摘要:【目的】探究不同體質(zhì)量分組興義矮腳雞腸道菌群及其網(wǎng)絡(luò)結(jié)構(gòu)特征,鑒定出與雞體質(zhì)量相關(guān)的潛在生物標(biāo)志物,為養(yǎng)雞業(yè)促生長益生菌的發(fā)掘提供理論依據(jù)。【方法】從同批次的110羽興義矮腳母雞群體(16周齡)中選取體質(zhì)量最高的20羽組成HWC組(1.12±0.05 kg),體質(zhì)量最低的20羽組成LWC組(0.74±0.05 kg),采集肛門糞便樣品檢測(cè)16S rRNA序列V3~V4可變區(qū),利用Mothur進(jìn)行腸道菌群Alpha多樣性,采用基于未加權(quán)UniFrac距離的主坐標(biāo)分析(PCoA)評(píng)估腸道菌群Beta多樣性,通過SparCC算法構(gòu)建腸道菌群互作網(wǎng)絡(luò),并應(yīng)用LEfSe分析鑒定與興義矮腳雞體質(zhì)量相關(guān)的腸道微生物?!窘Y(jié)果】從40份興義矮腳雞糞便樣品中共獲得3145511條Clean reads,經(jīng)DADA2聚類分析得到22297個(gè)擴(kuò)增子序列變異體(ASVs)。在門分類水平上,興義矮腳雞腸道菌群中相對(duì)豐度排名前5的菌門包括厚壁菌門、變形菌門、擬桿菌門、放線菌門和熱脫硫桿菌門,對(duì)應(yīng)的相對(duì)豐度分別為67.54%、12.24%、11.28%、2.39%和1.26%;在屬分類水平上,相對(duì)豐度排名前5的菌屬分別為乳酸桿菌屬、羅斯氏菌屬、利吉拉桿菌屬、擬桿菌屬和志賀桿菌屬,對(duì)應(yīng)的相對(duì)豐度分別為23.35%、14.86%、5.44%、4.63%和2.77%。LWC組興義矮腳雞腸道菌群穩(wěn)定性指數(shù)為3.95%,HWC組的為12.22%,且LWC組的網(wǎng)絡(luò)復(fù)雜性(5.57%)也低于HWC組(7.70%),推測(cè)低體質(zhì)量興義矮腳雞腸道菌群復(fù)雜性和穩(wěn)定性的下降與其體質(zhì)量較低有關(guān)。興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中重要性評(píng)分排名前5的樞紐菌群分別是植物乳桿菌、乳球菌、瘤胃球菌屬扭鏈群、糞桿菌屬和理研菌科_RC9_菌群。LEfSe分析發(fā)現(xiàn),有18個(gè)ASVs的相對(duì)豐度在HWC組和LWC組間呈顯著差異(LDAgt;2,Plt;0.05),其中,12個(gè)ASVs表現(xiàn)為在LWC組的相對(duì)豐度高于HWC組,6個(gè)ASVs表現(xiàn)為在HWC組的相對(duì)豐度高于LWC組?!窘Y(jié)論】腸桿菌科、支原體屬等有害菌相對(duì)豐度的上升會(huì)降低雞腸道菌群互作網(wǎng)絡(luò)穩(wěn)定性和復(fù)雜性,且與興義矮腳雞的低體質(zhì)量有關(guān)。乳酸桿菌、理研菌科_RC9_菌群、梭狀芽孢桿菌等是影響興義矮腳雞體質(zhì)量的潛在關(guān)鍵菌群,可作為興義矮腳雞體質(zhì)量關(guān)聯(lián)的候選生物標(biāo)志物。
關(guān)鍵詞:興義矮腳雞;腸道菌群;體質(zhì)量;互作網(wǎng)絡(luò);16S rRNA
中圖分類號(hào):S831.89文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)02-0311-12
Correlation between intestinal microbiota and body weight of Xingyi bantam chickens
LONG Xiao-xia',YANG Yong-xian1,LYU Yu-xin2,WU Gu-rong2,ZHANG Huan2,YANG Jin-chun2,WANG Pan3,YANG Sheng-hong',WANG Zhong1\"
('College of Animal Sciences,Guizhou University/Key Laboratory of Animal Genetics,Breeding and Reproduction in the Plateau Mountainous Region,Ministry of Education,Guiyang,Guizhou 550025,China;2Agriculture and Rural Affairs Bureau of Xingyi City,Xingyi,Guizhou 562400,China;Guizhou LaoheiniAgriculture and Animal Husbandry Co.,Ltd.,Xingyi,Guizhou 562400,China)
Abstract:[Objective】To explore the intestinal microbiota and network structure characteristics of Xingyi bantam chickens with different body weight groups,and identify potential biomarkers related to body weight,providing atheo- retical basis for the discovery of growth-promoting probiotics in the chicken industry.【Method]Selected 20 chickens each with the highest and lowest body weight from 110 hens(16 weeks old)to construct the high body weight group(HWC,1.12±0.05 kg)and the low body weight group(LWC,0.74±0.05 kg).Collected anal stool samples to detect the V3-V4 variable region of the 16S rRNA sequence.Mothur was used to measure the alpha diversity of the intestinal microbiota Principal coordinate analysis(PCoA)based on the unweighted UniFrac distance was used to evaluate the beta diversity of the intestinal microbiota.And microbial interaction network was constructed using the SparCC algorithm for the sequen- cing data.Finally,LEfSe analysis was used to identify intestinal microbes related to Xingyi bantam chicken body weight.【Result】The results showed that atotal of 3145511 Clean reads were obtained from 40 Xingyi bantam chicken stoo samples,and 22297 amplicon sequence variants(ASVs)wereobtained through DADA2 cluster analysis.The intestinal microbiota of Xingyi bantam chickens mainly included Firmicutes(relative abundance 67.54%),Proteobacteria(relative abundance 12.24%),Bacteroidota(relative abundance 11.28%),Actinobacteriota(relative abundance 2.39%),and De- sulfobacterota(relative abundance 1.26%)at the phylum level,At thegenus level,mainly included Lactobacillus(rela- tive abundance 23.35%),Rothia(relative abundance14.86%),Ligella(relative abundance 5.44%),Bacteroides(rela-tive abundance 4.63%),and Shigella(relative abundance 2.77%).The stability index of the intestinal microbiota of Xing-yi bantam chickens in the LWC group was 3.95%,and that of the HWC group was 12.22%.Interaction network analysis found that the complexity of gut microbial network in LWC(5.57%)was lower than thatof HWC(7.70%).It was specu-lated that the decrease of intestinal microbiota complexity and stability of low body weight Xingyi bantam chickens was related to the lower body weight.The top 5 hub microbiota with the highest importance scores in the interaction network of intestinal mircribuita of Xingyi bantam chickens were Lactobacillus plantarum,Lactococcus,Ruminococcus twisted chain group,F(xiàn)aecalibacterium,and Rikenellaceae_RC9_gut_group.In addition,LEfSe analysis found that relative abun-dance of 18 ASVs were significantly different between the two groups(LDAgt;2,Plt;0.05).Among them,12 ASVs showed higher relative abundance in the LWC group than HWC group.The relative abundance of 6 ASVs in the HWC group was higher than that in the LWC group.【Conclusion]The increase in the relative abundance of harmful bacteria such as Enterobacteriaceae and Mycoplasma can reduce the stability and complexity ofthe intestinal microbial interaction network in Xingyi bantam chickens,which may be thereason for the low body weight.Lactobacillus,Rikenellaceae RC9_gut_group,Clostridium_sensu_stricto_1 are the potential key microbiota affecting the body weight of Xingyi ban-tam chickens,they can beused as acandidate biomarker associated with body weight of Xingyi bantam chickens
Key words:Xingyi bantam chicken;intestinal microbiota;body weight;interaction network;16S rRNA
Foundation items:National Natural Science Foundation of China(32260829);Guizhou Science and Technology Plan Project(QKHPTRC[2019]5606,QKHZC〔2022〕Zhongdian 34);University Natural Science Research Project of Guizhou Department of Education(Qianjiaoji[2022]061)
0引言
【研究意義】體質(zhì)量是肉雞重要的復(fù)雜經(jīng)濟(jì)性狀之一(Jin et al.,2015;李瑩等,2022),已有研究報(bào)道許多與其相關(guān)的基因及數(shù)量性狀基因座位(QTL)(Zhang et al.,2020),但現(xiàn)有的研究局限于基因組層面,并未完全解釋體質(zhì)量的表型變異機(jī)理。隨著研究的不斷深入,已證實(shí)雞的體質(zhì)量除了受宿主遺傳因素影響外,還受性別、營養(yǎng)狀況、疾病、飼養(yǎng)管理方式及腸道菌群等多種因素的影響(Ariza et al.,2021;Cui et al.,2021;Memon et al.,2021)。胃腸道是食物消化和營養(yǎng)吸收的主要場(chǎng)所,含有高度多樣性和動(dòng)態(tài)性的微生物區(qū)系(Du et al.,2020),且這些腸道菌群對(duì)雞的生長具有重要作用(Zhang et al.,2022b;Wang et al.,2023)。因此,開展不同體質(zhì)量分組的雞腸道菌群特征及其差異微生物研究,對(duì)解析雞體質(zhì)量性狀的形成機(jī)制具有重要意義?!厩叭搜芯窟M(jìn)展】腸道菌群是指人類或動(dòng)物胃腸道內(nèi)廣泛存在的微生物區(qū)系,可促進(jìn)宿主對(duì)營養(yǎng)物質(zhì)的消化吸收、提高免疫能力及預(yù)防病原菌侵入(Kogut,2022;Thiam et al.,2022;Zhang et al.,2022a),宿主的品種、性別、生長階段、腸道部位等因素均會(huì)影響其組成和結(jié)構(gòu)特征(Yan et al.,2017;Pandit et al.,2018;Cui et al.,2021;張兆杰等,2023)。Wei等(2013)研究表明,雞不同胃腸道部位的菌群組成和多樣性存在明顯差異。Han等(2016)通過研究雞嗦囊、回腸和盲腸菌群組成特征及其與體質(zhì)量的關(guān)系,發(fā)現(xiàn)嗦囊和回腸的菌群多樣性與雞體質(zhì)量相關(guān),盲腸菌群多樣性雖然最高,但與其體質(zhì)量無相關(guān)性。Cui等(2021)研究發(fā)現(xiàn),在相同的遺傳背景和日糧條件下,不同性別的雞盲腸菌群組成差異顯著,公雞盲腸富集了擬桿菌、巨單胞菌和乳酸乳球菌等特征菌群,而母雞盲腸富集了瘤胃球菌和糞腸球菌等,這些性別依賴菌群可能通過聚糖和脂類代謝功能而影響雞的生長。至今,已有研究鑒定出影響雞生長性能的關(guān)鍵腸道微生物,并對(duì)其影響機(jī)制進(jìn)行初步探究。Zhang等(2022b)通過比較高/低體質(zhì)量組雞盲腸菌群組成,發(fā)現(xiàn)乳微桿菌和鞘氨醇單胞菌屬是高體質(zhì)量雞腸道的優(yōu)勢(shì)菌群,而斯萊克氏菌屬是低體質(zhì)量雞腸道的優(yōu)勢(shì)菌群,這些微生物通過調(diào)控脂肪代謝而影響雞的生長速度。Zhang等(2022a)研究表明,腸道中的志賀桿菌等有害菌相對(duì)豐度過高會(huì)誘導(dǎo)炎癥細(xì)胞因子產(chǎn)生,通過TLR4介導(dǎo)的MyD88和NF-kB信號(hào)通路引起腸道炎癥,進(jìn)而影響雞的生長性能;腸道中潛在有益菌的存在則促進(jìn)抗炎因子釋放而改善雞的生長性能。Wang等(2023)研究發(fā)現(xiàn),盲腸中存在的高豐度磷球菌屬可促進(jìn)血清共軛亞油酸類代謝物代謝,從而提高雞的體質(zhì)量。此外,腸道菌群可作為營養(yǎng)干預(yù)的靶點(diǎn)用于提高動(dòng)物生產(chǎn)性能,而糞便微生物移植(FMT)是重塑受干擾腸道菌群的有效方法(Metzler-Zebeli et al.,2019)。有益菌群的植入可增加微生物多樣性和優(yōu)勢(shì)菌群豐度(Glendinning et al.,2022),重塑腸道微生態(tài)區(qū)系,通過平衡Th17/Treg細(xì)胞而提高雞的生長性能(Ma et al.,2023);尤其是早期移植乳桿菌、雙歧桿菌及芽孢桿菌等有益菌群有利于促進(jìn)飼料消化(Susanti et al.,2021;Zhang et al.,2022a),顯著提高雞的生長性能(Cui et al.2021)。由此可見,與雞生長性狀相關(guān)有益菌的發(fā)掘及通過腸道菌群干預(yù)提高雞的生長性能具有良好應(yīng)用前景?!颈狙芯壳腥朦c(diǎn)】興義矮腳雞是我國貴州省重要的地方品種,因其脛短、軀體似匍匐地面而得名(葉濤等,2020),具有肉質(zhì)鮮嫩、適應(yīng)能力強(qiáng)等優(yōu)良特性,深受當(dāng)?shù)叵M(fèi)者喜愛;但興義矮腳雞生長緩慢,上市周期長,影響?zhàn)B殖戶的經(jīng)濟(jì)效益(張福平等,2011)。至今,有關(guān)興義矮腳雞體質(zhì)量性狀方面的研究相對(duì)較少,腸道菌群結(jié)構(gòu)及多樣性與其體質(zhì)量是否存在關(guān)聯(lián)也有待進(jìn)一步探究?!緮M解決的關(guān)鍵問題】從同批次的16周齡興義矮腳雞群體中篩選并構(gòu)建高體質(zhì)量(HWC)組和低體質(zhì)量(LWC)組,基于微生物16S rRNA測(cè)序技術(shù),通過微生物互作網(wǎng)絡(luò)分析和線性判別分析(Linear discriminant analysis with effect sizeestimation,LEfSe)探究不同體質(zhì)量分組興義矮腳雞腸道菌群及其網(wǎng)絡(luò)結(jié)構(gòu)特征,鑒定出與雞體質(zhì)量相關(guān)的潛在腸道菌群標(biāo)志物,為養(yǎng)雞業(yè)促生長益生菌的發(fā)掘提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)動(dòng)物及樣品采集
試驗(yàn)所用興義矮腳雞于2022年6—12月飼養(yǎng)于貴州大學(xué)科研雞場(chǎng)。為減少性別因素對(duì)研究結(jié)果的影響,試驗(yàn)雞群選取生理狀態(tài)良好且一致的健康興義矮腳母雞,共110羽。批次、飼料、棟舍及飼喂方法等條件均保持一致。飼養(yǎng)密度:0~4周16羽(公母混養(yǎng));5~10周8羽(公母混養(yǎng));11~16周1羽(單獨(dú)飼養(yǎng))。每日6:00和17:00各飼喂1次,自由飲水,每日采光時(shí)間大于16h;雞舍采用自然通風(fēng)降溫,溫度為15~25℃,濕度為60%~65%。飼料為定制商品飼料,具體配方及營養(yǎng)水平(代謝能12.8 MJ/kg)見表1。糞便樣品采集前1個(gè)月內(nèi)禁止服用抗生素類藥物。飼養(yǎng)至16周齡時(shí)稱重,選取體質(zhì)量最高的20羽組成HWC組,體質(zhì)量最低的20羽組成LWC組。采用無菌棉簽拭子于雞肛門采集糞便樣品,樣品采集完成后將棉簽頭置入滅菌EP管,立即置于干冰中運(yùn)回實(shí)驗(yàn)室,-80℃冰箱保存?zhèn)溆?。?dòng)物試驗(yàn)經(jīng)貴州大學(xué)動(dòng)物倫理委員會(huì)批準(zhǔn),批準(zhǔn)號(hào)EAEGZU-2022-T050。
1.2腸道微生物16S rRNA測(cè)序及數(shù)據(jù)預(yù)處理
采用Magnetic Soil and Stool DNA Kit[天根生化科技(北京)有限公司]提取糞便微生物DNA,以NanoDrop 1000和0.8%瓊脂糖凝膠電泳測(cè)定DNA濃度及純度,合格樣品送至上海百趣生物醫(yī)學(xué)科技有限公司測(cè)序。使用引物338F(5'-ACTCCTACGG GAGGCAGCAG-3')和806R(5'-GGACTACHVGGG TWTCTAAT-3')對(duì)16S rRNA序列V3~V4可變區(qū)進(jìn)行擴(kuò)增。PCR反應(yīng)體系10.0 μL:DNA模板50 ng,KOD FX Neo緩沖液5.0 μL,KOD FX Neo 0.2 μL,dNTP 2.0 μL,上、下游引物(10 μmol/L)各0.3 μL,ddH?O補(bǔ)足至10.0 μL。擴(kuò)增程序:95℃預(yù)變性5 min;95℃1 min,50℃1 min,72℃1 min,進(jìn)行15個(gè)循環(huán);72℃延伸7 min。使用VAHTS DNA清潔珠(南京諾唯贊生物科技股份有限公司)純化第1輪PCR擴(kuò)增產(chǎn)物,然后在40.0μL反應(yīng)體系中進(jìn)行第2輪PCR:第1輪PCR擴(kuò)增產(chǎn)物10.0μL,2×Phu-sion HF 20.0μL,上、下游引物(10 μmol/L)各1.0μL,ddH?O 8.0μL。擴(kuò)增程序:98℃預(yù)變性30 s;98℃10s,65℃30s,72℃30s,進(jìn)行100個(gè)循環(huán);72℃延伸5 min。PCR擴(kuò)增產(chǎn)物采用Quant-iT\"dsDNAHS試劑(賽默飛世爾科技公司)進(jìn)行定量分析,在IIlumina HiSeq 2500平臺(tái)(2×250 bp對(duì)末端)上完成16S rRNA高通量測(cè)序。
采用Trimmomatic v0.33對(duì)原始數(shù)據(jù)進(jìn)行質(zhì)量控制(Bolger et al.,2014),通過Cutadapt v1.9.1識(shí)別并去除adapter序列;用FLASHv1.2.11完成雙端Reads拼接(Magoě and Salzberg,2011),并運(yùn)用UCHIME v8.1去除嵌合體(Edgar et al.,2011)以獲得Clean reads。利用QIIME2中的DADA2進(jìn)行序列聚類分析以得到擴(kuò)增子序列變異體(Ampliconsequencevari ants,ASVs)(Callahan et al.,2016),以0.005%為閾值對(duì)ASVs進(jìn)行過濾(Bokulich et al.,2013),然后在SILVA數(shù)據(jù)庫(http://www.arb-silva.de/)中對(duì)ASVs代表序列進(jìn)行比對(duì)注釋(Quast et al.,2013)。
1.3統(tǒng)計(jì)分析
1.3.1腸道菌群多樣性分析利用Mothur計(jì)算ASVs相對(duì)豐度并進(jìn)行菌群Alpha多樣性(Schloss et al.,2009);采用基于未加權(quán)UniFrac距離的主坐標(biāo)分析(PCoA)評(píng)估腸道菌群Beta多樣性(Lozupone and Knight,2005),結(jié)果的可視化和統(tǒng)計(jì)分析通過R語言完成。
1.3.2腸道菌群互作網(wǎng)絡(luò)構(gòu)建相對(duì)豐度gt;0.05%的菌群類別,根據(jù)SparCC算法構(gòu)建細(xì)菌互作網(wǎng)絡(luò)(Friedman and Alm,2012)。通過PCIT算法計(jì)算菌屬水平或分類單元ASVs間的相關(guān)性(Reverter and Chan,2008);細(xì)菌(節(jié)點(diǎn))間的相互作用采用絕對(duì)稀疏相關(guān)系數(shù)表示,相關(guān)系數(shù)gt;0.65的成對(duì)菌屬或分類單元ASVs納入腸道菌群互作網(wǎng)絡(luò)構(gòu)建,然后以Cytoscape 3.7.1進(jìn)行可視化處理及計(jì)算網(wǎng)絡(luò)拓?fù)涮卣鳎↙opes et al.,2010;Smoot et al.,2011)。以互作網(wǎng)絡(luò)中負(fù)相關(guān)(競(jìng)爭性)數(shù)量占總相關(guān)數(shù)量的百分比作為衡量共生網(wǎng)絡(luò)穩(wěn)定性的指標(biāo)(Coyte et al.,2015;Hernandez et al.,2021),互作網(wǎng)絡(luò)復(fù)雜性則以每個(gè)點(diǎn)連接線的平均數(shù)作為衡量指標(biāo)(Bader and Hogue, 2003)。在微生物生態(tài)網(wǎng)絡(luò)中,樞紐菌群是指與其他微生物高度連接,單獨(dú)或在菌群模塊中對(duì)互作網(wǎng)絡(luò)產(chǎn)生較大影響的菌群(Banerjee et al.,2018;Angulo et al.,2019)。本研究采用Cytoscape中cytoHubba插件的馬修斯相關(guān)系數(shù)(Matthews correlation coefficient,MCC)算法進(jìn)行樞紐菌群鑒別(Chin et al.,2014),并對(duì)各菌群在互作網(wǎng)絡(luò)中的重要性進(jìn)行評(píng)分。
1.3.3與興義矮腳雞體質(zhì)量相關(guān)微生物類別鑒定通過在線分析工具(http:/huttenhower.sph.harvard.edu/galaxy)對(duì)LEfSe分析鑒別組間差異的菌群進(jìn)行類別鑒定。
2結(jié)果與分析
2.1興義矮腳雞分組情況
本研究所用試驗(yàn)動(dòng)物為同批次的16周齡興義矮腳母雞,其中,HWC組興義矮腳雞體質(zhì)量平均值為1.12±0.05 kg,LWC組興義矮腳雞體質(zhì)量平均值為0.74±0.05 kg,兩組間差異顯著(Wilcoxon檢驗(yàn),Plt;0.05)。
2.2興義矮腳雞腸道菌群輪廓
對(duì)腸道菌群的16S rRNA序列V3~V4可變區(qū)進(jìn)行測(cè)序,結(jié)果從40個(gè)樣品中共獲得3145511條Clean reads,每個(gè)樣品平均產(chǎn)生78638條Clean reads。對(duì)Clean reads進(jìn)行聚類分析,共得到22297個(gè)ASVs,在SILVA數(shù)據(jù)庫中注釋到40個(gè)菌門,其中8個(gè)菌門在所有樣品中均被檢測(cè)到。有5個(gè)菌門的相對(duì)豐度gt;1.00%,平均相對(duì)豐度排名前5的菌門包括厚壁菌門(Firmicutes)、變形菌門(Proteobacteria)、擬桿菌門(Bacteroidota)、放線菌門(Actinobacteriota)和熱脫硫桿菌門(Desulfobacterota),對(duì)應(yīng)的相對(duì)豐度分別為67.54%、12.24%、11.28%、2.39%和1.26%。為探究分類學(xué)水平的組成結(jié)構(gòu),篩選出可注釋到屬分類水平的前50個(gè)菌屬構(gòu)建興義矮腳雞腸道菌群分布圖,其中,相對(duì)豐度較高的5個(gè)菌屬分別為乳酸桿菌屬(Lactobacillus)、羅斯氏菌屬(Romboutsia)、利吉拉桿菌屬(Ligilactobacillus)、擬桿菌屬(Bacteroides)和志賀桿菌屬(Escherichia_Shigella),對(duì)應(yīng)的相對(duì)豐度分別為23.35%、14.86%、5.44%、4.63%和2.77%。興義矮腳雞腸道微生物分類學(xué)水平組成輪廓如圖1所示。
2.3不同體質(zhì)量興義矮腳雞腸道菌群多樣性比較
為探究不同體質(zhì)量雞腸道菌群多樣性是否存在差異,對(duì)HWC組和LWC組興義矮腳雞腸道菌群多樣性進(jìn)行比較分析,結(jié)果發(fā)現(xiàn),PD指數(shù)(圖2-A)、Chaol指數(shù)(圖2-B)及其他指數(shù)在兩組間均無顯著差異(Pgt;0.05,下同)?;谖醇訖?quán)UniFrac距離的PCoA分析結(jié)果顯示,HWC組興義矮腳雞腸道菌群呈現(xiàn)一定的聚集效應(yīng),尤其是在第2坐標(biāo)軸(PCoA2)上區(qū)分較明顯(圖2-C)。此外,從門分類水平上對(duì)HWC組和LWC組興義矮腳雞腸道菌群組成進(jìn)行差異比較分析,但未鑒定到在2組興義矮腳雞腸道菌群相對(duì)豐度呈顯著差異的菌門(圖2-D)。
2.4不同體質(zhì)量興義矮腳雞腸道菌群共生網(wǎng)絡(luò)特性
為探究HWC組和LWC組興義矮腳雞腸道菌群網(wǎng)絡(luò)結(jié)構(gòu)是否存在差異,選取相對(duì)豐度gt;0.05%的ASVs分別構(gòu)建HWC組和LWC組興義矮腳雞腸道菌群互作網(wǎng)絡(luò),并對(duì)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)特征(節(jié)點(diǎn)、邊數(shù)、穩(wěn)定性和復(fù)雜性)進(jìn)行計(jì)算。結(jié)果表明,HWC組和LWC組興義矮腳雞腸道菌群中分別有233和213個(gè)ASVs可用于互作網(wǎng)絡(luò)構(gòu)建,互作網(wǎng)絡(luò)指數(shù)見表2。對(duì)2組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)穩(wěn)定性進(jìn)行比較,結(jié)果發(fā)現(xiàn),LWC組興義矮腳雞腸道菌群穩(wěn)定性指數(shù)為3.95%,HWC組的為12.22%,表明低體質(zhì)量的興義矮腳雞腸道菌群互作網(wǎng)絡(luò)穩(wěn)定性較低,對(duì)外界擾動(dòng)干擾的抵抗力更差?;プ骶W(wǎng)絡(luò)復(fù)雜性可用每個(gè)節(jié)點(diǎn)所連接線的平均邊數(shù)表示,LWC組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)復(fù)雜性(5.57%)低于HWC組興義矮腳雞(7.70%)。由此推測(cè),低體質(zhì)量興義矮腳雞腸道菌群復(fù)雜性和穩(wěn)定性的下降與其體質(zhì)量較低有關(guān)。
2.5不同體質(zhì)量興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中的樞紐菌群
采用MCC算法鑒定興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中的樞紐菌群,并對(duì)每種菌群在腸道菌群互作網(wǎng)絡(luò)中的重要性進(jìn)行評(píng)分,結(jié)果表明,興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中重要性評(píng)分排名前5的樞紐菌群分別是植物乳桿菌(Lactiplantibacillus)、乳球菌(Lac-tococcus)、瘤胃球菌屬扭鏈群(Ruminococcus_torques_group)、糞桿菌屬(Faecalibacterium)和理研菌科_RC9_菌群(Rikenellaceae_RC9_gut_group)(圖3)。同時(shí),對(duì)HWC組和LWC組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中的樞紐ASVs進(jìn)行鑒定,重要性評(píng)分排名前20的樞紐ASVs見表3,發(fā)現(xiàn)2組間存在共同的ASVs,包括ASV344 g弓形桿菌屬(ASV344 g Arco-bacter)、ASV29 g芽孢桿菌(ASV29 g Bacillus)、ASV45 s Helicobacter sp.UNSWMCSpl、ASV6 g 金氏乳桿菌(ASV 6 g Companilactobacillus)、ASV30 g_unclassified_Eubacterium_coprostanoligenes_group 和ASV36 g乳酸桿菌(ASV36 g Lacticaseibacillus)。
盡管有些不是相同的ASVs,但屬于相同的屬,如注釋為植物乳植桿菌的菌群在HWC組和LWC組中均占據(jù)重要位置,對(duì)應(yīng)的重要性評(píng)分排序分別為第1和第2,故推測(cè)這些腸道菌群是HWC組和LWC組興義矮腳雞腸道共同的樞紐菌群,與興義矮腳雞體質(zhì)量無關(guān),即不參與興義矮腳雞生長相關(guān)生理過程的調(diào)控。此外,不同體質(zhì)量組興義矮腳雞腸道菌群中存在特定的樞紐菌群。在LWC組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中發(fā)現(xiàn)的腸桿菌科(Enterobacteria-ceae)是極其重要的樞紐菌群,重要性評(píng)分排名前20的樞紐ASVs中ASV111、ASV35和ASV32均注釋為腸桿菌科,其重要性評(píng)分排序分別為第1、4和6;在LWC組興義矮腳雞腸道菌群中還發(fā)現(xiàn)支原體屬(Mycoplasma)。但這2種菌群在HWC組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中重要性評(píng)分排名前20的樞紐菌群中均未發(fā)現(xiàn),可能是對(duì)興義矮腳雞的生長具有負(fù)向抑制作用。阿克曼菌屬(Akkermansia)是富集在HWC組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中的重要樞紐菌群,而在LWC組興義矮腳雞腸道中未發(fā)現(xiàn),提示阿克曼菌屬可能對(duì)興義矮腳雞的生長具有促進(jìn)作用。
2.6與興義矮腳雞體質(zhì)量相關(guān)的特定腸道菌群鑒定結(jié)果
為鑒定與興義矮腳雞體質(zhì)量相關(guān)的腸道菌群,采用LEfSe對(duì)質(zhì)控后的ASVs進(jìn)行組間差異分析,結(jié)果(圖4)共鑒定出18個(gè)ASVs的相對(duì)豐度在HWC組與LWC組興義矮腳雞腸道菌群中呈顯著差異(LDAgt;2,Plt;0.05,下同)。其中,在LWC組興義矮腳雞腸道菌群中鑒定到12個(gè)ASVs的相對(duì)豐度顯著高于HWC組興義矮腳雞,且這些ASVs主要隸屬于梭狀芽孢桿菌綱(Clostridia)和芽孢桿菌綱(Bacilli),其中,5個(gè)ASVs注釋為梭狀芽孢桿菌綱,包括梭菌科(Clostridiaceae)的ASV25 g梭狀芽孢桿菌(ASV25g_Clostridium_sensu_stricto_1)、ASV4243 g梭狀芽孢桿菌(ASV4243 g Clostridium_sensu_stricto_1)和ASV 4117 g分節(jié)絲狀菌(ASV4117 g Candidatus Arthromitus),以及ASV3348 g CHKCI001和ASV472_g_Faecalitalea;另有6個(gè)ASVs注釋為芽孢桿菌綱,包括ASV6772 g芽孢桿菌(ASV6772 g Bacillus)、ASV6771 g芽孢桿菌(ASV6771 g Bacillus)、ASV 8960 g未分類桿菌(ASV8960 g unclassified Bacil-li)、ASV43 g未分類桿菌(ASV43 g unclassified_Bacilli)和ASV14683 g乳桿菌(ASV 14683 g Lacto-bacillus),以及ASV183 g未分類毛螺菌科(ASV183 g_unclassified_Lachnospiraceae)。在HWC組興義矮腳雞腸道菌群中有6個(gè)ASVs的相對(duì)豐度顯著高于LWC組興義矮腳雞,包括注釋為乳酸桿菌的ASV17和ASV8,以及ASV3299 g卡氏桿菌(ASV 329 g 9 Gallibacterium)、ASV1444 g理研菌科RC9_菌群(ASV1444 g Rikenellaceae RC9 gut group)、ASV38 g未分類毛螺菌科(ASV38_unclas-sified_Lachnospiraceae)和ASV314 g未分類顫螺旋菌科(ASV314 g unclassified Oscillospiraceae)。
3討論
本研究通過探究與興義矮腳雞體質(zhì)量相關(guān)的腸道菌群網(wǎng)絡(luò)結(jié)構(gòu)特征及特定菌群差異,發(fā)現(xiàn)乳酸桿菌、乳球菌、瘤胃球菌屬扭鏈群、糞桿菌屬、理研菌科_RC9_菌群等是興義矮腳雞腸道菌群互作網(wǎng)絡(luò)中重要的樞紐菌群。LEfSe分析鑒定到ASV25 g梭狀芽孢桿菌、ASV4243 g梭狀芽孢桿菌及ASV4117 g_分節(jié)絲狀菌等12個(gè)與低體質(zhì)量有關(guān)的ASVs,以及ASV17 g乳桿菌、ASV3299 g卡氏桿菌和ASV1444 g理研菌科_RC9_菌群等6個(gè)與高體質(zhì)量有關(guān)的ASVs。至今,在畜禽胃腸道菌群上的研究主要聚焦于單種細(xì)菌的鑒定及其功能研究(Wen et al.,2019;Fan et al.,2020),針對(duì)菌群互作網(wǎng)絡(luò)的研究報(bào)道相對(duì)較少。與菌群多樣性(Huttenhower et al.,2012)和腸型分析(Ramayo-Caldas et al.,2016)相比,互作網(wǎng)絡(luò)分析能更好地展示微生物之間復(fù)雜的互作關(guān)系,更有利于揭示網(wǎng)絡(luò)成員共享的生態(tài)位空間(馬越等,2018;Angulo et al.,2019)。本研究通過比較低體質(zhì)量和高體質(zhì)量興義矮腳雞腸道菌群互作網(wǎng)絡(luò)拓?fù)鋵W(xué)特征,結(jié)果發(fā)現(xiàn)低體質(zhì)量組興義矮腳雞腸道菌群互作網(wǎng)絡(luò)的穩(wěn)定性和復(fù)雜性更低,提示低體重興義矮腳雞菌群互作網(wǎng)絡(luò)對(duì)外界擾動(dòng)因素的抵抗力較差(Coyte et al.,2015;Hernandez et al.,2021)。外界擾動(dòng)因素導(dǎo)致雞腸道微生態(tài)系統(tǒng)紊亂,影響宿主的營養(yǎng)吸收及消化道微生物防御功能,進(jìn)而導(dǎo)致興義矮腳雞生長發(fā)育受阻,與其體質(zhì)量較低有密切關(guān)系。
在微生物生態(tài)網(wǎng)絡(luò)中,樞紐菌群是指與其他菌群高度連接的菌群,其單獨(dú)或參與菌群模塊對(duì)微生物生態(tài)網(wǎng)絡(luò)結(jié)構(gòu)產(chǎn)生較大影響,在菌群互作網(wǎng)絡(luò)中發(fā)揮關(guān)鍵而獨(dú)特的作用,移除后會(huì)導(dǎo)致微生物生態(tài)網(wǎng)絡(luò)結(jié)構(gòu)及其功能發(fā)生巨大變化(Banerjee et al.,2018;Angulo et al.,2019)。本研究在菌群互作網(wǎng)絡(luò)基礎(chǔ)上,鑒定了興義矮腳雞特征性的樞紐菌群,與貴州省其他幾個(gè)品種地方雞腸道樞紐菌群(Wang et al.,2023)相比,存在明顯差異,包括乳酸桿菌和Mailhella僅在興義矮腳雞腸道菌群中發(fā)現(xiàn),也證實(shí)了品種對(duì)網(wǎng)絡(luò)樞紐菌群的重要影響。本研究還發(fā)現(xiàn)有幾種菌群在低體質(zhì)量興義矮腳雞腸道中占據(jù)重要位置,如重要性評(píng)分第1、4和6的ASVs均注釋為腸桿菌科,主要包括克雷伯氏菌屬(Klebsiella)、大腸桿菌一志賀菌屬(Escherichia_Shigella)和腸桿菌屬(Enterobacter),其中大腸桿菌一志賀菌屬是引起雞嚴(yán)重消化道疾病的主要病原(Olsen et al.,2016)。在低體質(zhì)量興義矮腳雞中發(fā)現(xiàn)支原體屬也是其腸道菌群互作網(wǎng)絡(luò)中的特異菌群,而支原體屬是引起雞呼吸道及關(guān)節(jié)炎癥的主要病原菌,感染后易導(dǎo)致機(jī)體消瘦、體質(zhì)量下降等問題(Adeyemi et al.,2018)。因此,推測(cè)某些病原體或條件致病菌豐度升高,成為腸道菌群互作網(wǎng)絡(luò)中的樞紐菌群時(shí)會(huì)導(dǎo)致機(jī)體腸道生態(tài)網(wǎng)絡(luò)結(jié)構(gòu)的改變,進(jìn)而抑制其生長性能。此外,在高體質(zhì)量興義矮腳雞腸道菌群中發(fā)現(xiàn)一些重要性評(píng)分排名靠前的樞紐菌群,如阿克曼菌屬。越來越多的研究表明阿克曼菌是一種腸道有益菌,其中嗜黏蛋白阿克曼菌(A.muciniphila)具有促進(jìn)腸道屏障完整性、調(diào)節(jié)免疫反應(yīng)及抑制炎癥功能(Cheng and Xie,2021),可緩解患者的腸炎癥狀(Yang et al.,2019),但阿克曼菌屬促進(jìn)興義矮腳雞生長的作用機(jī)制還有待進(jìn)一步探究。
LEfSe分析是一種發(fā)現(xiàn)高緯度數(shù)據(jù)生物標(biāo)志物(微生物、通路、基因)的重要工具(Segata et al.,2011)。本研究通過LEfSe分析對(duì)高體質(zhì)量和低體質(zhì)量興義矮腳雞的特定腸道菌群進(jìn)行類別鑒定,結(jié)果發(fā)現(xiàn),高體質(zhì)量興義矮腳雞腸道富集的特定ASVs注釋到乳酸桿菌屬、卡氏桿菌屬、理研菌科_RC9_菌群等,而低體質(zhì)量興義矮腳雞腸道富集的特定ASVs注釋到梭狀芽孢桿菌屬、分節(jié)絲狀菌屬、芽孢桿菌屬、Fae-calitalea、乳酸桿菌屬和福涅雷拉菌屬(Fournierella)等。其中,乳酸桿菌屬是目前廣泛關(guān)注的潛在益生菌,如羅伊氏乳酸桿菌(L.reuteri)是研究相對(duì)較充分的益生菌,一般認(rèn)為其有助于對(duì)抗感染、減少炎癥及改善腸道健康。但值得注意的是,在低體質(zhì)量興義矮腳雞腸道中也富集到ASV14683 g乳桿菌,可能是不同菌株具有不同的生理作用(Jones et al.,2013;Mehling and Busjahn,2013)。理研菌科_RC9_菌群被認(rèn)為是一種益生菌,能以琥珀酸、乳酸或乙酸為底物,產(chǎn)生丙酸和丁酸而對(duì)宿主產(chǎn)生有益作用(Peterset al.,2018;Hosomi et al.,2022)。此外,在低體質(zhì)量興義矮腳雞腸道中發(fā)現(xiàn)的梭狀芽孢桿菌屬于Clostridium cluster I,具有潛在的致病能力(Lop-etuso et al.,2013;Dohrmannet al.,2015)。分節(jié)絲狀菌(Segmented filamentous bacteria,SFB)也稱為Candidatus arthromitus,人體腸道的SFB與免疫調(diào)控和疾病癥狀等存在一定相關(guān)性(陳華海等,2019),也有研究發(fā)現(xiàn)SFB在自身免疫性關(guān)節(jié)炎小鼠腸道中的相對(duì)豐度升高(Zhao et al.,2023)。CHKCI001是厭氧芽孢梭菌(Clostridiales bacterium)中的一種,被認(rèn)為可能具有促炎作用(Chen et al.,2022)。上述這些特征性菌群在雞腸道中的相對(duì)豐度升高可能會(huì)通過誘發(fā)疾病、促進(jìn)炎癥等作用而致使雞的生長速度減慢。但在高體質(zhì)量興義矮腳雞腸道中也發(fā)現(xiàn)致病菌——卡氏桿菌(Krishnegowda et al.,2020),其富集情況與高體質(zhì)量形成的關(guān)聯(lián)性也有待進(jìn)一步探究。
4結(jié)論
腸桿菌科、支原體屬等有害菌相對(duì)豐度的上升會(huì)降低雞腸道菌群互作網(wǎng)絡(luò)穩(wěn)定性和復(fù)雜性,且與興義矮腳雞的低體質(zhì)量有關(guān)。乳酸桿菌、理研菌科_RC9_菌群、梭狀芽孢桿菌等是影響興義矮腳雞體質(zhì)量的潛在關(guān)鍵菌群,可作為興義矮腳雞體質(zhì)量關(guān)聯(lián)的候選生物標(biāo)志物。
參考文獻(xiàn)(References):
陳華海,吳柳,唐成,王欣,尹業(yè)師.2019.人體腸道分節(jié)絲狀菌SFB研究進(jìn)展[J].微生物學(xué)報(bào),59(9):1778-1785.[Chen HH,Wu L,Tang C,Wang X,Yin YS.2019.Research progressof human intestinal segmented filamen-tous bacteria[J].Acta Microbiologica Sinica,59(9):1778-1785.]doi:10.13343/j.cnki.wsxb.20190159.
李瑩,何靜怡,陳鵬,張麗,許欣純,計(jì)堅(jiān),羅成龍.2022.麻黃雞體質(zhì)量與體尺性狀的相關(guān)分析和主成分分析[J].河南農(nóng)業(yè)科學(xué),51(5):126-132.[LiY,He JY,Chen P,Zhang L,Xu XC,Ji J,Luo CL.2022.Correlation and principal component analysis between body mass and body measure-
ment traitsin Mahuang chickens[J].Journal of Henan Agri-cultural Sciences,51(5):126-132.]doi:10.15933/j.cnki 1004-3268.2022.05.013.
馬越,王軍,胡永飛,陳亮,李晶,律娜,劉飛,王黎明,封雨晴,朱寶利.2018.腸道微生物菌群共存網(wǎng)絡(luò)的構(gòu)建與分析[J].微生物學(xué)報(bào),58(11):2011-2019.[MaY,Wang J,Hu YF,Chen L,LiJ,LüN,Liu F,Wang LM,F(xiàn)eng YQ,Zhu BL.2018.Construction and analysis of co-0ccurrence network in the gut microbiome[J].Acta Microbiologica Sinica,58(11):2011-2019.]doi:10.13343/j.cnki.wsxb.20170614.
葉濤,吳古榮,李輝,王姣,羅韋,楊金春.2020.*興義矮腳雞’與‘貴州矮腳黃雞’雜交試驗(yàn)[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),55(6):34-39.[Ye T,WuGR,LiH,Wang J,Luo W,Yang JC.2020.Study on hybridization between Xingyi bantam and Guizhou yellow chicken[J].Journal of Gansu Agricul-tural University,55(6):34-9.]doi:10.13432/j.cnki.jgsau.
2020.06.005.
張福平,華時(shí)尚,傅筑蔭,吳志國.2011.興義矮腳雞矮腳性狀初步研究[J].江蘇農(nóng)業(yè)科學(xué),39(2):316-317.[Zhang FP,Hua SS,F(xiàn)uZY,Wu ZG.2011.Study on character of short shank in Xingyi bantam chicken[J].Jiangsu Agricul-tural Sciences,39(2):316-317.]doi:10.3969/j.issn.1002-1302.2011.02.109.
張兆杰,李璐璐,趙祥民,薛淑貞,姚亞莉,張家瑋,唐德富,郝生燕.2023.黃芪和黨參莖葉粉對(duì)肉仔雞機(jī)體抗氧化能力和腸道健康的影響[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),58(4):9-20.[Zhang ZJ,Li LL,Zhao XM,Xue SZ,Yao YL,Zhang JW,Tang DF,Hao SY.2023.Effects of Astraga-lus and Codonopsis stemand leaf powder on antioxidant capacity and gut health in broilers[J].Journal of Gansu Agricultural University,58(4):9-20.]doi:10.13432/j.cnkijgsau.2023.04.002
Adeyemi M,Bwala DG,Abolnik C.2018.Comparative eva-luation of the pathogenicity of Mycoplasma gallinaceum in chickens[J].Avian Diseases,62(1):50-56.doi:10.1637/11743-081717-Reg.1.
Angulo MT,Moog CH,Liu YY.2019.A theoretical frame work for controlling complex microbial communities[J]Nature Communications,10:1045.doi:10.1038/s41467-019-08890-y.
Ariza AG,Arbulu AA,González FJN,Baena SN,Bermejo J"VD,Vallejo MEC.2021.The study of growth and perfor-mance in local chicken breeds and varieties:A review of methods and scientific transference[J].Animals,11(9):2492.doi:10.3390/ANI11092492.
Bader GD,Hogue CWV.2003.An automated method for finding molecular complexes in large protein interaction networks[J].BMC Bioinformatics,4:2.doi:10.1186/1471-2105-4-2.
Banerjee S,Schlaeppi K,van der Heijden MG A.2018.Key-stone taxa as drivers of microbiome structure and functio-ning[J].Nature Reviews Microbiology,16:567-576.doi:10.1038/s41579-018-0024-1.
Bokulich NA,Subramanian S,F(xiàn)aith JJ,Gevers D,Gordon JI,Knight R,Mills DA,Caporaso JG.2013.Quality-filtering vastly improves diversity estimates from Illumina ampli-con sequencing[J].Nature Methods,10(1):57-59.doi:10.1038/nmeth.2276.
Bolger AM,LohseM,Usadel B.2014.Trimmomatic:A flexi-ble trimmer for llumina sequencedata[J].Bioinformatics,30(15):2114-2120.doi:10.1093/bioinformatics/btu170.
Callahan BJ,McMurdieP J,Rosen MJ,Han AW,Johnson AJ,Holmes SP.2016.DADA2:High-resolution sample inference from Illuminaamplicon data[J].Nature Methods,13(7):581-583.doi:10.1038/nmeth.3869.
Chen SJ,Chen CC,Liao HY,Lin YT,Wu YW,Liou JM,Wu MS,Kuo CH,Lin CH.2022.Association of fecal and plasmalevels of short-chain fatty acids with gut micro-biota and clinical severity in patients with parkinson di-sease[J].Neurology,98(8):e848-e858.doi:10.1212/WNL.0000000000013225.
Cheng D,Xie MZ.2021.A review of apotential and pro-mising probiotic candidate—Akkermansia muciniphila[J].Journalof Applied Microbiology,130(6):1813-1822.doi:10.1111/jam.14911
Chin CH,Chen SH,Wu HH,Ho CW,Ko MT,Lin CY.2014.cytoHubba:Identifying hub objects and sub-networks from complex interactome[J].BMC Systems Biology,8(S4):S11.doi:10.1186/1752-0509-8-S4-S11.
Coyte KZ,Schluter J,F(xiàn)oster KR.2015.The ecology of the microbiome:Networks,competition,and stability[J].Scien-ce,350(6261):663-666.doi:10.1126/science.aad2602.
Cui L,Zhang XL,Cheng RR,Ansari AR,ElokilAA,HuYF,Chen Y,Nafady AA,LiuH Z.2021.Sex differences in growth performance are related to cecal microbiota in chicken[J].Microbial Pathogenesis,150:104710.doi:10.
1016/j.micpath.2020.104710.
Dohrmann AB,Walz M,L?wen A,Tebbe CC.2015.Clos-tridium cluster Iand their pathogenic members in afull-scale operating biogas plant[J].Applied Microbiology and Biotechnology,99:3585-3598.doi:10.1007/s00253-014-6261-y.
Du WY,Deng JX,Yang ZL,Zeng LH,Yang XR.2020.Metagenomic analysis reveals linkages between cecal mi-crobiota and feed efficiency in Xiayan chickens[J].Poultry Science,99(12):7066-7075.doi:10.1016/j.psj.2020.09076.
Edgar RC,HaasB J,ClementeJC,Quince C,Knight R.2011.UCHIME improves sensitivity and speed of chimera detec-tion[J].Bioinformatics,27(16):2194-2200.doi:10.1093/bioinformatics/btr381.
Fan PX,Bian BL,Teng L,Nelson CD,Driver J,Elzo MA,Jeong KC.2020.Host genetic effects upon the early gut microbiota in abovine modelwith graduated spectrum of genetic variation[J].The ISME Journal,14(1):302-317.doi:10.1038/s41396-019-0529-2.
FriedmanJ,AlmE J.2012.Inferring correlation networks from genomic survey data[J].PLoSComputational Biology,8(9):e1002687.doi:10.1371/journal.pcbi.1002687.
Glendinning L,Chintoan-Uta C,Stevens MP,Watson M.2022.Effect of cecal microbiota transplantation between different broiler breeds on the chick fora in the first week of life[J].Poultry Science,101(2):101624.doi:10.1016/j.psj.2021.101624.
Han GG,Kim EB,Lee J,Lee JY,Jin G,Park J,Huh CS,Kwon IK,Kil DY,ChoiYJ,Kong C.2016.Relationship between the microbiota in differentsecions of the gastroin-testinal tract,and the body weight of broiler chickens[J].Springerplus,5:911.doi:10.1186/s40064-016-2604-8.
Hernandez DJ,David AS,Menges ES,Searcy CA,Afkhami ME.2021.Environmental stress destabilizes microbial networks[J].The ISME Journal,15(6):1722-1734.doi:10.1038/s41396-020-00882-x.
Hosomi K,Saito M,Park J,Murakami H,Shibata N,Ando M,Nagatake T,Konishi K,Ohno H,TanisawaK,Mohsen A,Chen YA,Kawashima H,Natsume-KitataniY,Oka Y,Shi-mizu H,F(xiàn)uruta M,Tojima Y,Sawane K,Saika A,Kondo S,Yonejima Y,Takeyama H,Matsutani A,Mizuguchi K,Miyachi M,Kunisawa J.2022.Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota[J].Nature Communications,13(1):4477.doi:10.1038/s41467-022-32015-7.
Huttenhower C,Gevers D,Knight R,Abubucker S,Badger JH,Chinwalla AT,Creasy HH,Earl AM,F(xiàn)itzGerald MG,F(xiàn)ulton RS,Giglio MG,Hallsworth-Pepin K,Lobos EA,Madupu R,Magrini V,Martin JC,Mitreva M,Muzny DM,Sodergren EJ,Versalovic J,Wollam AM,Worley KC,Wortman JR,Young SK,Zeng QD,Aagaard KM,Abolude O 0,Allen-Vercoe E,Alm EJ,Alvarado L,Andersen GL,Anderson S,Appelbaum E,Arachchi HM,Armitage G,Arze CA,Ayvaz T,Baker CC,Begg L,Belachew T,BhonagiriV,Bihan M,Blaser MJ,Bloom T,BonazziV,Brooks JP,Buck GA,Buhay CJ,Busam DA,Campbell JL,Canon SR,Cantarel BL,Chain PS G,Chen IMA,Chen L,Chhibba S,Chu K,Ciulla DM,Cle-mente JC,Clifton Sw,Conlan S,Crabtree J,Cutting MA,Davidovics NJ,Davis CC,DeSantis TZ,Deal C,Dele-haunty KD,Dewhirst FE,Deych E,Ding Y,Dooling DJ,Dugan SP,Dunne WM,DurkinAS,EdgarRC,Erlich RL,F(xiàn)armer CN,F(xiàn)arrell RM,F(xiàn)aust K,F(xiàn)eldgarden M,F(xiàn)elix VM,F(xiàn)isher S,F(xiàn)odor AA,F(xiàn)orney LJ,F(xiàn)oster L,Di Fran-cesco V,F(xiàn)riedman J,F(xiàn)redrich DC,F(xiàn)ronick CC,F(xiàn)ulton LL,Gao HY,Garcia N,Giannoukos G,Giblin C,Giovanni MY,GoldbergJM,Goll J,Gonzalez A,Griggs A,Gujja S,Haake SK,Has BJ,Hamilton HA,Harris EL,Hep-burn TA,Herter B,Hoffmann DE,Holder ME,Howarth C,HuangK H,Huse SM,Izard J,Jansson JK,Jiang HY,Jordan C,JoshiV,Katancik JA,Keitel WA,Kelley ST,KellsC,King NB,Knights D,Kong HH,Koren O,Koren S,Kota KC,Kovar CL,Kyrpides NC,La Rosa PS,Lee SL,Lemon KP,LennonN,Lewis CM,LewisL,Ley RE,LiK,Liolios K,Liu B,Liu Y,Lo CC,Lozupone CA,Lunsford RD,Madden T,Mahurkar AA,Mannon PJ,Mardis ER,Markowitz VM,Mavromatis K,McCorrison
JM,McDonald D,McEwen J,McGuire AL,McInnes P,Mehta T,Mihindukulasuriya KA,Miller JR,Minx PJ,Newsham I,Nusbaum C,O'Laughlin M,Orvis J,Pagani I,Palaniappan K,Patel SM,Pearson M,Peterson J,Podar"M,PohlC,Pollard KS,Pop M,Priest ME,Proctor LM,Qin X,Raes J,Ravel J,Reid JG,Rho M,Rhodes R,Rie-hle KP,Rivera MC,Rodriguez-Mueller B,Rogers YH,Ross MC,Russ C,Sanka RK,Sankar P,Sathirapongsa-suti JF,Schloss JA,Schloss PD,Schmidt TM,Scholz
M,Schriml L,Schubert AM,Segata N,Segre JA,Shan-non WD,Sharp RR,Sharpton TJ,Shenoy N,Sheth NU,Simone GA,SinghI,Smillie CS,SobelJ D,Sommer DD,Spicer P,SuttonG G,Sykes SM,Tabbaa DG,Thiaga-rajan M,Tomlinson CM,Torralba M,Treangen J,Truty RM,Vishnivetskaya TA,Walker J,Wang L,Wang ZY,Ward DV,Warren W,Watson MA,Wellington C,Wetter-strand KA,White JR,Wilczek-Boney K,WuYQ,Wylie KM,Wylie T,Yandava C,YeL,Ye YZ,Yooseph S,You-mans BP,Zhang L,ZhouYJ,Zhu YM,Zoloth L,Zucker JD,Biren BW,Gibbs RA,Highlander SK,Methé BA,Nelson KE,Petrosino JF,Weinstock GM,Wilson RK,
White O.2012.Structure,function and diversity of the healthy human microbiome[J].Nature,486(7402):207-214.doi:10.1016/bs.pmbts.2022.07.003.
Jin CF,Chen YJ,Yang ZQ,Shi K,Chen CK.2015.A genome-wide association study of growth trait-related single nucleotide polymorphisms in Chinese Yancheng chickens[J].Genetics and Molecular Research,14(4):15783-15792.doi:10.4238/2015.December.1.30.
Jones ML,MartoniCJ,Prakash S.2013.Oral supplementation withprobiotic L.reuteriNCIMB 30242 increases mean cir-culating 25-hydroxyvitamin D:A post hoc analysis of arandomized controlled trial[J].The Journal of Clinical En-docrinologyamp;Metabolism,98(7):2944-2951.doi:10.1210/jc.2012-4262
Kogut MH.2022.Role of diet-microbiota interactions in preci-sion nutrition of the chicken:Facts,gaps,and new concepts[J].Poultry Science,101(3):101673.doi:10.1016j.psj.2021.101673.
Krishnegowda ND,Dhama K,Mariappan AK,Munuswamy P,Iqbal YM,Tiwari R,Karthik K,Bhatt P,Reddy MR.2020.Etiology,epidemiology,pathology,and advances in diagnosis,vaccine development,and treatment of Gallibac-
terium anatis infection in poultry:A review[J].Veterinary Quarterly,40(1):16-34.doi:10.1080/01652176.2020.1712495.
Lopes CT,F(xiàn)ranz M,Kazi F,Donaldson SL,Morris Q,Bader GD.2010.CytoscapeWeb:An interactive web-based net-work browser[J].Bioinformatics,26(18):2347-2348.doi:10.1093/bioinformatics/btq430.
Lopetuso LR,Scaldaferi F,Petito V,Gasbarrini A.2013.Commensal Clostridia:Leading players in the maintenance of guthomeostasis[J].Gut Pathogens,5:23.doi:10.1186/1757-4749-5-23.
Lozupone C,Knight R.2005.UniFrac:A new phylogenetic method for comparing microbial communities[J].Applied and Environmental Microbiology,71(12):8228-8235.doi:10.1128/AEM.71.12.8228-8235.2005.
MaZY,Akhtar M,Pan H,Liu QY,Chen Y,Zhou XX,YouY T,Shi DS,Liu HZ.2023.Fecal microbiota transplanta tion improves chicken growth performance by balancing jejunal Th17/Treg cells[J].Microbiome,11:137.doi:101186/s40168-023-01569-z.
Magoě T,Salzberg SL.2011.FLASH:Fast length adjustment"of short reads to improve genomeassemblies[J].Bioinfor-matics,27(21):2957-2963.doi:10.1093/bioinformatics/btr 507.
Mehling H,Busjahn A.2013.Non-viable Lactobacillus reuteri DSMZ 17648(PylopassTM)as anew approach to Helico-bacter pylori control in humans[J].Nutrients,5(8):3062-3073.doi:10.3390/nu5083062.
Memon FU,Yang Y,Lv F,Soliman AM,Chen Y,Sun J,Wang Y,Zhang G,Li Z,Xu B,Gadahi JA,Si H.2021.Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection[J].Journal ofApplied Microbiology,131(1):425-434.doi:10.1111/jam.14928.
Metzler-Zebeli BU,Siegerstetter SC,Magowan E,Lawlor PG,O'Connell NE,Zebeli Q.2019.Fecal microbiota trans-plant from highlyfeed efficient donors affects cecalphysio-logy and microbiota in low-and high-feed efficient chic-kens[J].Frontiers in Microbiology,10:1576.doi:10.3389/fmicb.2019.01576.
OlsenR H,Bisgaard M,Christensen JP,Kabell S,Christensen H.2016.Pathology and molecular characterization of Escherichia coli associated with the avian salpingitis-peritonitis disease syndrome[J].Avian Diseases,60(1):1-7.doi:10.1637/11237-071715-Reg.1.
Pandit RJ,Hinsu AT,Patel NV,Koringa PG,Jakhesara SJ,Thakkar JR,Shah TM,Limon G,Psifidi A,Guitian J,Hume DA,Tomley FM,Rank DN,Raman M,Tirumuru-gaan KG,Blake DP,JoshiCG.2018.Microbial diversity and communitycomposition of caecal microbiota in com-mercial and indigenous Indian chickens determined using 16S rDNA amplicon sequencing[J].Microbiome,6(1):115.doi:10.1186/s40168-018-0501-9.
Peters BA,Shapiro JA,Church TR,MillerG,Trinh-Shevrin"C,Yuen E,F(xiàn)riedlander C,HayesR B,AhnJ.2018.A taxo-nomic signature of obesity in alarge study of American adults[J].Scientific Reports,8(1):9749.doi:10.1038/s41598-018-28126-1.
Quast C,Pruesse E,Yilmaz P,Gerken J,Schweer T,Yarza P,Peplies J,Gl?ckner F0.2013.The SILVAribosomal RNA gene database project:Improved data processing and web-based tools[J].Nucleic Acids Research,41(D1):D590-D596.doi:10.1093/nar/gks1219.
Ramayo-Caldas Y,Mach N,Lepage P,Levenez F,Denis C,Lemonnier G,Leplat JJ,BillonY,Berri M,Doré J,Rogel-Gaillard C,Estelle J.2016.Phylogenetic network analysis appliedto pig gut microbiota identifies an ecosystem struc-ture linked with growth traits[J].The ISME Journal,10(12):2973-2977.doi:10.1038/ismej.2016.77
Reverter A,Chan EK F.2008.Combining partial correlation and an information theory approach to the reversed engi-neering of gene co-expression networks[J].Bioinforma-tics,24(21):2491-2497.doi:10.1093/bioinformatics/btn482.
Schloss PD,Westcott SL,Ryabin T,Hall JR,Hartmann M,Hollister EB,Lesniewski RA,Oakley BB,Parks DH,Robinson CJ,Sahl JW,Stres B,Thallinger GG,van Horn DJ,Weber CF.2009.Introducing mothur:Open-source,platform-independent,community-supported soft-ware for describing and comparing microbial communities[J].Applied and Environmental Microbiology,75(23):7537-7541.doi:10.1128/AEM.01541-09.
Segata N,Izard J,Waldron L,Gevers D,Miropolsky L,Garrett WS,Huttenhower C.2011.Metagenomic biomarker dis-covery and explanation[J].Genome Biology,12(6):R60.doi:10.1186/gb-2011-12-6-r60.
Smoot ME,Ono K,Ruscheinski J,Wang PL,Ideker T.2011 Cytoscape 2.8:New features for data integration and net-workvisualization[J].Bioinformatics,27(3):431-432.doi:10.1093/bioinformatics/btq675.
Susanti D,Volland A,Tawari N,Baxter N,Gangaiah D,Plata G,Nagireddy A,HawkinsT,Mane SP,Kumar A.2021.Multi-omics characterization of host-derived Bacillus spp probiotics for improved growth performance in poultry[J]Frontiers inMicrobiology,12:747845.doi:10.3389/fmicb.2021.747845.
Thiam M,Wang Q,Sánchez ALB,Zhang J,Ding JQ,Wang H
L,ZhangQ,Zhang N,WangJ,LiQH,Wen J,Zhao GP 2022.Heterophillymphocyte ratio level modulates salmo-nella resistance,cecal microbiotacomposition and func-tional capacity in infected chicken[J].Frontiers in Immu-nology,13:816689.doi:10.3389/fimmu.2022.816689.
Wang LQ,Zhang FP,Li H,Yang SL,ChenX,Long SH,Yang SH,YangYX,Wang Z.2023.Metabolic and inflam-matory linkage of the chicken cecal microbiome to growth performance[J].Frontiers in Microbiology,14:1060458.doi:10.3389/fmicb.2023.1060458.
Wei S,Morrison M,Yu Z.2013.Bacterial census of poultry intestinal microbiome[J].PoultryScience,92(3):671-683.doi:10.3382/ps.2012-02822.
Wen CL,Yan W,Sun CJ,JiC L,Zhou QQ,Zhang DX,Zheng JX,Yang N.2019.The gut microbiota is largely independent ofhost genetics in regulating fat deposition in chickens[J].The ISME Journal,13(6):1422-1436.doi:101038/s41396-019-0367-2.
Yan W,Sun CJ,Yuan JW,Yang N.2017.Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency[J].Scientific Re-ports,7:45308.doi:10.1038/srep45308.
Yang Y,Zhong ZQ,Wang BJ,Xia XW,Yao WY,Huang L,Wang YL,Ding WJ.2019.Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila[J].Neuropsychopharmacology,44(12):2054-2064.doi:10.1038/s41386-019-0437-1.
Zhang H,ShenLY,XuZC,Kramer LM,YuJQ,Zhang XY,Na W,Yang LL,Cao ZP,Luan P,Reecy JM,LiH.2020.Haplotype-based genome-wide association studies for car-cass and growth traits in chicken[J].Poultry Science,99(5):2349-2361.doi:10.1016j.psj.2020.01.009.
Zhang XL,Akhtar M,Chen Y,Ma ZY,Liang YY,Shi DS,Cheng RR,Cui L,Hu YF,Nafady AA,Ansari AR,Abdel-Kafy ES M,Liu HZ.2022a.Chicken jejunal
microbiota improves growth performance by mitigating intestinal inflammation[J].Microbiome,10(1):107.doi:10.1186/s40168-022-01299-8.
Zhang XL,Hu YF,Ansari AR,Akhtar M,Chen Y,Cheng RR,Cui L,NafadyAA,Elokil AA,Abdel-Kafy EM,Liu HZ.2022b.Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism[J].Microbial Biotechnology,15(3):844-861.doi:10.111/1751-7915.13841.
Zhao QX,Yu JD,Zhou H,Wang XY,Zhang C,Hu J,Hu YW,Zheng HP,Zeng FL,YueCC,Gu LN,Wang Z,Zhao FL,Zhou P,Zhang HZ,Huang NY,Wu WL,Zhou YF,Li J.2023.Intestinal dysbiosis exacerbates the pathoge nesis of psoriasis-like phenotype through changes in fatty acid metabolism[J].Signal Transduction and TargetedThe-rapy,8(1):40.doi:10.1038/S41392-022-01219-0.
(責(zé)任編輯 蘭宗寶)