摘要:【目的】明確從江香豬附睪中不同區(qū)段味覺受體T1R1和T1R3的定位及表達情況,為揭示豬附睪不同區(qū)段 形成特殊微環(huán)境保障精子成熟的作用機制提供參考依據(jù)?!痉椒ā坎杉跚槠冢?0d)和性成熟期(180d)從江香豬附 睪組織樣品,分別采用實時熒光定量PCR、免疫組織化學、蛋白免疫印跡(Western blotting)等檢測從江香豬附睪不同 區(qū)段味覺受體T1R1和T1R3的定位及表達情況?!窘Y(jié)果】味覺受體T1R1/T1R3的編碼基因TASIRI/TASIR3均表現(xiàn)為附睪IV區(qū)的相對表達量顯著高于其他區(qū)段(Plt;0.05,下同),而I區(qū)的相對表達量顯著低于其他區(qū)段,具體排序為IV區(qū)gt;V區(qū)gt;II區(qū)gt;IⅢ區(qū)gt;I區(qū)。免疫組織化學定位分析結(jié)果顯示,在從江香豬附睪不同區(qū)段均檢測到T1R1/T1R3不同程度的免疫陽性信號。其中,T1R1在附睪I區(qū)主要定位于肌樣細胞層與基細胞核;在附睪I區(qū)主要定位于附睪上皮細胞、肌樣細胞和精子細胞;在附睪IⅢ區(qū)強烈定位于附睪管腔和微絨毛根部;附睪IV區(qū)為5個區(qū)段中表達最強烈的部位,定位于附睪管腔精子、管腔內(nèi)緣和狹窄細胞膜上;在附睪V區(qū)主要定位于附睪間質(zhì)組織和狹窄細胞膜上。T1R3定位于附睪I區(qū)血管內(nèi)皮細胞、脫落生精細胞和附睪上皮細胞(尤其是基細胞);在附睪II區(qū)的精子、暈細胞和狹窄細胞上有較 強表達;在附睪Ⅲ區(qū)和IV區(qū)主要定位于空泡化的附睪上皮細胞;在附睪V區(qū)定位于附睪管不規(guī)則處和空泡化附睪上 皮細胞,其表達強度僅次于II區(qū)。Western blotting檢測結(jié)果顯示,從江香豬附睪IV區(qū)的T1R1/T1R3表達水平最高,其 次是II區(qū),二者顯著高于其他區(qū)段?!窘Y(jié)論】初情期從江香豬附睪T1R1和T1R3的表達具有區(qū)段特異性和細胞特異性,以IV區(qū)的表達水平最高,且主要定位于附睪上皮細胞頂端、狹窄細胞和微絨毛根部,提示T1R1/T1R3在建立促進豬附 睪精子成熟和儲存的特殊腔內(nèi)微環(huán)境中發(fā)揮重要作用。
關(guān)鍵詞:從江香豬;附睪;味覺受體;T1R1/T1R3;區(qū)段特異性;細胞特異性
文章編號:2095-1191(2024)04-1160-10
中圖分類號:S828.89
文獻標志碼:A
Differential expression of taste receptors T1R1 and T1R3 in different regions of epididymis in Congjiang Xiang pigs
MENG Li-jie12, HUANG Meng-ting1, XU Yong-jian1.3, FENG Xian-zhou1,LIU Wen-jiao1, GONG Ting1*
(1College of Animal Science, Guizhou University/Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education/Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, Guizhou 550025, China; 2Agriculture and Rural Bureau of Libo County, Qiannan Prefecture,Guizhou Province, Qiannan, Guizhou 558400, China; 3Agriculture and Rural Affairs Bureau of QiannanPrefecture, Guizhou Province, Qiannan, Guizhou 558000, China)
Abstract:【ObjectiveTo clarify the location and expression of taste receptors T1Rl and T1R3 in different regions of the epididymis of Congjiang Xiang pigs, and to provide reference for revealing the mechanism of the formation of unique microenvironment in different segment of the epididymis to ensure sperm maturation. 【Method】 The epididymis tissuesamples at the puberty (30 d) and sexual maturity (180 d) were collected, and real-time fluorescence quantitative PCR, immunohistochemistry, and Western blotting were used to detect the location and expression of taste receptors T1R1 and T1R3 in different regions of epididymis of Congjiang Xiang pigs. 【Result】The expression level of TASIRI/TAS1R3 co- ding gene of taste receptor T1R1/T1R3 was significantly higher in epididymis IV region than in other regions (Plt;0.05, the same below), while the relative expression level of epididymis I region was significantly lower than that of other regions, and the rank was IVgt;Vgt;IIgt;IIIgt;I region. Immunohistochemical localization analysis showed that T1R1/T1R3 immunoposi- tive signals at different extents were detected in different parts of the epididymis of Congjiang Xiang pigs. Among them, T1R1 was mainly located in myoid cell layer and basal nucleus in epididymis region I. In epididymis II region, it mainly located in epididymal epithelial cells, myoid cells and sperm cells. In epididymis III region, it was strongly localized in epididymis lumen and microvilli root. Epididymis IV region was the most strongly expressed part among the five regions, which was located in the epididymis lumen sperm, lumen inner margin and narrow cell membrane. The V region of the epididymis was mainly located on the epididymis interstitial tissue and narrow cell membrane of the epididymis. TIR3 was localized in vascular endothelial cells, exfoliated spermatogenic cells and epididymal epithelial cells (especially basal cells) in epididymal region I. It was strongly expressed on sperm, halo cells and narrow cells in epididymis II region. In areas III and IV of the epididymis, it was mainly located in the vacuolated epididymal epithelial cells. The expression in- tensity of epididymal epithelial cells located in irregularity and vacuolated epididymal duct in epididymal region V was second only to that in region IIⅢ. Western blotting test results showed that the expression level of T1R1/T1R3 in epididy- mis region IV of Congjiang Xiang pigs was the highest, followed by that in epididymis region II, which was significantly higher than that other regions. 【Conclusion】The expression of TIR1 and T1R3 from the epididymis of Congjiang Xiang pigs during at puberty is region-specific and cell-specific, with the highest expression level in region IV, which is mainly located in the apex of epididymal epithelial cells, narrow cells and microvilli roots, suggesting that T1R1/T1R3 plays an important role in establishing a unique intracellular microenvironment that promotes maturation and storage of porine epi- didymal sperm.
Key words: Congjiang Xiang pigs; epididymis; taste receptor; T1R1/T1R3; region specificity; cell specificity
Foundation items: National Natural Science Foundation of China (32260836)
0 引言
【研究意義】味覺受體T1R1(Taste receptor type 1 subunit 1,T1R1)和T1R3(Taste receptor type 1 subu-nit 3,T1R3)由TASIRI和TASIR3基因編碼,T1R1/T1R3在舌頭味蕾中充當鮮味感受器(王涵等,2023)。 已有研究在小鼠、馬、綿羊、牛、人類的結(jié)腸及小鼠的 胃中證實,T1R3沿小腸縱軸表達,并參與非味覺功 能中的營養(yǎng)代謝(Dyer et al.,2005;Rozengurt et al., 2006;Hass et al.,2010;Daly et al.,2012;Moran et al.,2014)。味覺受體T1R1/T1R3在生殖器官中也有表達,如睪丸和附睪(Gong et al.,2016,2024)。味覺受體TIR1/T1R3與精子的發(fā)生、成熟、受精及類固醇激 素合成有關(guān),可調(diào)控雄性動物的生殖生理過程 (Krejcirová et al.,2018)。因此,探究從江香豬附睪不同區(qū)段味覺受體T1R1/T1R3的表達情況,對揭示 附睪不同區(qū)段形成獨特微環(huán)境保障精子成熟的作用 機制具有重要意義。【前人研究進展】哺乳動物精子 的發(fā)生在睪丸中進行,但此時的睪丸精子還未發(fā)育 成熟。附睪充當精子在排精前的儲存器官(Légaréet al.,2017;Sekaran,2019),精子需在附睪管腔不同微環(huán)境中逐漸獲得運動和受精能力(Dacheuxand Dacheux,2015;Li et al.,2017;Zhou et al.,2018)。 附 睪負責精子的成熟和儲存,其功能涉及到多層次基 因表達的嚴格調(diào)控(Chu et al.,2015)。目前已有研究報道,骨形態(tài)發(fā)生蛋白(BMPs)、表皮生長因子(EGF)、雄激素受體(AR)及水通道蛋白9(AQP9)等 參與附睪發(fā)育調(diào)控(Dacheux et al.,2016;Schimming et al.,2017)。附睪主要分為頭、體和尾3個區(qū)域,各 區(qū)域分別提供了獨特的微環(huán)境,以促進精子成熟(Menad et al.,2014;Dacheux et al.,2016;羅文澤等, 2021;原佳妮等,2023)。附睪不同區(qū)段的上皮細胞 組合及其特定蛋白表達差異,對精子的最終成熟發(fā) 揮著不可或缺的作用。附睪的3個區(qū)域還可進一步 細分,如公羊和猴子可分為I~VI區(qū),水??煞譃镮~VII區(qū),小鼠可分為I~V區(qū),人類可分為I~VII區(qū) (Dacheux and Dacheux,2015)。根據(jù)豬附睪的解剖學特征,Meng等(2020)將附睪細分為頭(I~IⅡ區(qū))、體(Ⅲ區(qū))、尾(IV~V區(qū))3個部位5個區(qū)段。味覺受體T1R1/T1R3的表達定位于生精細胞、睪丸間質(zhì)細胞和附睪精子(Spinaci et al.,2017)。T1R3在從江香豬 睪丸精子和間質(zhì)細胞中高表達,參與精子的發(fā)生、成 熟及受精過程(Mosinger et al.,2013)。當編碼T1R3和Ga-gustducin的基因缺失時,雄性小鼠睪丸生精 異常,且附睪精子活力減弱,最終導(dǎo)致小鼠雄性不育(Publicover et al.,2008)。Gong等(2016)以小鼠為動物模型,發(fā)現(xiàn)味覺受體T1R3在睪丸、間質(zhì)細胞、支持細胞和附睪精子中高表達,且睪丸TASIR3基因在 小鼠出生后的發(fā)育過程中呈時間和細胞特異性表 達。味覺受體T1R1/T1R3在從江香豬的睪丸間質(zhì)細胞和晚期生精細胞中也高表達,且其表達水平在出 生后的睪丸發(fā)育過程中呈動態(tài)變化(Gong et al., 2021)。此外,蒙利潔等(2020)通過研究從江香豬附 睪發(fā)育過程中味覺受體T1R1/T1R3的表達模式,發(fā) 現(xiàn)二者在不同年齡的表達變化相似,即在初情期 (30d)和性成熟期(180d)的表達水平均較高?!颈狙?究切入點】本課題組前期在小鼠和從江香豬的睪丸 間質(zhì)細胞和晚期生精細胞中發(fā)現(xiàn)有大量味覺受體T1R1/T1R3分布(Gong et al.,2016,2021),但針對味覺受體T1R1/T1R3在非味覺組織(睪丸和附睪)中的 表達及其功能研究鮮見報道,附睪發(fā)育過程及各區(qū) 段的特殊功能也尚未明確?!緮M解決的關(guān)鍵問題】通 過實時熒光定量PCR、免疫組織化學、蛋白免疫印跡 (Western blotting)等檢測從江香豬附睪不同區(qū)段味覺受體T1R1和T1R3的定位及表達情況,為揭示豬 附睪不同區(qū)段形成特殊微環(huán)境保障精子成熟的作用 機制提供參考依據(jù)。
1材料與方法
1.1試驗動物及樣品采集
選取3頭初情期(30d)和1頭性成熟期(180d, 作為免疫組化陽性對照)的健康雄性從江香豬。從 江香豬圈舍溫度為20~24℃,嚴格按照中國農(nóng)場動 物福利行業(yè)標準進行喂食,并給予少量水。以硫酸 阿托品鹽(A0257,美國Sigma-Aldrich公司)麻醉從 江香豬后,手術(shù)摘除睪丸,收集附睪樣品。根據(jù)本課 題組前期研究結(jié)果(Menad et al.,2014;Meng et al.,2020),將附睪(近端至遠端)劃分為I~V區(qū)。左側(cè)附睪-80°℃保存,用于實時熒光定量PCR和Western blotting檢測;右側(cè)附睪固定于4%多聚甲醛固定液 中,用于免疫組織化學試驗。動物試驗經(jīng)貴州大學 實驗動物倫理委員會批準,批準號EAE-GZU-2020-P001。
1.2附睪樣品制備
從江香豬附睪組織在4%多聚甲醛固定液中固 定24h后,將樣品轉(zhuǎn)移至70%酒精中處理12~15h, 取出進行組織修塊→脫水(不同濃度梯度酒精)→透明(不同濃度梯度二甲苯)→透蠟→包埋。
1.3總RNA和蛋白提取
采用TRIzol試劑(15596018,賽默飛世爾科技有限公司)和RIPA裂解緩沖液(PO013,上海碧云天生 物技術(shù)股份有限公司),按照使用說明分別提取附睪 組織總RNA及其蛋白;并以Revert Aid First Strand cDNA合成試劑盒(K1622,賽默飛世爾科技有限公司)將RNA反轉(zhuǎn)錄合成cDNA,-20°C保存?zhèn)溆谩?/p>
1.4TASIRI/TASIR3基因表達定量分析
采用實時熒光定量PCR檢測從江香豬附睪中的TASIRI/TASIR3基因表達情況。根據(jù)TASIRI(XM021095259.1)和TASIR3(NM 001113288.1)基因序列設(shè)計引物(表1),以β-Actin(XM_021091599.1)為內(nèi) 參基因,在Bio-Rad 129CFXConnectTM實時定量PCR 檢測系統(tǒng)進行操作,按照PowerUpTM SYBR?GreenMaster Mix試劑盒(A25742,賽默飛世爾科技有限 公司)說明設(shè)反應(yīng)體系:2×SYBR?Premix Ex Tag IⅡ 5.0μL,上、下游引物各0.4pμL,cDNA模板1.0μL,dH203.2 μL。擴增程序:95℃預(yù)變性5min;95℃ 15s,60℃15s,72℃1min,進行40個循環(huán)。通過 2-AAC法計算TASIRI和TASIR3基因相對表達量。
1.5免疫組織化學試驗
參照Gong等(2016)使用的免疫組化染色方案,進行附睪味覺受體T1R1/T1R3的定位與表達分析。 將石蠟包埋的附睪組織切成5um厚的切片,經(jīng)二甲 苯脫蠟及梯度酒精水化后,以自來水沖洗,將切片 浸入檸檬酸溶液進行熱修復(fù)(微波爐加熱6min), 冷卻至室溫,用1×PBS洗滌3次,每次5min。為避免內(nèi)源性過氧化物酶活性和抗體非特異性染色, 分別用3%H2O2和5%牛血清白蛋白(A4737,美國 Sigma-Aldrich公司)在37℃下各孵育45 min。T1R1(ab230788,1:100稀釋)和T1R3(ab150525A,1:100稀釋)蛋白抗體在含1%BSA的PBS中稀釋,陰性對照以1×PBS代替一抗。切片與一抗在4℃下孵育過夜,1×PBS洗滌3次,每次5min。以辣根過氧化物酶標記的山羊抗兔IgG抗體(A0208,上海碧云天生物 技術(shù)股份有限公司,1:100稀釋)為二抗,37℃下孵育45min。使用3,3'-二氨基聯(lián)苯胺試劑盒(D6190,美國Sigma-Aldrich公司)觀察結(jié)果,且所有切片用 蘇木精復(fù)染10s后以中性樹脂封片。所有圖像由尼康ECLIPSE-Ni+DS-Ri2采集,并通過NIS-Elements BR軟件進行定性分析。
1.6 Western blotting檢測分析
通過BCA法測定蛋白濃度。蛋白在5×上樣緩沖液中變性后,采用10%SDS-PAGE進行電泳分離,并轉(zhuǎn)移至0.45mm聚偏二氟乙烯(PVDF)膜上。轉(zhuǎn)膜2h后,用5%脫脂牛奶和含0.1%Tween-20(北京索萊寶科技有限公司)的Tris緩沖鹽水(1×TBS)在37°℃下封膜2h;然后與T1R1、T1R3和β-Actin(1:2000 稀釋)的一抗4℃下孵育過夜,洗滌后,與辣根過氧 化物酶標記的山羊抗兔IgG抗體(二抗)在37℃下孵育2 h。按BeyoECL Plus顯色液(P0018S,上海碧 云天生物技術(shù)股份有限公司)說明進行顯色,在 Chemi DocXRS系統(tǒng)下成像并拍照,最后利用ImageJ(v1.48)對蛋白灰度值進行處理。
1.7統(tǒng)計分析
使用GraphPad Prism 6.0對試驗數(shù)據(jù)進行統(tǒng)計,組間比較采用單因素方差分析(One-way ANOVA),并通過Tukey's HSD檢驗調(diào)整P值。
2結(jié)果與分析
2.1從江香豬附睪分區(qū)結(jié)果
根據(jù)Meng等(2020)的研究方法,將從江香豬附睪細分為5個區(qū)段(圖1)。其中,I區(qū)為附睪的起始 部分,與Ⅱ區(qū)構(gòu)成附睪頭,主要發(fā)揮吸收和分泌功 能;IⅢ區(qū)屬于附睪體,是所有分區(qū)中最長、最窄的部分;附睪尾存儲有大量精子,包含IⅣ區(qū)和V區(qū),前者 為附睪尾前端,后者與輸精管相連。
2.2TASIRI/TASIR3基因在從江香豬附睪組織中 的表達規(guī)律
利用實時熒光定量PCR檢測TASIRI/TASIR3基 因在從江香豬附睪5個區(qū)段的表達情況,結(jié)果(圖2) 顯示,TASIRI基因在附睪IV區(qū)的相對表達量(9.77±0.54)顯著高于其他區(qū)段(Plt;0.05,下同),而I區(qū)的相 對表達量(1.18+0.17)顯著低于其他區(qū)段,具體排序 表現(xiàn)為IV區(qū)gt;V區(qū)gt;II區(qū)gt;II區(qū)gt;I區(qū)。與TASIRI基因的表達模式基本一致,TAS1R3基因在附睪IV區(qū)的相對表達量(7.75±0.44)也顯著高于其他區(qū)段,I區(qū)的 相對表達量(1.16±0.31)最低,顯著低于其他區(qū)段,具 體排序也表現(xiàn)為IV區(qū)gt;V區(qū)gt;IⅡ區(qū)gt;IⅢ區(qū)gt;I區(qū)。
2.3T1R1/T1R3蛋白在從江香豬附睪組織中的分布情況
免疫組織化學定位分析結(jié)果顯示,除部分未成 熟狹窄細胞外,從江香豬附睪上皮細胞膜上的T1R1抗體表現(xiàn)出不同程度的陽性染色(圖3)。在附睪I區(qū),肌樣細胞層(圖3-A1,矩形)和基細胞核(圖3-A2,箭頭)呈陽性染色;在附睪ⅡI區(qū),附睪上皮細胞、肌樣細 胞和精子細胞呈強陽性染色,附睪脫落生精細胞(圖 3-B1,矩形)和上皮細胞膜(圖3-B2,箭頭)均顯示T1R1抗體陽性染色,且在間質(zhì)區(qū)一些血細胞和血管壁T1R1抗體染色較深;在附睪IⅢ區(qū),T1R1抗體在附睪管腔(圖3-C1,矩形)和微絨毛根部(圖3-C2,箭頭)呈強陽性染色;在附睪IⅣ區(qū),附睪管腔內(nèi)精子(圖3-D1,矩形)、管腔內(nèi)緣和狹窄細胞膜(圖3-D2,箭頭)中存在5個區(qū)段最強烈的T1R1免疫反應(yīng);在附睪V區(qū),TIR1主要定位于附睪間質(zhì)組織(圖3-E1,矩形)和狹窄細胞膜上(圖3-E2,箭頭)。陽性對照為性成熟從江香豬附睪尾,其附睪狹窄細胞和精子呈強烈免疫陽性反應(yīng)(圖3-F2,箭頭);以PBS代替T1R1抗體作為陰性對照,均未見非特異性免疫反應(yīng)(圖3-G)。
T1R3在從江香豬附睪I~V區(qū)表現(xiàn)出類似于T1R1的反應(yīng)模式,尤其是附睪上皮細胞膜上的T1R3陽性染色(圖4)。在附睪I區(qū),T1R3免疫定位于附睪管腔的血管內(nèi)皮細胞、脫落生精細胞膜、上皮細胞膜(圖4-A1,矩形)和基細胞核(圖4-A2,箭頭);在附睪Ⅱ區(qū),精子、暈細胞膜(圖4-B1,矩形)和狹窄細胞(圖4-B2,箭頭)均有較強的T1R3免疫染色;在附睪IⅢ區(qū),附睪上皮細胞(主要是主細胞和基細胞)(圖4-C1,矩形)呈中度免疫染色,空泡化的附睪上皮細胞也呈陽性染色(圖4-C2,箭頭);在附睪IV區(qū),強陽性染色主要出現(xiàn)在精子、附睪上皮細胞膜(圖4-D1,矩形)和狹窄細胞(圖4-D2,箭頭),尤其以狹窄細胞表現(xiàn)更明顯;在附睪V區(qū),附睪管不規(guī)則處(圖4-E1,矩形)和空泡化附睪上皮細胞(圖4-E2,箭頭)的T1R3陽性反應(yīng)程度僅次于III區(qū)。陽性對照為性成熟香豬附睪尾,其附睪狹窄細胞和精子呈強烈免疫陽性(圖4-F2,箭頭);以PBS代替T1R3 抗體作為陰性對照,均未見非特異性免疫反應(yīng)(圖4-G)。
2.4 "T1R1/T1R3在從江香豬附睪組織中的表達水平
通過 Western blotting檢測從江香豬附睪組織中的T1R1/T1R3表達水平,結(jié)果(圖5)顯示,T1R1/T1R3蛋白在93 kD處出現(xiàn)單一的目的條帶(圖5-A),內(nèi)參蛋白β-Actin 則在 43 kD處出現(xiàn)特異條帶(圖5-C)。在從江香豬附睪5個區(qū)段中,T1R1和T1R3 蛋白的表達水平基本一致,均以IV區(qū)的表達水平最高,其次是II區(qū),二者顯著高于其他區(qū)段。
3討論
成年公豬的附睪可劃分為頭(I~II區(qū))、體(IⅢ區(qū))和尾(IV~V區(qū))3個部位5個區(qū)段,各區(qū)段均具有其特異性(Meng et al.,2020)。附睪管黏膜上皮為假 復(fù)層柱狀上皮,包括主細胞、基細胞、亮細胞、頂(狹 窄)細胞和暈細胞等。相應(yīng)的基因表達模式也呈區(qū) 段特異性和細胞特異性,而影響附睪液的組成及精 子在附睪管運輸過程中的成熟(Meng et al.,2020)。附睪腔的微環(huán)境對于精子的生存和功能至關(guān)重要。 精子在睪丸中完成形態(tài)成熟過程,隨后在附睪管中 經(jīng)歷其功能成熟;精子殘余體的去除也主要在附睪 中進行,最終由附睪管中的主細胞完成處理,若殘余 體去除不全,精子獲能后很難穿透卵子而完成受精 (Miyaso et al.,2022)。精子獲得運動力和受精能力 均依賴于附睪黏膜上皮細胞建立的特殊管腔微環(huán)境 (Zhou et al.,2018),即在該環(huán)境中精子會經(jīng)歷一系列嚴格控制的連續(xù)成熟過程(Voisin et al.,2019;Pleuger et al.,2020,2022),而獲得在雌性生殖道運動的能力,并具備受精能力(Aitken,2016;Stival etal.,2016),包括精子獲能、超活化和頂體反應(yīng)等(Ait-ken and Nixon, 2013; Gervasi and Visconti, 2016) 。 附睪微環(huán)境是附睪蛋白分泌和附睪基因特異表達所致(Gervasi and Visconti,2017)。Belleannée等(2011) 研究指出,已鑒定的附睪蛋白中至少有66%可分泌 到附睪液中,而參與附睪不同區(qū)段特殊微環(huán)境的形成,以影響精子活力,但目前對于附睪蛋白形成及功 能的研究相對缺乏。
目前,有關(guān)哺乳動物味覺受體T1R1/T1R3的研究主要集中在T1R1/T1R3發(fā)揮的味覺功能上,對其 在非味覺細胞中發(fā)揮的特殊功能報道相對較少。在 生殖研究領(lǐng)域,味覺受體T1R1/T1R3最先在睪丸和 精液中被檢測發(fā)現(xiàn),隨后一系列研究證實其參與精 子發(fā)生、成熟及受精調(diào)控(Luddi et al.,2019),但具體 作用機制尚未明確。本課題組的前期研究也提示, 味覺受體T1R1/T1R3參與香豬睪酮合成,并通過T1R1/T1R3調(diào)節(jié)睪丸間質(zhì)細胞mTOR信號通路,而影 響細胞自噬過程(徐永健,2021)。在香豬睪丸間質(zhì) 細胞中,T1R3的激活或抑制可引起類固醇激素合成 相關(guān)因子的表達及睪丸雄激素(睪酮)水平的上調(diào)或 下調(diào),說明T1R3參與了睪丸類固醇激素的合成調(diào)控(Liu et al.,2023)。Wang等(2023)研究表明,使用糖精鈉、三氯蔗糖等人工甜味劑刺激甜味受體T1R3, 可增強香豬睪丸間質(zhì)細胞類固醇激素表達及環(huán)磷酸 腺苷(cAMP)積累,從而促進睪酮合成,與RNA干擾 T1R1/T1R3的效果(Gong et al.,2024)一致。Ca2t+信 號通路在精子形成和受精過程中發(fā)揮重要作用 (Spinaci et al., 2017; Krejcírová et al., 2018; Shum et al.,2022),而T1Rs可通過觸發(fā)Ca2*信號通路、影響味覺細胞中的cAMP水平及其耦合下游信號效應(yīng)器,調(diào)控受精過程(Meyer et al.,2012)。TASIRI、TASIR2和 TASIR3基因上存在的5個甜味相關(guān)SNPs位點與精子活力、畸形率及存活率密切相關(guān)(Gentiluomo etal.,2017)。編碼T1R3的TASIR3基因可通過AMPK/NR4A1信號通路調(diào)節(jié)飲食誘導(dǎo)的男性生殖功能障礙,即T1R3可能成為治療男性不育的新靶點(Seong et al.,2024)。此外,TASIRs基因多態(tài)性還與人類的食物攝入量、超重和胃癌有關(guān)(Farinnella etal.,2021)。以上研究表明,T1R1/T1R3是調(diào)節(jié)雄性動物機體生殖功能的靶點。本研究也發(fā)現(xiàn),從江香豬附睪5個區(qū)段(I~V區(qū))不同程度地分布著味覺受體T1R1/T1R3,尤其以IV區(qū)最多,且主要定位于附睪上皮的狹窄細胞膜和細胞質(zhì)中。與相鄰的主細胞相比,狹窄細胞可形成一層薄薄的細胞質(zhì)到達附睪管管腔,發(fā)揮調(diào)控管腔微環(huán)境酸化有關(guān)質(zhì)子的功能(Arrighi et al.,2016;Gentiluomo et al.,2017)。 Hermo等(2015)研究證實,附睪管上皮細胞形成的頂端不規(guī)則小泡參與內(nèi)吞作用,小泡通過頂端質(zhì)膜循環(huán)進入管腔,并分泌H*。T1R1/T1R3特異表達于狹窄細胞中,是否作為調(diào)節(jié)蛋白參與附睪蛋白運輸、增強內(nèi)吞作用及形成酸化微環(huán)境均有待進一步探究。然而,T1R3在附睪IⅢ區(qū)的空泡化附睪上皮細胞中表達,也為附睪T1R3特殊非味覺功能研究提供了線索。這些空泡化的附睪上皮細胞酸化和低碳酸氫鹽濃度有助于維持成熟精子在附睪內(nèi)處于休眠狀態(tài),而更利于其儲存(Mandon and Cyr,2015),在牛、倉鼠、針鼴和人類等物種附睪的相同區(qū)段也存在類似的空泡化附睪上皮細胞(Hermo et al.,2015;Wei etal.,2018)。
附睪精子的成熟主要受附睪上皮細胞分泌多種蛋白的連續(xù)互作影響(Dacheux et al.,2016)。本課題組前期研究在小鼠和香豬睪丸間質(zhì)細胞和晚期生精細胞中發(fā)現(xiàn)有大量T1R1和T1R3分布,從初情期前到初情期,TASIRI/TASIR3基因表達顯著增加,但進入老年期后顯著下降(Gong et al.,2016),提示T1R3對精子發(fā)生和睪丸老化均有影響。本研究在從江香豬附睪不同區(qū)段均檢測到T1R1和T1R3,且在附睪間質(zhì)中呈強陽性染色。Meyer等(2012)在敲除TASIRI、TASIRI/TASIR3/GA-GUST和TASIRI/GA-GUST基因后,將人源TASIR3基因植入小鼠模型,結(jié)果發(fā)現(xiàn)味覺受體T1R1/T1R3在睪丸和附睪組織均有表達,參與小鼠精子的發(fā)生、獲能及受精過程。此外,本研究發(fā)現(xiàn)從江香豬附睪IV區(qū)的T1R1/T1R3表達水平最高,其次是Ⅱ區(qū),二者顯著高于其他區(qū)段。T1R1/T1R3的區(qū)段特異性表達有助于附睪特殊微環(huán)境的形成,促進精子成熟與儲存。為了維持這一特殊微環(huán)境,附睪液中的蛋白組成在整個附睪管中呈動態(tài)變化(Shima et al.,2004;Xie et al.,2016),即各區(qū)段的蛋白組成差異對建立腔內(nèi)微環(huán)境至關(guān)重要(Arrighi et al.,2016)。從江香豬附睪IⅣ區(qū)T1R1/T1R3表達水平最高,且主要定位于附睪上皮細胞頂端、狹窄細胞和微絨毛根部,提示T1R1/T1R3的功能與IⅣ區(qū)精子完成成熟并濃縮儲存的過程有關(guān)??梢?,T1R1/T1R3在從江香豬附睪不同區(qū)段呈差異表達,與其參與形成特定附睪微環(huán)境有關(guān)(Chu et al.,2015;Dacheux et al.,2016),因此今后應(yīng)圍繞T1R1/T1R3如何參與形成特殊微環(huán)境及其如何促進附睪精子成熟等問題開展深入研究。
4結(jié)論
初情期從江香豬附睪T1R1和T1R3的表達具有區(qū)段特異性和細胞特異性,以IⅣ區(qū)的表達水平最高,且主要定位于附睪上皮細胞頂端、狹窄細胞和微絨毛根部,提示T1R1/T1R3在建立促進豬附睪精子成熟和儲存的特殊腔內(nèi)微環(huán)境中發(fā)揮重要作用。
參考文獻(References):
羅文澤,郭憲,胡俊杰,葛聞博,段宏偉.2021.CYP19基因在牦牛睪丸及附睪組織中的表達定位[J].甘肅農(nóng)業(yè)大學學報,56(3):9-14.[Luo WZ,Guo X,HuJJ,Ge WB,DuanH W. 2021. Expression and localization of CYP19 gene intestis and epididymides tissues of Bos grunniens[J]. Jour-nal of Gansu Agricultural University, 56 (3) : 9-14.] doi:10.13432/j.cnki.jgsau.2021.03.002.
蒙利潔,王維勇,楊藝,徐永健,馮賢辀,黃泳,高藝,龔婷.2020.T1R1和T1R3在從江香豬附睪發(fā)育中的表達模式[J].畜牧獸醫(yī)學報,51(11):2720-2730.[Meng LJ,WangW Y,Yang Y,Xu Y J,F(xiàn)eng X Z,Huang Y,Gao Y,GongT. 2020. Expression patterns of T1R1 and T1R3 in theCongjiang Xiang pig during epididymal development[J].Acta Veterinaria et Zootechnica Sinica,51 (11):2720-2730.]doi:10.11843/j.issn.0366-6964.2020.11.011.
王涵,徐永健,蒙利潔,龔婷.2023.谷氨酸通過T1R1/T1R3-ERK1/2通路調(diào)節(jié)香豬睪丸間質(zhì)細胞自噬相關(guān)基因表達[J].南方農(nóng)業(yè)學報,54(6):1829-1836.[Wang H,XuYJ,Meng L J, Gong T. 2023. Glutamate regulating autophagy-related gene expression in Leydig cells of Xiang pig throughT1R1/T1R3-ERK1/2 pathway[J]. Journal of Southern Agri-culture, 54(6): 1829-1836.] doi: 10.3969/j.issn.2095-1191.2023.06.024.
徐永健.2021.鮮味受體T1R1/T1R3調(diào)控香豬睪丸間質(zhì)細胞睪酮合成、自噬的研究[D].貴陽:貴州大學.[Xu YJ.2021. An umami taste receptor T1R1/T1R3 regulated testosterone synthesis and autophagy in testicular Leydig cells of Xiang pigs[D]. Guiyang:Guizhou University.]
原佳妮,趙延輝,侍玉梅,倪和民,郭勇,盛熙暉,齊曉龍,王相 國,邢凱.2023.利用WGCNA挖掘種公雞睪丸和附睪中影響精子活力的核心基因[J].江蘇農(nóng)業(yè)學報,39(3):
762-769.[Yuan J N,Zhao Y H,Shi Y M,Ni H M,Guo Y, Sheng X H, Qi X L, Wang X G,Xing K. 2023. Mining of hub genes affecting sperm motility in testes and epididymides of breeder cocks by WGCNA method[J]. Jiangsu Journal of Agricultural Sciences,39(3):762-769. ] doi:10.3969/ j.issn.1000-4440.2023.03.017.
Aitken R J, Nixon B. 2013. Sperm capacitation: A distant landscape glimpsed but unexplored [J]. Molecular Human Reproduction, 19(12):785-793. doi: 10.1093/molehr/gat067.
Aitken R J. 2016. Oxidative stress and the etiology of male infertility [J]. Journal of Assisted Reproduction and Gene-tics,33:1691-1692. doi:10.1007/s10815-016-0791-4.
Arrighi S, Bosi G, Accogli G, Desantis S. 2016. Seasonal and ageing-depending changes of aquaporins 1 and 9 expression in the genital tract of buffalo bulls (Bubalus bubalis)[J]. Reproduction in Domestic Animals, 51 (4) : 515-523.doi: 10.1111/rda.12713.
Belleannée C, Labas V, Teixeira-Gomes A P, Gatti J L, Dacheux J L, Dachex F. 2011. Identification of luminal and secreted proteins in bull epididymis[J]. Journal of Pro- teomics,74(1):59-78. doi:10.1016/j.jprot.2010.07.013.
Chu C,Zheng G Y,Hu S G,Zhang J S,Xie S S,Ma W B,Ni M J, Tang C H, Zhou L, Zhou Y C, Liu M F, Li Y X, Zhang Y L. 2015. Epididymal region-specific miRNA expression and DNA methylation and their roles in controlling gene expression in rats[J]. PLoS One,10(4):e0124450.doi: 10.1371/journal.pone.0124450.
Dacheux J L, Dacheux F, Druart X. 2016. Epididymal protein markers and fertility[J]. Animal Reproduction Science,169: 76-87. doi: 10.1016/j.anireprosci.2016.02.034.
Dacheux J L, Dacheux F. 2015. New insights into epididymal function in relation to sperm maturation[J]. Reproduction,147(2):R27-R42. doi:10.1530/REP-13-0420.
Daly K, Al-Rammahi M,Arora D K, Moran A W,Proudman C J, Ninomiya Y, Shirazi-Beechey S P. 2012. Expression of sweet receptor components in equine small intestine: Relevance to intestinal glucose transport[J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology,303(2): R199-R208. doi: 10.1152/ajpregu.00031.2012.
Dyer J, Salmon K S H, Zibrik L, Shirazi-Beechey S P. 2005. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells[J]. Biochemical Society Transactions, 33(1):302-305. doi: 10.1042/bst
0330302. Farinella R, Erbi I, Bedini A, Donato S, Gentiluomo M, Angelucci C, Lupetti A, Cuttano A, Moscuzza F, Tuoni C,Rizzato C, Ciantelli M, Campa D. 2021. Polymorphic variants in sweet and umami taste receptor genes and birthweight [J]. Scientific Reports, 11 (1): 4971. doi: 10.1038/s41598-021-84491-4.
Gentiluomo M, Crifasi L, Luddi A, Locci D, Barale R, Piombon P, Campa R. 2017. Taste receptor polymorphisms and male infertility [J]. Human Reproduction, 32 (11) : 23242331. doi: 10.1093/humrep/dex305.
Gervasi M G, Visconti P E. 2016. Chang's meaning of capacita-tion: A molecular perspective[J]. Molecular Reproduction and Development, 83 ( 10) : 860-874. doi : 10.1002/mrd.22663.
Gervasi M G, Visconti P E. 2017. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation[J ]. Andrology , 5 (2) : 204-218. doi : 10.1111/ andr.12320.
Gong T,Mu Q,Xu Y J, Wang W Y,Meng L J, Feng X Z, Liu W J,Ao Z,Zhang Y Y,Chen X,Xu H Q. 2024. Expression of the umami taste receptor T1R1/T1R3 in porcine testis of: Function in regulating testosterone synthesis and autophagy in Leydig cells [J]. The Journal of Steroid Biochemistry and Molecular Biology, 236: 106429. doi: 10.1016/j.jsbmb.2023.106429.
Gong T,Wang W Y,Xu H Q,Yang Y,Chen X,Meng L J,Xu Y J, Li Z Q, Wang S F, Mu Q. 2021. Longitudinal expression of testicular TAS1R3 from prepubertal to sex maturity in Congjiang Xiang pigs[J]. Animals, 11 (2) :437. doi: 10.3390/anil1020437.
Gong T, Wei Q W, Mao D G, Shi F X. 2016. Expression patterns of taste receptor type 1 subunit 3 and alpha-gustducin in the mouse testis during development [J]. Acta Histochemica, 118(1):20-30. doi: 10.1016/j.acthis.2015.11.001.
Hass N, Schwarzenbacher K, Breer H. 2010. T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach[J]. Cell and Tissue Research,339(3):493-504. doi:10.1007/s00441-009-0907-6.
Hermo L, Lustig M, Lefrancois S,Argraves W S, Morales C R.
2015. Expression and regulation of LRP-2/megalin in epithelial cells lining the efferent ducts and epididymis during postnatal development [J]. Molecular Reproduction and Development, 53 (3) : 282-293. doi: 10.1002/(SICI) 1098-2795(199907)53:3lt;282::AID-MRD4gt;3.0.CO;2-A.
Krejcírová R, Ma?asová M, Sommerová V, Langhamerová E,Rajmon R, Ma?ásková -Postlerová P. 2018. G protein- coupled estrogen receptor (GPER) in adult boar testes, epididymis and spermatozoa during epididymal maturation [J]. International Journal of Biological Macromolecules, 116:113-119. doi:10.1016/j.ijbiomac.2018.05.015.
Légaré C, Akintayo A, Blondin P, Calvo E, Sullivan R. 2017. Impact of male fertility status on the transcriptome of the bovine epididymis molecular human reproduction [J]. Mo- lecular Human Reproduction,23(6):355-369. doi: 10.1093/ molehr/gax019.
Li K,Wei X D,Zhang G B,Li M,Zhang X F,Zhou C H,Hou J Q, Yuan H X. 2017. Different expression of B7-H3 in the caput,corpus, and cauda of the epididymis in mouse[J].BMC Urology,17(1):1-5. doi:10.1186/s12894-017-0215-5.
Liu W J, Gong T,Xu Y J. 2023. The co-expression of steroido-
genic enzymes with T1R3 during testicular development in the Congjiang Xiang pig[J]. Animal Reproduction Science, 251:107216. doi: 10.1016/j.anireprosci.2023.107216.
Luddi A, Governini L, Wilmsk?tter D, Gudermann T, Boekhoff I,Piomboni P. 2019. Taste receptors: New players in sperm biology[J]. International Journal of Molecular Sciences,20(4):967. doi:10.3390/ijms20040967.
Mandon M, Cyr D G. 2015. Tricellulin and its role in the epididymal epithelium of the rat[J]. Biology of Reproduction, 92(3): 1-11. doi:10.1095/biolreprod.114.120824.
Menad R, Sma? S, Moudilou E, Khammar F, Exbrayat J M,
Gernigon-Spychalowicz T. 2014. Immunolocalization of estrogen and androgen receptors in the caput epididymidis of the fat sand rat (Psammomys obesus) : Effects of seasonal variations, castration and efferent duct ligation [J].
Acta Histochemica, 116(4): 559-569. doi: 10.1016/j.acthis.2013.11.004.
Meng L J,Wang W Y,Xu Y J,Gong T,Yang Y. 2020. Postnatal differentiation and regional histological variations in the ductus epididymidis of the Congjiang Xiang pig[J]. Tissue and Cell,67:101411. doi: 10.1016/j.tice.2020.101411.
Meyer D, Voigt A, Widmayer P, Borth H,Huebner S, Breit A, Marschall S, de Angelis M H, Boehm U, Meyerhof W, Gudermann T, Boekhoff I. 2012. Expression of Tasl taste receptors in mammalian spermatozoa: Functional role of Taslrl in regulating basal Ca2+ and cAMP concentrations in spermatozoa[J]. PLoS One,7(2) :e32354. doi: 10.1371/ journal.pone.0032354.
Miyaso H, Ogawa Y, Itoh M. 2022. Microenvironment for spermatogenesis and sperm maturation[J]. Histochemistry and Cell Biology, 157: 273-285. doi: 10.1007/s00418-021-02071-z.
Moran A W, Al-Rammahi M, Zhang C, Bravo D, Calsamiglia S, Shirazi-Beechey S P. 2014. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption [J]. Journal of Dairy Science, 97 (8) : 4955-4972. doi: 10.3168/jds. 2014-8004.
Mosinger B,Redding K M, Parker M R, Yevshayeva V, Yee K K, Dyomina K, Li Y, Margolskee R F. 2013. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(3):12319-12324. doi:10.1073/pnas.1302827110.
Pleuger C, Ai D D, Hoppe M L, Winter L T, Bohnert D, Karl
D, Guenther S, Epelman S, Kantores C, Fijak M, Ravens
S, Middendorff R, Mayer J U, Loveland K L, Hedger M, Bhushan S, Meinhardt A. 2022. The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis[J]. eLife, 11: e82193. doi: 10.7554/eLife.82193.
Pleuger C, Silva E J R, Pilatz A, Bhushan S, Meinhardt A.
2020. Differential immune response to infection and acute inflammation along the epididymis [J]. Frontiers in Immunology,11:599594. doi: 10.3389/fimmu.2020.599594.
Publicover S J, Giojalas L C, Teves M E,de Oliveira G S M M, Garcia A A M, Barratt C L R, Harper C. 2008. Ca2+ signalling in the control of motility and guidance in mammalian sperm[J]. Frontiers in Bioscience-Landmark, 13(15):5623-5637. doi:10.2741/3105.
Rozengurt N, Wu S V,Chen M C, Huang C,Sternini C, Rozengurt E. 2006. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon[J].
American Journal of Physiology-Gastrointestinal and Liver Physiology,291(5):G792-G802. doi: 10.1152/ajpgi.00074.2006.
Schimming B C, Baumam C A B,Pinheiro P F F, de Matteis R, Domeniconi R F. 2017. Aquaporin 9 is expressed in the "epididymis of immature and mature pigs[J]. Reproduction in Domestic Animals, 52 (4) : 617-624. doi: 10.1111/rda.
12957. Sekaran P. 2019. Congenital abnormalities of the testis and epididymis [M]. Clinical Embryology: 443-447. doi:10.1007/978-3-319-26158-4_47.
Seong H, Song J W, Lee K H, Jang G, Shin D M, Shon W J.
2024. Taste receptor type 1 member 3 regulates Western diet-induced male infertility[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1869: 159433. doi: 10.1016/j.bbalip.2023.159433.
Shima J E, McLean D J, McCarrey J R, Griswold M D. 2004. The murine testicular transcriptome: Characterizing gene expression in the testis during the progression of spermatogenesis[J]. Biology of Reproduction,71 (1):319-330. doi: 10.1095/biolreprod.103.026880.
Shum W,Zhang B L,Cao A S,Zhou X,Shi S M,Zhang Z Y, Gu L Y, Shi S. 2022. Calcium homeostasis in the epididymal microenvironment: Is extracellular calcium a cofactor for matrix gla protein-dependent scavenging regulated by vitamins[J]. Frontiers in Cell and Developmental Biology,10:827940. doi:10.3389/fcell.2022.827940.
Spinaci M, Bucci D, Gadani B, Porcu E, Tamanini C, Galeati
G. 2017. Pig sperm preincubation and gamete coincubation with glutamate enhance sperm-oocyte binding and in vitro fertilization[J]. Theriogenology, 95: 149-153. doi: 10.
1016/j.theriogenology.2017.03.017.
Stival C,Puga Molina L D C,Paudel B,Buffone M G, Visconti P E, Krapf D. 2016. Sperm capacitation and acrosome reaction in mammalian sperm [J]. Advances in Anatomy, Embryology and Cell Biology,220:93-106. doi: 10.1007/978-3-319-30567-7 5. Voisin A, Saez F, Drevet J R, Guiton R. 2019. The epididymal
immune balance: A key to preserving male fertility[J].Asian Journal of Andrology,21(6):531-539. doi: 10.4103/ aja.aja_11_19.
Wang W Y,Mu Q,F(xiàn)eng X Z,Liu W J,Xu H Q,Chen X,Shi F
X, Gong T. 2023. Sweet taste receptor T1R3 expressed in Leydig cells is closely related to homeostasis of the steroid hormone metabolism profile[J]. Journal of Agricultural and Food Chemistry,71(20):7791-7802. doi:10.1021/acs.jafc.3c01110.
Wei Z, De I, De Iuliis G N, Dun M D, Nixon B. 2018. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage[J]. Frontiers in Endocrinology,9(1): 59-72. doi: 10.3389/fendo.2018.00059.
Xie S W,Li G T,Qu L J,Cao Y,Wang Q,Zhou J Y,Zhong R H, Guo X J, Zhu Y. 2016. Identification of new epididymal luminal fluid proteins involved in sperm maturation in infertile rats treated by dutasteride using iTRAQ[J]. Molecules,21 (5):602. doi: 10.3390/molecules21050602.
Zhou W, de luliis G N, Dun M D, Nixon B. 2018. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage[J]. Frontiers in Endocrinology,9:59. doi: 10.3389/fendo.2018.00059.