水稻種植面積占世界種植面積的1/3,是世界上最大的稻米生產(chǎn)國和消費(fèi)國(Liuet al.,2022)。異丙隆(Isoproturon,IPU)是我國最常使用的除草劑之一,由于異丙隆殘效期長、土壤吸附性差,導(dǎo)致其在土壤、地表水和地下水中頻頻檢出(Lu et al.,2016)。環(huán)境中殘留的異丙隆及其部分次生代謝產(chǎn)物對(duì)生物具有一定的毒性效應(yīng),不僅會(huì)抑制后茬敏感作物(水稻等)的生長(Spirhanzlova etal.,2019),還會(huì)在其體內(nèi)富集,甚至在谷物中累積,對(duì)我國糧食安全構(gòu)成嚴(yán)重威脅(Luet al.,2016)。培育推廣具有抗除草劑能力的水稻品種是解決上述問題的有效途徑,其中,利用轉(zhuǎn)基因技術(shù)將外源抗性基因轉(zhuǎn)入水稻是獲得抗除草劑水稻品種快速有效的方法。目前,抗草甘膦基因和抗草銨膦基因在轉(zhuǎn)基因作物中應(yīng)用最廣泛??共莞熟⒒虬╟p4 epsps、goxv247、gat4601、mepsps、2mepspsepsps、epsps和grg23ace5,抗草銨膦基因主要包括bar和pat。但關(guān)于抗除草劑轉(zhuǎn)基因水稻對(duì)根際微生物的影響研究較少,有研究表明,轉(zhuǎn)bar基因水稻與其親本在水稻成熟期時(shí)的根際土壤中細(xì)菌多樣性指數(shù)差異不顯著,但個(gè)別屬的豐度存在顯著差異(He et al.,2019)?!颈狙芯壳腥朦c(diǎn)】目前,有關(guān)抗異丙隆轉(zhuǎn)基因水稻對(duì)其根際微生物群落多樣性和組成結(jié)構(gòu)的影響尚不明確?!緮M解決的關(guān)鍵問題】采用高通量測(cè)序技術(shù)對(duì)抗異丙隆轉(zhuǎn)基因水稻及其親本和施用異丙隆的轉(zhuǎn)基因水稻在不同生長階段的根際土壤中細(xì)菌16SrRNA和真菌ITS序列進(jìn)行分析,以明確種植抗異丙隆轉(zhuǎn)基因水稻及施用異丙隆對(duì)轉(zhuǎn)基因水稻根際微生物群落組成和多樣性的影響,為抗異丙隆轉(zhuǎn)基因水稻種植的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供科學(xué)依據(jù)。

1材料與方法

1.1試驗(yàn)材料

1.1.1供試水稻品種

2個(gè)抗異丙隆轉(zhuǎn)基因水稻株 系轉(zhuǎn)基因1和轉(zhuǎn)基因2(以下簡稱OE1和OE2)是以 水稻日本晴為親本受體,通過基因工程方法過表達(dá) 一個(gè)糖基轉(zhuǎn)移酶OsIRGTI基因獲得抗除草劑能力的 水稻材料,由南京農(nóng)業(yè)大學(xué)理學(xué)院楊紅課題組提供; 該水稻材料能顯著增強(qiáng)對(duì)除草劑異丙隆的耐受能 力(Su et al.,2019)。非轉(zhuǎn)基因日本晴水稻(Nippon-bare)(以下簡稱NP)由南京農(nóng)業(yè)大學(xué)理學(xué)院楊紅課 題組提供。

1.1.2供試藥品

異丙隆原藥(純度為98.9%)(廣州毅田生物技術(shù)有限公司)。

1.1.3試驗(yàn)土壤

采自廣東省農(nóng)業(yè)科學(xué)院植物保 護(hù)研究所大豐試驗(yàn)基地(23°09'N,113°22'E)2~ 10cm的稻田土,無轉(zhuǎn)基因作物種植史且土壤未施 用過農(nóng)藥。供試土壤為紅壤,基本理化性質(zhì):pH5.96、 全氮1.16 mg/kg、全磷0.61 g/kg、全鉀19.54 g/kg、有效氮128.72mg/kg、有效磷22.27 mg/kg和速效鉀 82.42 mg/kg。

1.2試驗(yàn)方法

1.2.1試驗(yàn)設(shè)計(jì)與土壤樣本采集

盆栽試驗(yàn)在廣東省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所試驗(yàn)大棚(23:08'N,113°20'E)進(jìn)行。水稻播種前,將土壤經(jīng)20 目篩網(wǎng)去除雜質(zhì),并在15~20 ℃的室內(nèi)風(fēng)干。用攪拌器將土壤攪拌均勻,保證土壤理化性質(zhì)均勻,微生物分布均勻。土壤經(jīng)過10 d的預(yù)濕潤期,以改善土壤初始微生物定殖。土壤裝入直徑35 cm、高40 cm的盆中,每盆裝入15 kg土壤,每盆1棵水稻,每處理5棵水稻,每處理6次重復(fù)。試驗(yàn)期為2023年5-9月。

試驗(yàn)設(shè)4個(gè)處理:(1)野生型日本晴水稻(NP);(2)抗異丙隆轉(zhuǎn)基因水稻株系1(OE1);(3)抗異丙隆轉(zhuǎn)基因水稻株系2(OE2);(4)抗異丙隆轉(zhuǎn)基因水稻株系1,并在水稻2~3葉期施用4mg/L異丙?。ㄍ扑]濃度)(OE1+IPU)。分別于水稻播種前、苗期、分蘗期、拔節(jié)期、開花期和成熟期6個(gè)階段采集水稻根際土壤,取樣時(shí)采用抖根法采集根際土壤樣本,每處理采集6份土壤樣本,于-80℃冰箱中保存待用。

1.2.2根際微生物DNA提取

采用強(qiáng)力土壤DNA提取試劑盒(美國MOBIO公司)提取根際微生物總DNA。稱取0.5g解凍后的土壤樣本,按試劑盒操作說明進(jìn)行根際微生物總DNA提取,采用1.2%瓊脂糖凝膠電泳檢測(cè)提取基因組DNA的純度和濃度。DNA樣品于-20°℃冰箱保存待用。

1.2.3根際微生物高通量測(cè)序

將DNA樣本用干冰包裝后送至上海歐易生物醫(yī)學(xué)科技有限公司進(jìn)行微生物基因高通量測(cè)序。利用引物343F:5'-TACGGRAGGCAGCAG-3'和798R:5'-AGGGTATCTAATCCT-3'對(duì)細(xì)菌16S rRNA的V3~V4區(qū)進(jìn)行PCR擴(kuò)增。利用引物ITS1F:5'-CTTGGTCATTTAGAGGAAGTAA-3'和ITS2R:5'-GCTGCGTTCTTCATCGATGC-3'對(duì)真菌ITS的V1區(qū)進(jìn)行擴(kuò)增。PCR反應(yīng)體系50μL:2×Premix Tag 25 pL,上、下游引|物(10mmol/L)各1 pL,DNA(20ng/μL)模板3μL,無菌水補(bǔ)足至50 μL。擴(kuò)增程序(細(xì)菌):95℃預(yù)變性2min;95°℃30s,55℃30s,72℃45s,進(jìn)行30個(gè)循環(huán);72°℃延伸10min。擴(kuò)增程序(真菌):95℃預(yù)變性2min;95°℃30s,58℃30s,72℃45s,進(jìn)行33個(gè)循環(huán);72℃延伸10min。采用Illumina MiSeq測(cè)序平臺(tái)進(jìn)行測(cè)序(上海歐易生物醫(yī)學(xué)科技有限公司)。

1.3統(tǒng)計(jì)分析

使用QIIME2(2020.11)軟件包對(duì)原始序列進(jìn)行分析(Bolyen et al.,2019)。通過Cutadapt對(duì)原始數(shù)據(jù)進(jìn)行序列去噪、聚類和嵌合體去除,獲得擴(kuò)增子序列變體(Amplicon sequence uariant,ASV),統(tǒng)計(jì)每個(gè)樣本中被分類為ASV的標(biāo)簽數(shù)量,從而得到每個(gè)樣本中每個(gè)簽名序列的豐度;在97%相似度水平對(duì)高質(zhì)量序列聚類,獲得門、綱、目、科和屬各水平下的分類單元。利用QIIME2(2020.11)計(jì)算豐富度指數(shù)(Chao1)、辛普森多樣性指數(shù)(Simpson)和香農(nóng)多樣性指數(shù)(Shannon)。以Alpha多樣性指數(shù)為基礎(chǔ),計(jì)算多樣性指數(shù)在各組間的差異顯著性(Kruskal Wal-lis/Wilcoxon)。采用基于Bray-Curtis距離矩陣算法進(jìn)行群落組成的主成分分析(PCA),同時(shí)進(jìn)行樣本間的Adonis和Anosim等差異顯著性分析,評(píng)價(jià)各組間樣本群落的分布。使用R語言進(jìn)行微生物群落變差分解分析(VPA)。

采用Excel2010對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)和整理,采 用SPSS 22.0進(jìn)行單因素方差分析(One-way ANOVA)及LSD顯著性檢驗(yàn)。運(yùn)用Origin Graph 2018制圖。

2結(jié)果與分析

2.1水稻根際微生物高通量測(cè)序結(jié)果的質(zhì)量分析

水稻根際微生物高通量測(cè)序序列經(jīng)質(zhì)控過濾 后,獲得75892~77909條細(xì)菌16SrRNA高質(zhì)量序列,獲得72204~76961條真菌ITS高質(zhì)量序列(表1)。 細(xì)菌和真菌序列的平均樣本覆蓋率分別為96.12%和93.78%,表明測(cè)序取樣深度涵蓋了大部分根際土 壤中的細(xì)菌和真菌,測(cè)序結(jié)果可反映大多數(shù)根際微 生物群落的結(jié)構(gòu)和組成。

2.2水稻根際微生物群落多樣性分析結(jié)果

通過對(duì)水稻根際土壤中細(xì)菌16SrRNA及真菌 ITS的高通量測(cè)序,分析種植抗異丙隆水稻及其親本 和施用異丙隆轉(zhuǎn)基因水稻的根際微生物群落Alpha 和Beta多樣性。

由表2可看出,在水稻同一生長階段,非轉(zhuǎn)基因 水稻(NP)、轉(zhuǎn)基因水稻(OE1、OE2)和施用異丙隆的轉(zhuǎn)基因水稻(OE1+IPU)的根際土壤中細(xì)菌和真菌群落的Chao1指數(shù)、Simpson指數(shù)和Shannon指數(shù)均無顯著差異(Pgt;0.05,下同),但在水稻不同生長階段, 4個(gè)處理的根際土壤中細(xì)菌和真菌群落的Chao1指 數(shù)、Simpson指數(shù)和Shannon指數(shù)存在顯著差異(Plt; 0.05,下同)。由此可見,種植抗異丙隆轉(zhuǎn)基因水稻 和施用異丙隆對(duì)根際微生物群落的多樣性和物種豐 富度沒有影響,但水稻不同生長階段的根際微生物 群落豐富度和多樣性存在顯著變化。

水稻根際土壤中細(xì)菌及真菌群落的Beta多樣性 主成分分析結(jié)果顯示,不同處理間的細(xì)菌群落組成 在第一主成分(PC1)和第二主成分(PC2)的解釋度分別為2.96%和2.40%,真菌群落組成在PC1和PC2 的解釋度分別為2.83%和2.76%,表明不同處理間根 際土壤中細(xì)菌(真菌)群落組成在PC1與PC2方向上的分布差異相近(圖1-A和圖1-C)。因此,不同處理 間水稻根際土壤中細(xì)菌(真菌)群落組成間差異不大。 在水稻不同生長階段,根際土壤中細(xì)菌(真菌)群落 組成PC1與PC2的解釋度差異較大,細(xì)菌群落組成 解釋度分別為12.72%和2.57%,真菌群落組成解釋度分別為12.63%和2.45%(圖1-B和圖1-D)。因此,水稻不同生長階段根際土壤中細(xì)菌(真菌)群落組成間差異較大。

2.3水稻根際微生物群落的物種組成

本研究水稻根際土壤中共鑒定出46個(gè)細(xì)菌門和17個(gè)真菌門。細(xì)菌16SrRNAV3~V4區(qū)高通量測(cè)序的物種分類注釋與組成分析表明,根際土壤中的細(xì)菌主要包括變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、芽單胞菌門(Gemmatimonadota)、擬桿菌門(Bacteroidota)和粘球菌門(Myxococcota)等5門,共計(jì)占細(xì)菌總量的 83.31%,變形菌門、酸桿菌門、芽單胞菌門、擬桿菌門和粘球菌門依次占44.88%、13.50%、9.67%、9.21%和6.05%。

由圖2可看出,水稻苗期時(shí),施用異丙隆的轉(zhuǎn)基因水稻的根際土壤中變形菌門和粘球菌門的相對(duì)豐度均顯著低于其他3個(gè)處理,擬桿菌門的相對(duì)豐度顯著低于OE2;水稻開花期時(shí),抗異丙隆轉(zhuǎn)基因水稻的根際土壤中酸桿菌門相對(duì)豐度均顯著低于非轉(zhuǎn)基因水稻。

根際土壤中真菌ITSV1區(qū)高通量測(cè)序的物種分類注釋與組成分析表明,羅茲菌門(Rozellomy-cota)、子囊菌門(Ascomycota)、擔(dān)子菌門(Basidiomy-cota)、球囊菌門(Glomeromycota)和被孢霉門(Mor-tierellomycota)是主要優(yōu)勢(shì)種群。其中,羅茲菌門、子囊菌門和擔(dān)子菌門依次占真菌總量的40.23%、29.38%和10.48%。

由圖3可看出,水稻分蘗期時(shí),施用異丙隆的轉(zhuǎn)基因水稻的根際土壤中羅茲菌門的相對(duì)豐度顯著低于其他3個(gè)處理,子囊菌門的相對(duì)豐度顯著低于抗異丙隆轉(zhuǎn)基因水稻。

根據(jù)所有樣本在屬水平的物種注釋,選擇細(xì)菌和真菌平均相對(duì)豐度前15位的屬物種繪制聚類熱圖。由圖4可看出,水稻拔節(jié)期時(shí),水稻根際土壤中細(xì)菌屬的物種組成首先在轉(zhuǎn)基因水稻OE1與OE2聚類,說明水稻拔節(jié)期2個(gè)抗異丙隆轉(zhuǎn)基因水稻株系的細(xì)菌群落物種組成相似(圖4-A);水稻開花期時(shí),水稻根際土壤中細(xì)菌屬的物種組成在轉(zhuǎn)基因水稻OE1與非轉(zhuǎn)基因水稻NP首先聚類,而水稻分蘗期二者聚類較遠(yuǎn),說明轉(zhuǎn)基因水稻OE1的細(xì)菌群落物種組成與非轉(zhuǎn)基因水稻NP相似,而水稻分蘗期二者差異較大;水稻成熟期時(shí),水稻根際土壤中細(xì)菌屬的物種組成首先在轉(zhuǎn)基因水稻OE2與非轉(zhuǎn)基因水稻NP之間聚類,說明轉(zhuǎn)基因水稻OE2的細(xì)菌群落物種組成與非轉(zhuǎn)基因水稻NP相似。

在水稻苗期時(shí),水稻根際土壤中真菌屬的物種組成首先在非轉(zhuǎn)基因水稻NP與轉(zhuǎn)基因水稻OE1之間聚類,而開花期時(shí)二者聚類距離最遠(yuǎn)(圖4-B),說明水稻苗期非轉(zhuǎn)基因水稻NP的真菌群落物種組成與轉(zhuǎn)基因水稻OE1相似,但水稻開花期時(shí)二者差異增大;在水稻分蘗期時(shí),水稻根際土壤中真菌屬的物種組成在非轉(zhuǎn)基因水稻NP與施用異丙隆的轉(zhuǎn)基因水稻OE1之間聚類,而拔節(jié)期和開花期時(shí)二者聚類距離最遠(yuǎn)(圖4-B),說明水稻分蘗期非轉(zhuǎn)基因水稻NP的真菌群落物種組成與施用異丙隆的轉(zhuǎn)基因水稻相似,但水稻拔節(jié)期和開花期時(shí)二者差異變大。

2.4影響根際微生物群落變化的因素

用R語言進(jìn)行微生物群落變差分解分析,結(jié)果顯示,水稻生長階段對(duì)細(xì)菌群落結(jié)構(gòu)變化的影響為45.62%,而品種和施用異丙隆對(duì)細(xì)菌群落結(jié)構(gòu)變化的影響僅為1.15%和2.76%(圖 5-A)。水稻生長階段對(duì)真菌群落結(jié)構(gòu)變化的影響為 48.36%,而品種和施用異丙隆對(duì)真菌群落結(jié)構(gòu)變化的影響僅為 1.36%和2.45%(圖5-B)。表明根際微生物群落的分布明顯受水稻生長階段的影響。

3討論

隨著第三代測(cè)序技術(shù)的發(fā)展,可實(shí)現(xiàn)高通量全長細(xì)菌16S rRNA和真菌ITS 測(cè)序,不需要對(duì)土壤中細(xì)菌和真菌進(jìn)行分離培養(yǎng)即可獲得土壤中所有微生物群落的基因全長信息,具有高通量和物種鑒定準(zhǔn)確等優(yōu)點(diǎn),已成為研究微生物群落的重要手段。本研究利用高通量測(cè)序技術(shù)分析了2個(gè)抗異丙隆轉(zhuǎn)基因水稻株系及其親本和施用異丙隆的轉(zhuǎn)基因水稻在不同生長階段根際微生物群落的差異。在所有樣本中,水稻根際土壤的優(yōu)勢(shì)細(xì)菌門主要包括變形菌門、酸桿菌門、芽單胞菌門、擬桿菌門和粘球菌門等;優(yōu)勢(shì)真菌門為羅茲菌門、子囊菌門、擔(dān)子菌門、球囊菌門和被孢霉門等,與前人的研究結(jié)果(宋亞娜等,2024)類似。

在根際微生物群落多樣性和物種組成方面,在水稻同一生長階段,抗異丙隆轉(zhuǎn)基因水稻及其親本和施用異丙隆的轉(zhuǎn)基因水稻的Alpha多樣性指數(shù)和Beta多樣性的主成分分析均無明顯差異。在物種相對(duì)豐度方面,抗異丙隆轉(zhuǎn)基因水稻及其親本和施用異丙隆的轉(zhuǎn)基因水稻在相同生育期大多數(shù)根際微生物的優(yōu)勢(shì)菌門相對(duì)豐度無顯著差異,只有在水稻個(gè)別生長階段存在差異。如,在水稻苗期時(shí),施用異丙隆的轉(zhuǎn)基因水稻的變形菌門和粘球菌門相對(duì)豐度均顯著低于其他3個(gè)處理,擬桿菌門的相對(duì)豐度顯著低于轉(zhuǎn)基因水稻OE2;水稻開花期時(shí),抗異丙隆轉(zhuǎn)基因水稻的酸桿菌門相對(duì)豐度均顯著低于非轉(zhuǎn)基因水稻。酸桿菌門是一個(gè)高度多樣化的細(xì)菌門,在酸性土壤中尤其豐富,酸性土壤環(huán)境有利于酸桿菌群的生長,其相對(duì)豐度與土壤pH呈負(fù)相關(guān)(Schabereiter-Gurtner et al.,2002;Liu et al.,2014;王怡等,2019;楊立賓等,2019)。因此推測(cè)抗異丙隆轉(zhuǎn)基因水稻在開花期土壤pH升高是導(dǎo)致酸桿菌群相對(duì)豐度下降的原因。根際土壤中優(yōu)勢(shì)真菌只在水稻分蘗期存在差異,即施用異丙隆的轉(zhuǎn)基因水稻的根際土壤中羅茲菌門的相對(duì)豐度顯著低于其他3個(gè)處理,子囊菌門的相對(duì)豐度顯著低于抗異丙隆轉(zhuǎn)基因水稻。變差分解分析也顯示抗異丙隆轉(zhuǎn)基因水稻及其親本對(duì)根際微生物群落結(jié)構(gòu)變化的影響較小。這一結(jié)果與許多學(xué)者的研究結(jié)論類似,如CaMSRB2轉(zhuǎn)基因水稻和OsrHSA轉(zhuǎn)基因水稻在根際微生物多樣性與非轉(zhuǎn)基因水稻無顯著差異(Zhang et al.,2015;Sohn et al.,2016)。轉(zhuǎn)基因美洲楊74/76與非轉(zhuǎn)基因楊樹根際細(xì)菌群落的豐富度和多樣性均無顯著差異(Fan et al.,2020)。

水稻不同生長階段,無論是根際微生物群落的Alpha多樣性指數(shù)還是Beta多樣性的主成分分析,抗異丙隆轉(zhuǎn)基因水稻及其親本和施用異丙隆的轉(zhuǎn)基因水稻均存在較大差異。變差分解分析顯示水稻生長階段對(duì)根際微生物群落結(jié)構(gòu)變化有明顯影響,說明水稻不同生長階段對(duì)根際微生物群落的影響較大。研究表明,土壤微生物群落結(jié)構(gòu)受多種因素影響,如作物的生長階段、品種、土壤類型、種植年限和耕作方式(Weinert et al.,2011;Hannula et al.,2012;榮梓玉等,2022)等。另有研究發(fā)現(xiàn),影響轉(zhuǎn)基因作物根際微生物群落結(jié)構(gòu)的主要因素是作物的生長期和種植年限,而非轉(zhuǎn)基因因素(Lü et al.,2014;Guanet al.,2021)。Locke等(2008)研究了轉(zhuǎn)基因抗草甘膦玉米和抗草甘膦棉花根際微生物群落結(jié)構(gòu)多樣性,發(fā)現(xiàn)非轉(zhuǎn)基因與轉(zhuǎn)基因作物之間無顯著差異,而作物生長階段是影響微生物群落結(jié)構(gòu)的主要因素;轉(zhuǎn)CrylIe基因玉米和非轉(zhuǎn)基因玉米的根際土壤中細(xì)菌豐富度和多樣性指數(shù)及群落結(jié)構(gòu)均無顯著差異,但主成分分析表明苗期、花期、成熟期的轉(zhuǎn)基因玉米和親本均存在顯著差異(Liang et al.,2018);轉(zhuǎn)幾丁質(zhì)酶基因棉花根際土壤中的細(xì)菌群落隨棉花的生長階段發(fā)生顯著改變,但同一生育期轉(zhuǎn)幾丁質(zhì)酶棉花根際土壤中細(xì)菌的群落結(jié)構(gòu)和功能菌數(shù)量與非轉(zhuǎn)基因棉差異不顯著(Shahmoradi et al.,2019)。

另外,基于相對(duì)豐度前15位微生物屬的聚類分析也表明,在水稻某些生長階段其根際土壤中細(xì)菌或真菌群落組成在抗異丙隆轉(zhuǎn)基因水稻、施用異丙隆的轉(zhuǎn)基因水稻與非轉(zhuǎn)基因水稻間存在一定差異。研究表明,轉(zhuǎn)bar基因水稻與常規(guī)水稻的根際土壤中細(xì)菌多樣性指數(shù)差異不顯著,但個(gè)別屬的豐度存在顯著差異,其中厭氧菌屬含量顯著高于常規(guī)水稻(He et al.,2019)。Qiao 等(2017)研究發(fā)現(xiàn),在轉(zhuǎn)基因棉花苗期時(shí),絲核菌屬(Rhizoctonia)和鏈格孢屬(Alternaria)的相對(duì)豐度高于非轉(zhuǎn)基因棉,鐮孢菌屬(Fusarium)相對(duì)豐度降低;在棉花花蕾期,亡革菌屬(Thanatephorus)、輪枝孢屬(Verticillium)、赤霉菌屬(Gibberella)和鐮孢菌屬的相對(duì)豐度升高,而絲核菌屬的相對(duì)豐度降低。這些研究結(jié)果的差異可能歸因于外源基因類型及除草劑使用濃度等因素(Tang etal.,2019)。

轉(zhuǎn)基因抗除草劑作物的廣泛應(yīng)用不可避免地增加了相關(guān)除草劑的使用量。噴施化學(xué)農(nóng)藥可能會(huì)影響水稻根際微生物的群落結(jié)構(gòu)和功能,影響程度與噴施農(nóng)藥的濃度密切相關(guān)(李鴻波和吳朝暉,2018)。因此,長期大量施用除草劑對(duì)根際微生物多樣性和結(jié)構(gòu)組成的影響值得關(guān)注。研究表明,田間施用異丙隆對(duì)土壤中的酸桿菌門、放線菌門(Actinobacte ria)、變形菌門、擬桿菌門、厚壁菌門(Firmicutes)、芽單胞菌門、疣微菌門(Verrucomicrobia)、浮霉菌門(Planctomycetes)和泉古菌門(Crenarchaea)的豐度無顯著影響(Storck et al.,2014)。本研究結(jié)果顯示,苗期施用4mg/L異丙隆的轉(zhuǎn)基因水稻和未施用異丙隆轉(zhuǎn)基因水稻的根際微生物群落多樣性和物種組成無顯著差異,變差分解分析也顯示施用異丙隆對(duì)根際微生物群落結(jié)構(gòu)變化的影響較小。因此,在異丙隆推薦使用濃度下不會(huì)影響土壤微生物群落結(jié)構(gòu)多樣性和物種組成。在以往的研究中,轉(zhuǎn)基因作物種植后施用對(duì)根際微生物群落組成的影響存在不同研究結(jié)果。種植抗草銨膦轉(zhuǎn)基因油菜Z7B10和施用草銨膦對(duì)根際土壤中細(xì)菌群落組成無不利影響(Tang et al.,2019)。然而,在一些種植了抗草甘膦轉(zhuǎn)基因作物的地區(qū),大量使用草甘膦已導(dǎo)致根際微生物群落的健康狀況惡化,在干旱或土壤變得貧瘠的情況下,這種影響會(huì)更加嚴(yán)重(Tang et al.,2019)。Means等(2007)發(fā)現(xiàn),在種植抗草甘膦轉(zhuǎn)基因大豆時(shí),大量施用草甘膦會(huì)促進(jìn)土壤中鐮孢菌屬和腐霉菌屬(Pythium)的生長。因此,后續(xù)研究中可通過田間試驗(yàn),分析種植該轉(zhuǎn)基因水稻與施用異丙隆后根際微生物群落組成與功能、水稻根系分泌物代謝及土壤pH、養(yǎng)分含量等根際微環(huán)境的變化狀況,進(jìn)一步明確種植抗除草劑轉(zhuǎn)基因水稻對(duì)根際微生物群落的影響并深入探討其機(jī)制。

4結(jié)論

種植抗異丙隆轉(zhuǎn)基因水稻和施用異丙隆并未對(duì) 轉(zhuǎn)基因水稻根際土壤中的細(xì)菌和真菌群落多樣性、 優(yōu)勢(shì)菌群種類和物種相對(duì)豐度等指標(biāo)產(chǎn)生顯著影 響,但根際土壤中的細(xì)菌和真菌群落一定程度上受 水稻生長階段的影響。

參考文獻(xiàn)(References):

陳曉雯,林勝,尤民生,楊廣,王鋒.2011.轉(zhuǎn)基因水稻對(duì)土壤 微生物群落結(jié)構(gòu)及功能的影響[J].生物安全學(xué)報(bào),20(2):151-159.陳曉偉,林生,尤明生,楊克,王。2011。轉(zhuǎn)基因水稻對(duì)土壤微生物群落結(jié)構(gòu)和功能的影響[J].生物安全雜志,20(2):151-159。]

國際農(nóng)業(yè)生物技術(shù)應(yīng)用服務(wù)組織.2021.2019年全球生物技 術(shù)/轉(zhuǎn)基因作物商業(yè)化發(fā)展態(tài)勢(shì)[J].中國生物工程雜志,41 (1) : 114-119.獲得農(nóng)業(yè)生物技術(shù)應(yīng)用的國際服務(wù)。2021.2019年全球生物技術(shù)/轉(zhuǎn)基因作物商業(yè)化發(fā)展[J].中國生物技術(shù),41 (1): 114-119。] doi: 10。13523/j.cb.2012100

李鴻波,吳朝暉.2018.水稻根際微生物的影響因素研究進(jìn)展

[J].雜交水稻,33(4):1-6.[LiH B,Wu C H.2018.Research

progress on factors influencing rhizosphere microorganisms of rice [J]. Hybrid Rice,33(4) : 1-6.] doi: 10.16267/j.

cnki.1005-3956.20180329.095.

劉智,張虹,羅會(huì)婷,王仲偉,湯詩杰.2022.不同種植模式下 鳳丹根際微生物群落結(jié)構(gòu)和多樣性分析[J].江蘇農(nóng)業(yè)學(xué)

報(bào),36(2):502-511.[Liu Z,Zhang H,Luo HT,Wang ZW, Tang S J. 2022. Analysis on community structure and diversity in rhizosphere microorganisms of Paeonia ostii under different planting patterns[J]. Jiangsu Journal of Ag- ricultural Sciences , 36 (2) : 502-511.] doi : 10.3969/j.issn.

1000-4440.2022.02.026

榮梓玉,凌鍵,李惠霞,張莉,張園園,王樂.2022.草田輪作模 式下土壤微生物群落結(jié)構(gòu)和多樣性分析[J].甘肅農(nóng)業(yè)

大學(xué)學(xué)報(bào),57(6):155-163.[RongZY,LingJ,LiHX, Zhang L, Zhang Y Y, Wang L. 2022. Analysis on soil microbial community structure and diversity in fodder-crop rotation system[J]. Journal of Gansu Agricultural Univer- sity,57(6):155-163.] doi:10.13432/j.cnki.jgsau.2022.06.

019.

宋亞娜,陳在杰,林艷,胡太蛟,吳明基,王鋒.2024.抗蟲轉(zhuǎn)基 因水稻及其雜交水稻對(duì)土壤微生物群落多樣性與組成 的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文),32(1):15-29.[Song Y N, Chen Z J, Lin Y,Hu T J, Wu M J, Wang F.

2024. Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community[J]. Chinese Journal of EcoAgriculture,32(1): 15-29.] doi: 10.12357/cjea.20230267.

唐芬芬,楊偉克,謝昆,張祖蕓,李娜.2023.馬鈴薯塊莖蛾取 食脅迫下馬鈴薯根際土壤微生物代謝功能多樣性變化 [J].河南農(nóng)業(yè)科學(xué),52(11):104-112.[Tang F F,Yang W K, Xie K, Zhang Z Y, Li N. 2023. Changes of metabolic functional diversity of potato rhizosphere soil microorgani- sms under feeding stress of potato tuber moth, Phthori- maea operculella Zeller [J]. Journal of Henan Agricultural Sciences,52(11):104-112.] doi:10.15933/j.cnki.1004-3268.2023.11.012.

王甜甜,閆冰,陳彥君,關(guān)瀟,李俊生.2021.不同生育期轉(zhuǎn)基 因抗蟲棉根際土壤細(xì)菌群落特征[J].環(huán)境科學(xué)研究,34(7):1728-1736.[Wang T T,Yan B,Chen Y J,Guan X,Li J S. 2021. Characteristics of bacterial community of rhizosphere soil of transgenic insect-resistant cotton at different growth stages[J]. Research of Environmental Sciences, 34(7):1728-1736.] doi: 10.13198/j.issn.1001-6929.2021.04.11.

王怡,常彬河,劉月,梁建軍,薛芷筠,張澤文,何冬蘭.2019.基于MiSeq測(cè)序分析酸性農(nóng)作物土壤細(xì)菌群落結(jié)構(gòu)與多樣性[J].環(huán)境科學(xué)研究,32(9):1575-1583.[WangY,Chang B H,Liu Y,Liang J J,Xue Z J,Zhang Z W,He DL. 2019. Analysis of bacterial community composition anddiversity in acid soil using MiSeq sequencing[J]. Researchof Environmental Sciences, 32 (9) : 1575-1583.] doi: 10.13198/j.issn.1001-6929.2019.01.06.

楊立賓,隋心,崔福星,朱道光,宋翰林,倪紅偉.2019.湯旺河國家公園不同演替階段森林土壤細(xì)菌多樣性變化規(guī)律 [J].環(huán)境科學(xué)研究,32(3):458-464.[Yang L B,Sui X, Cui F X,Zhu D G,Song H L, Ni H W. 2019. Soil bacterial diversity between different forest successional stages in Tangwanghe National Park[J]. Research of Environmental Sciences,32(3) :458-464.] doi: 10.13198/j.issn.1001-6929.2018.09.06.

Aira M, Gomez-Brandon M, Lazcano C, Baath E, Dominguez J. 2010. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities [J].

Soil Biology and Biochemistry, 42 (12) : 2276-2281. doi: 10.1016/j.soilbio.2010.08.029.

Bardgett, Denton, Cook. 1999. Below-ground herbivory promotes soil nutrient transfer and root growth in grassland [J]. Ecology Letters, 2(6):357-360. doi: 10.1046/j.1461-0248.1999.00001.×.

Bolyen E,Rideout J R,Dillon M R,Bokulich N A,Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J]. Nature Biotechnology, 37(8) : 852-857. doi: 10.1038/s41587-019-0209-9.

Castaldini M, Turrini A, Sbrana C,Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F,Pietrangeli B, Nuti M P, Miclaus N, Giovannetti M. 2005. Impact of Bt corn on rhizospheric and soil eubacterial communities

and on beneficial mycorrhizal symbiosis in experimental microcosms[J]. Applied and Environmental Microbiology,

71 (11) : 6719-6729. doi: 10.1128/AEM.71.11.6719-6729.

2005. Chun Y J,Kim H J,Park K W,Jeong S C,Lee B,Back K,Kim K C G. 2012. Two-year field study shows little evidence that PPO-transgenic rice affects the structure of soil microbial communities[J]. Biology and Fertility of Soils,48(4):453-461. doi: 10.1007/s00374-011-0626-5.

Donegan K K, Palm C J, Fieland V J, Porteous L A, Ganio L M, Schaller D L, Bucao L Q, Seidler R J. 1995. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin [J]. Applied Soil Ecology,2(2):111-124. doi:10.1016/0929-1393(94)00043-7.

Fan J M,Dong Y,Yu XY,Yao L Z,Li D M,Wang J M,Yang M S. 2020. Assessment of environmental microbial effects of insect-resistant transgenic Populusxeuramericana cv.

‘74/76' based on high-throughput sequencing[J]. Acta Physiologiae Plantarum, 42(11): 167. doi: 10.1007/s11738-020-03148-3.

Guan Z J,Wei W, Stewart C N,Tang Z X. 2021. Effects of transgenic oilseed rape harboring the CrylAc gene on microbial communities in the rhizosphere soil [J]. European Journal of Soil Biology, 103: 103277. doi: 10.1016/j.ejsobi.2021.103277.

Gyamfi S, Pfeifer U, Stierschneider M, Sessitsch A. 2002. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application

on eubacterial and Pseudomonas communities in the rhizosphere[J]. FEMS Microbiology Ecology,41: 181-190. doi:10.1111/j.1574-6941.2002.tb00979.x.

Hannula S E,Boer W D, Veen J V. 2012. A 3-year study reveals that plant growth stage,season and field site affect soil fungal communities while cultivar and GM-trait have minor effects[J]. PLoS One, 7(4) : e33819. doi: 10.1371/journal.pone.0033819.

He M D,Zhang J C,Shen L B,Xu L X,Luo W J,Li D,Zhai N X, Zhao J F, Long Y, Pei X W, Yuan Q H. 2019. Highthroughput sequencing analysis of microbial community diversity in response to indica and japonica bar-transgenic rice paddy soils[J]. PLoS One, 14(9): e0222191. doi: 10.1371/journal.pone.0222191.

Inceoglu ?, Salles J F, van Overbeek L, van Elsas J D. 2010. Effects of plant genotype and growth stage on the betapro- teobacterial communities associated with different potato cultivars in two fields[J]. Applied Environmental Microbio- logy,76(11):3675-3684. doi:10.1128/AEM.00040-10.

Khan M S, Sadat S U, Jan A, Munir I. 2017. Impact of transgenic Brassica napus harboring the antifungal synthetic chitinase (NiC) gene on rhizosphere microbial diversity and enzyme activities[J]. Frontiers in Plant Science,8:1307.doi:10.3389/fpls.2017.01307.

Liang J G, Luan Y, Jiao Y, Xin L T, Song X Y, Zheng X B, Zhang Z G. 2018. No significant differences in rhizosphere bacterial communities between Bt maize cultivar IE09S034 and the near-isogenic non-Bt cultivar Zong31 [J]. Plant, Soil and Environment,64(9) :427-434. doi: 10.17221/260/2018-PSE.

Liu J J,Sui Y Y,Yu Z H,Shi Y,Chu H Y,Jin J,Liu X B,Wang G H. 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soil of northeast China [J]. Soil Biology and Biochemistry,70:113-122. doi:10.1016/j.soilbio.2013.12.014.

Liu W, Lu H H, Wu W, Wei Q K, Chen Y X, Thies J E. 2008. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development [J]. Soil Biology and Biochemistry, 40 (2) :475-486. doi:10.1016/j.soilbio.2007.09.017.

Liu Y Y, Guo R, Zhang S W, Sun Y H, Wang F Y. 2022. Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment[J]. Journal of Hazardous Materials, 421: 126700. doi: 10.1016/j.jhaz-mat.2021.126700.

Locke M A, Zablotowicz R M, Reddy K N. 2008. Integrating soil conservation practices and glyphosate-resistant crops: Impacts on soil[J]. Pest Management Science,64(4):457-469. doi:10.1002/ps.1549.

Lu G H,Zhu Y L,Kong L R, Cheng J,Tang C Y,Hua X M, Meng F F,Pang Y J, Yang R W, Qi J L, Yang Y H. 2017. Impact of a glyphosate-tolerant soybean line on the rhizobacteria, revealed by Illumina MiSeq[J]. Journal of Microbiology and Biotechnology,27(3) :561-572. doi: 10.4014/ jmb.1609.09008.

Lu Y C, Zhang J J, Luo F,Huang M T, Yang H. 2016. RNAsequencing Oryza sativa transcriptome in response to herbicide isoprotruon and characterization of genes involved in IPU detoxification [J]. RC Advances , 6 (23) : 1885218867.doi:10.1039/c5ra25986j.

Lü Y P, Cai H S, Yu J,Liu J P, Liu Q G, Guo C H. 2014. Bio- safety assessment of GFP transplastomic tobacco to rhizo- sphere microbial community[J]. Ecotoxicology, 23 (4):718-725. doi:10.1007/s10646-014-1185-y.

Means N E, Kremer R J, Ramsier C. 2007. Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere[J]. Journal of Environmental Science and Health Part B, 42 (2) : 125-132. doi: 10.1080/

03601230601123227. Qi X M,Liu B,Wu H P,Song Q X,Jiang J W,Bu Y,Rui J Z, Zou B J, Zhou G H. 2018. Bacterial communities under long-term conventional and transgenic cotton farming systems using V3-V5 and V5-V9 of 16S rDNA[J] Ecotoxicology and Environmental Safety,164:618-628. doi:10.1016/ j.ecoenv.2018.08.038.

Qiao Q H,Wang F R,Zhang J X,Chen Y,Zhang C Y,Liu G D, Zhang H, Ma C L, Zhang J. 2017. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage[J]. Scientific Reports,7(1):3940.doi:10.1038/s41598-017-04213-7.

Sahoo R K, Ansari M W, Tuteja R, Tuteja N. 2015. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizospher[J]. Chemosphere, 119: 1040-1047. doi:10.1016/j.chemosphere.2014.08.011.

Schabereiter-Gurtner C, Saiz-Jimenez C, Pi?ar G, Lubitz W, R?lleke S. 2002. Altamira cave Paleolithic paintings har- bor partly unknown bacterial communities[J] FEMS Micro- biology Letters, 211 (1) : 7-11. doi : 10.1111/j.1574-6968.2002.tb11195.x.

Shahmoradi Z S, Tohidfar M, Marashi H, MalekzadehShafaroudi S, Karimi E. 2019. Cultivation effect of chitinase-transgenic cotton on functional bacteria and fungi in rhizosphere and bulk soil[J]. Iranian Journal of Biotechnology,17(2):e1982. doi:10.21859/ijb.1982.

Sohn S I, Oh Y J,Kim B Y, Cho H S. 2016. Effects of CaMSRB2-expressing transgenic rice cultivation on soil microbial communities[J]. Journal Microbiology Biotechnology,26(7):1303-1310. doi:10.4014/jmb.1601.01058.

Song Y N, Su J, Chen R, Lin Y, Wang F. 2014. Diversity of microbial community in a paddy soil with crylAc/cpti transgenic rice[J]. Pedosphere,24(3):349-358. doi:10.1016/

S1002-0160(14)60021-7.

Spirhanzlova P,F(xiàn)ini J B, Demeneix B, Lardy-Fontan S, VaslinReimann S, Lalere B, Guma N, Tindall A, Krief S. 2019. Composition and endocrine effects of water collected in the Kibale national park in Uganda [J]. Environmental Pollution,251:460-468. doi: 10.1016/j.envpol.2019.05.006.

Storck V, Pertile G, Evangelia P S, Rouard N. 2014. Fate and metabolism of the herbicide isoproturon in soil microcosms and its impact on soil microbial communities [C]// 13th IUPAC International Congress of Pesticide Chemistry.

Su X N,Zhang J J, Liu J T,Zhang N,Ma L Y,Lu F F,Chen Z J, Shi Z, Si W J, Liu C, Yang H. 2019. Biodegrading two pesticide residues in paddy plants and the environment by a genetically engineered approach [J]. Journal of Agricultural and Food Chemistry,67(17) :4947-4957. doi: 10.1021/

acs.jafc.8b07251.

Tang T, Chen G M, Liu F X, Bu C P, Liu L, Zhao X X. 2019. Effects of transgenic glufosinate-tolerant rapeseed (Brassica napus L.) and the associated herbicide application on rhizospheric bacterial communities[J]. Physiological and Molecular Plant Pathology , 106: 246-252. doi : 10.1016/j.pmpp.2019.03.004.

van Wyk Deidré A B, Adeleke R, Rhode, O H J, Bezuidenhout C C, Mienie C. 2017. Ecological guild and enzyme activi- ties of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa[J]. Journal of Basic Micro- biology,57(9):781-792. doi:10.1002/jobm.201700043.

Weinert N,Piceno Y, Ding G C,Meincke R,Heuer H,Berg G, Schloter, M, Andersen G, Smalla K. 2011. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: Many common and few cultivar-dependent taxa[J]. FEMS Microbiology Ecology, 75(3):497-506. doi: 10.1111/j.1574-6941.2010.01025.×.

Wiehe W,H?flich G. 1995. Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to non-inoculated plants under field condi- tions in North-east Germany[J]. Microbiological Research,150(2):201-206. doi:10.1016/S0944-5013(11)80057-1.

Xie M, Zhang Y J, Peng D, Wu G, Xu P, Zhao J, Zhang Z.

2016. Field studies show no significant effect of a CrylAb/ Ac producing transgenic cotton on the fungal community structure in rhizosphere soil [J]. European Journal of Soil Biology,73:69-76. doi: 10.1016/j.ejsobi.2016.01.006.

Yang Y H. 2011. Advances on the effects of genetically modified crops on soil microbial community and main countermeasures of their approaches [J]. Journal of Agricultural Biotechnology, 19(1) : 1-8. doi: 10.3969/j.issn.1674-7968.2011.01.001.

Zhang X B,Wang X J, Tang Q L, Li N, Liu P L,Dong Y F, Pang W M, Yang J T, Wang Z X. 2015. Effects of cultivation of OsrHSA transgenic rice on functional diversity of microbial communities in the soil rhizosphere[J]. The Crop Journal,3(2): 163-167. doi: 10.1016/j.cj.2014.11.001.

Zhang Y J,Wang P C,Long Z F,Ding L L,Zhang W,Tang H J, Liu J J. 2021. Research progress of soil microorganism application based on high-throughput sequencing technology[J]. IOP Conference Series: Earth and Environmental

Science,692:42059. doi:10.1088/1755-1315/692/4/042059.

猜你喜歡
高通量測(cè)序除草劑
封閉式除草劑什么時(shí)間噴最合適
如何正確選擇使用農(nóng)藥及除草劑
環(huán)狀RNA在疾病發(fā)生中的作用
川明參輪作對(duì)煙地土壤微生物群落結(jié)構(gòu)的影響
多穗柯轉(zhuǎn)錄組分析及黃酮類化合物合成相關(guān)基因的挖掘
人參根際真菌群落多樣性及組成的變化
LncRNAs作為miRNA的靶模擬物調(diào)節(jié)miRNA
除草劑引起作物的受害癥狀及預(yù)防
玉米田除草劑的那些事
營銷界(2015年23期)2015-02-28 22:06:18
基于第二代測(cè)序的大鱗副泥鰍生長相關(guān)SNP標(biāo)記的開發(fā)
休宁县| 凤台县| 平舆县| 合川市| 磴口县| 榆林市| 顺昌县| 基隆市| 额济纳旗| 青海省| 静乐县| 临泉县| 丰顺县| 绿春县| 华阴市| 东乌| 罗城| 鹿泉市| 深泽县| 皮山县| 毕节市| 汉源县| 遂昌县| 内丘县| 海晏县| 祁东县| 五峰| 武平县| 汉中市| 宁国市| 广安市| 浦东新区| 阳新县| 子长县| 永年县| 武城县| 名山县| 彭山县| 眉山市| 舞阳县| 武平县|