摘要:【目的】基于微生物16S rRNA測序技術(shù)探究3種貴州地方雞的盲腸菌群結(jié)構(gòu)特征,鑒別不同品種雞盲腸富集的特定菌群,從腸道菌群角度解析地方雞遺傳資源特性,進(jìn)而加深對貴州地方雞腸道菌群特征的認(rèn)識?!痉椒ā窟x取3種貴州地方雞(烏蒙烏骨雞11羽、黔東南小香雞12羽及瑤山雞12羽),采集盲腸內(nèi)容物樣品檢測16S rRNA序列V3~V4可變區(qū),通過QIIME計(jì)算雞盲腸菌群Alpha多樣性,以主坐標(biāo)分析(PCoA)評估雞盲腸菌群Beta多樣性;采用SparCC算法構(gòu)建盲腸菌群互作網(wǎng)絡(luò),使用馬修斯相關(guān)系數(shù)(MCC)算法進(jìn)行樞紐菌群識別,并以LEfse分析鑒別組間差異的菌群類別及功能通路?!窘Y(jié)果】從35羽貴州地方雞盲腸內(nèi)容物共測序獲得2625245條Clean reads,按序列相似度97%的閾值進(jìn)行聚類分析共獲得727個OTUs。在門分類水平上,3種貴州地方雞盲腸菌群的優(yōu)勢菌包括擬桿菌門、厚壁菌門、變形菌門、互養(yǎng)菌門和螺旋菌門;在屬分類水平上,相對豐度排名前5的屬為擬桿菌屬、理研菌科_RC9_菌群、考拉桿菌屬、普拉梭菌屬和脫硫弧菌屬。從烏蒙烏骨雞、黔東南小香雞和瑤山雞盲腸菌群中分別獲得160、144和149個OTUs用于菌群互作網(wǎng)絡(luò)研究,對盲腸菌群互作網(wǎng)絡(luò)結(jié)構(gòu)分析發(fā)現(xiàn)網(wǎng)絡(luò)穩(wěn)定性排序?yàn)楝幧诫u(穩(wěn)定性指數(shù)44.22%)gt;黔東南小香雞(穩(wěn)定性指數(shù)41.76%)gt;是烏蒙烏骨雞(穩(wěn)定性指數(shù)37.56%),而網(wǎng)絡(luò)復(fù)雜性排序?yàn)榍瓥|南小香雞gt;烏蒙烏骨雞gt;瑤山雞。顫螺菌屬是黔東南小香雞和瑤山雞盲腸菌群互作網(wǎng)絡(luò)中重要性評分最高的樞紐菌群,乳酸桿菌屬是黔東南小香雞盲腸的樞紐菌群,理研菌科_RC9_菌群是烏蒙烏骨雞盲腸的樞紐菌群。LEfSe分析結(jié)果表明,烏蒙烏骨雞盲腸富集到15個特征OTUs,其功能通路涉及氨基酸生物合成、2-氧羧酸代謝、精氨酸生物合成等;黔東南小香雞盲腸富集到2個特征OTUs,其功能通路涉及光合作用和鏈霉素生物合成;瑤山雞盲腸富集到6個特征OTUs,僅涉及脂多糖生物合成功能通路?!窘Y(jié)論】品種是影響貴州地方雞盲腸菌群組成和結(jié)構(gòu)的重要因素,一些特定微生物存在于不同品種雞盲腸中。其中,理研菌科_RC9_菌群、瘤胃球菌屬、紫單胞菌屬等在烏蒙烏骨雞盲腸中富集;巨單胞菌屬、理研菌科_RC9_菌群、考拉桿菌屬等在瑤山雞盲腸中富集;脫硫弧菌屬和普拉梭菌屬在黔東南小香雞盲腸中富集。
關(guān)鍵詞:烏蒙烏骨雞;黔東南小香雞;瑤山雞;盲腸;菌群結(jié)構(gòu);特異性
中圖分類號:S831.89文獻(xiàn)標(biāo)志碼:A文章編號:2095-1191(2024)02-0323-11
Characteristics of cecal microbiota in three Guizhou chicken breeds
YANG Sheng-hong',YANG Yong-xian1,LONG Xiao-xia1,LI Hui1,ZHANG Fu-ping',ZHOU Di2,WANG Zhong'*
('College of Animal Science,Guizhou University/Key Laboratory of Animal Genetics,Breeding and Reproduction in the Plateau Mountainous Region,Ministry of Education,Guiyang,Guizhou 550025,China;2Livestock and Poultry Breding Centerin GuizhouProvince,Guiyang,Guizhou 550018,China)
Abstract:[Objective]This study aimed to investigate the cecal microbiota community structure of three local chicken breeds in Guizhou based on microbial 16S rRNA sequencing,identifying specific microbiota enriched in the ceca of dif ferent chickenbreeds,studying the characteristics of local chicken genetic resources from the perspective of intestinal mi-crobota,thereby deepening the understanding of the characteristics ofcecal microbiota in Guizhou local chickens.【Method]Three Guizhou chickens breeds(11 Wumeng black-bone chickens,12 Qiandongnan Xiaoxiang chickens,and 12 Yaoshan chickens)were selected,and their cecal content samples were collected for 16S rRNA sequencing of the V3-V4 variable region.The QIIME software was used to calculate the alpha diversity ofcecal microbiota,and principal coor-dinate analysis(PCoA)was conducted to evaluate cecal microbiota beta diversity.SparCC algorithm was employed to construct cecal microbiota interaction networks,and the Matthew's correlation coefficient(MCC)algorithm was used for hub microbial identification.Additionally,LEfSe analysis was utilized to identify differentially microbial taxa and functional pathways among three groups.[Result]Atotal of 2625245 Clean reads were obtained from cecal content se-quencing of 35 Guizhou local chickens,resulting in 727 operational taxonomic units(OTUs)clustered at athreshold of 97%sequence similarity.At the phylum level,dominant taxa in the cecal microbiota of three Guizhou local chicken breeds included Bacteroidetes,F(xiàn)irmicutes,Proteobacteria,Synergistetes and Spirochaetes.The top five genera in terms of relative abundance were Bacteroides,Rikenellaceae_RC9_gut_group,Phascolarctobacterium,F(xiàn)aecalibacterium and Desulfovibrio.Each of the Wumeng black-bone chicken,Qiandongnan Xiaoxiang chicken and Yaoshan chicken yielded 160,144,and 149 OTUs for interaction network analysis,respectively.The stability index of cecal microbial interaction networks were ranked as Yaoshan chicken(44.22%)gt;Qiandongnan Xiaoxiang chicken(41.76%)gt;Wumeng black-bone chicken(37.56%),while the complexity of networks were ranked as Qiandongnan Xiaoxiang chickengt;Wumeng black-bone chickengt;Yaoshan chicken.Oscillospira was the highestscoring hub microbiota in the cecal microbial interaction net-works of Qiandongnan Xiaoxiang chicken and Yaoshan chicken,while Lactobacillus was ahub microbiota in Qiandong-nan Xiaoxiang chicken,and Rikenellaceae_RC9_gut_group was hub microbiota in Wumeng black-bone chicken.LEfSe analysis revealed that Wumeng black-bone chicken had 15 characteristic OTUs,and their predicted functional pathways involved in amino acid biosynthesis,2-0xocarboxylic acid metabolism,arginine biosynthesis;Qiandongnan Xiaoxiang chicken enriched 2 characteristic OTUs,their predicted functional pathways involved in photosynthesis and streptomycin biosynthesis;Yaoshan chicken had 6 characteristic OTUs associated with lipopolysaccharide biosynthesis functional path-way.【Conclusion]Breed is an important factor influencing the composition and structure ofcecal microbiota of Guizhou chicken breeds.Specific microbes are enriched in the ceca of different chicken breeds.For instance,Rikenella-ceae_RC9_gut_group,Ruminiclostridium and Odoribacter are enriched inthe ceca ofWumeng black-bone chicken;Me-gamonas,Rikenellaceae_RC9_gut_group,Phascolarctobacterium are enriched in Yaoshan chicken;and Desulfovibrio and Faecalibacterium are enriched in Qiandongnan Xiaoxiang chicken.
Key words:Wumeng black-bone chicken;Qiandongnan Xiaoxiang chicken;Yaoshan chicken;cecum;microbiota;structure specificity
Foundation items:National Natural Science Foundation of China(32260829);Guizhou Science and Technology Plan Project(QKHZC〔2022〕Zhongdian 34);Guizhou Natural Science Foundation(QKHJC[2022]Yiban 113);Natural Science Research Project of Guizhou Department of Education(Qianjiaoji〔2022〕061)
0引言
【研究意義】我國許多地方雞具有獨(dú)特的品種特征和優(yōu)異的生產(chǎn)性能,如肉質(zhì)優(yōu)良、適應(yīng)性強(qiáng)等(Duah et al.,2020;Guo et al.,2021;Liu et al.,2021),是培育優(yōu)質(zhì)商用品系的重要種質(zhì)資源。烏蒙烏骨雞(Wumengblack-bone chicken,WBC)、黔東南小香雞(Qiandongnan Xiaoxiang chicken,QXC)和瑤山雞(Yaoshan chicken,YSC)是我國貴州的優(yōu)質(zhì)地方雞資源,均具有獨(dú)特的品種特征(Liu et al.,2021;楊蓉等,2023)。盡管這些品種在原產(chǎn)地的飼養(yǎng)歷史悠久,但目前對其品種特性的認(rèn)識不足,進(jìn)而限制了對這些種質(zhì)資源的保護(hù)、開發(fā)和利用。腸道菌群是腸道內(nèi)微生物的總稱,在營養(yǎng)物質(zhì)吸收利用(陳雙雙等,2018;Zhang et al.,2022b)、免疫系統(tǒng)發(fā)育(裴利君等,2021;Zenner et al.,2021)及疾病抵抗(Yin et al.,2022)等方面發(fā)揮著重要作用。腸道菌群結(jié)構(gòu)特征是雞品種特性的重要組成部分,但目前關(guān)于貴州地方雞腸道菌群結(jié)構(gòu)特征的研究較少?!厩叭搜芯窟M(jìn)展】越來越多的研究表明,腸道菌群在雞經(jīng)濟(jì)性狀的形成過程中發(fā)揮重要作用,如飼料轉(zhuǎn)化效率(Yan et al.,2017;Du et al.,2020)、脂肪沉積(Wen et al.,2019;Liu et al.,2022)及生長性能(Zhang et al.,2022a;Wang et al.,2023)等。Wen等(2019,2021)研究發(fā)現(xiàn),某些腸道菌群與雞的一些性狀相關(guān),如盲腸中的乳酸桿菌屬、棒桿菌屬、糞芽孢菌屬和史雷克氏菌屬有助于改善飼料轉(zhuǎn)化效率,甲烷短桿菌屬和Mucispirillum schaedleri則與脂肪沉積有關(guān);在校正宿主遺傳效應(yīng)后,盲腸菌群對雞腹部脂肪量表型變異的貢獻(xiàn)率為21%。但不同研究得出的結(jié)論并不完全一致,可能是雞的品種差異所導(dǎo)致。因此,在探究雞腸道菌群結(jié)構(gòu)特征的同時,比較品種間的差異顯得尤為重要。至今,已有許多研究證實(shí)不同品種的雞具有特異的腸道菌群結(jié)構(gòu)(Chica Cardenas et al., 2021),如印度地方雞品種Nicobari、Ghagus和Aseel的腸道菌群多樣性顯著高于商業(yè)肉雞品種Vencobb 400°(Paul et al.,2021);我國地方雞品種絲羽烏骨雞(Silky Fowl)的腸道菌群豐度較商業(yè)品種白來航雞(White Leghorn)更高,腸道菌群組成在這2個品種間也存在顯著差異(Yang et al.,2022)。此外,Glendinning等(2020)以羅斯(Ross)308和Ranger Classic為素材組裝了雞盲腸菌群的宏基因組,發(fā)現(xiàn)乳桿菌是羅斯308雞腸道內(nèi)重要的特征菌群。Yan 等(2021)研究發(fā)現(xiàn),在相同限制飼料供給條件下,生長速度較慢的威寧雞腸道內(nèi)擬桿菌屬和乳酸桿菌屬的相對豐度較生長速度較快的金陵花雞更高,而Cloacibacillus和巨型球菌屬的相對豐度較低。Liu等(2022)研究表明,壽光雞(Shouguang)和魯禽麻雞(Luqin)的盲腸菌群組成差異顯著,其中脂肪型魯禽麻雞腸道內(nèi)的丹毒梭菌豐度更高,且腸道菌群功能通路更多富集在淀粉和乳糖降解上。綜上所述,特定雞品種腸道中富集著與其品種相關(guān)的特征性菌群?!颈狙芯壳腥朦c(diǎn)】我國貴州因其獨(dú)特地理環(huán)境而擁有豐富的地方雞品種資源,但目前對于貴州地方雞腸道菌群結(jié)構(gòu)特征及其潛在功能的認(rèn)識不足,針對貴州地方雞品種間的特異性研究也較少?!緮M解決的關(guān)鍵問題】收集3種貴州高原山地具有代表性地方品種雞(烏蒙烏骨雞、黔東南小香雞和瑤山雞)的盲腸糞便樣本,基于微生物16S rRNA序列V3~V4可變區(qū)探究3種貴州地方雞的盲腸菌群結(jié)構(gòu)特征,鑒別不同品種雞盲腸富集的特定菌群,以期從腸道菌群角度解析地方雞遺傳資源特性,進(jìn)而加深對貴州地方雞腸道菌群特征的認(rèn)識。
1材料與方法
1.1試驗(yàn)動物及樣品采集
供試雞由貴州省種畜禽種質(zhì)測定中心提供,共35羽,包括烏蒙烏骨雞11羽(5公6母)、黔東南小香雞12羽(6公6母)、瑤山雞12羽(6公6母)。所有試驗(yàn)雞飼養(yǎng)于同一雞舍,三層單籠飼養(yǎng),生活環(huán)境、飼養(yǎng)管理方式及飼料保持一致,自然通風(fēng),采用卷簾調(diào)控室內(nèi)溫度,每日光照時間約16 h。飼料為商品飼料,每日上午、下午各喂1次,自由飲水。按雞場免疫程序進(jìn)行雞馬立克、新城疫、傳染性支氣管炎、法氏囊病毒和禽流感疫苗接種。于160日齡時稱量雞體質(zhì)量,并屠宰采集盲腸內(nèi)容物樣品(約2 g)。盲腸內(nèi)容物樣品采集后立刻放入液氮運(yùn)回實(shí)驗(yàn)室,-80℃冰箱保存?zhèn)溆?。動物試?yàn)經(jīng)貴州大學(xué)動物倫理委員會批準(zhǔn),批準(zhǔn)號EAE-GZU-2022-T050。
1.2盲腸內(nèi)容物DNA提取及16S rRNA測序使用Magnetic Soil and Stool DNA Kit試劑盒[天根生化科技(北京)有限公司]提取盲腸內(nèi)容物總DNA,以NanoDrop 2000分光光度計(jì)檢測DNA濃度和純度。選用通用引物338F(5'-ACTCCTACGGGA GGCAGCAG-3')和806R(5'-GGACTACHVGGGTW TCTAAT-3')擴(kuò)增細(xì)菌16S rRNA序列V3~V4可變區(qū)(Caporaso et al.,2011)。PCR反應(yīng)體系10.0 μL:DNA模板50 ng,KOD FX Neo緩沖液5.0 μL,KOD FX Neo 0.2 μL,dNTP2.0μL,上、下游引物(10 μmol/L)各0.3 μL,ddH?O補(bǔ)足至10.0 μL。擴(kuò)增程序:95℃預(yù)變性5 min;95℃1 min,50℃1 min,72℃1 min,進(jìn)行15個循環(huán);72℃延伸7 min。以VAHTS DNA清潔珠(南京諾唯贊生物科技股份有限公司)純化第1輪PCR擴(kuò)增產(chǎn)物,然后在40.0μL反應(yīng)體系中進(jìn)行第2輪PCR:第1輪PCR擴(kuò)增產(chǎn)物10.0 μL,2×Phu-sion HF 20.0μL,上、下游引物(10 μmol/L)各1.0 μL,ddH?O 8.0 μL。擴(kuò)增程序:98℃預(yù)變性30 s;98℃10 s,65℃30s,72℃30s,進(jìn)行100個循環(huán);72℃延伸5min。PCR擴(kuò)增產(chǎn)物采用Quant-iTMdsDNA HS試劑(賽默飛世爾科技公司)進(jìn)行定量分析,并送至上海百趣生物醫(yī)學(xué)科技有限公司,在Ilumina HiSeq 2500平臺(2×250 bp對末端)上完成16S rRNA高通量測序。
1.3生物信息學(xué)分析
采用Trimmomatic 0.33對原始數(shù)據(jù)進(jìn)行質(zhì)量過濾(Bolger et al.,2014),通過Cutadapt v1.9.1識別并去除adapter序列(Kechin et al.,2017),使用FLASH v1.2.11對雙端Reads進(jìn)行拼接(Magoě and Salzberg,2011)。為避免測序深度不均勻造成統(tǒng)計(jì)偏差,每個樣本的序列深度統(tǒng)一設(shè)為75007 Tags。然后,基于USEARCH 10.0的UPARSE-OTU算法將Clean reads按照序列相似度97%的閾值聚類為1個操作分類單元(Operational taxonomic unit,OTU)(Edgar,2013),每個OTU代表序列在SILVA數(shù)據(jù)庫(http://www.arb-silva.de/)中進(jìn)行注釋(Quast et al.,2012),最后通過PICRUSt預(yù)測雞盲腸菌群功能通路(Langille et al.,2013)。
1.4統(tǒng)計(jì)分析
通過QIIME(https:/qiime.org/)計(jì)算雞盲腸菌群Alpha多樣性,包括Simpson指數(shù)、Shannon指數(shù)、Chaol指數(shù)、ACE指數(shù)及系統(tǒng)發(fā)育多樣性指數(shù)(PD);采用基于Bray-Curtis距離的主坐標(biāo)分析(PCoA)評估雞盲腸菌群Beta多樣性。用于菌群互作網(wǎng)絡(luò)分析的OTU篩選標(biāo)準(zhǔn):(1)相對豐度gt;0.05%;(2)該OTU在gt;20%的樣本中存在。獲得的OTUs采用SparCC計(jì)算成對的相關(guān)系數(shù),用于構(gòu)建盲腸菌群互作網(wǎng)絡(luò),以Cytoscape v3.7.1進(jìn)行可視化(Lopes et al.,2010),并采用其中的分子復(fù)合物檢測插件(MCODE)計(jì)算菌群網(wǎng)絡(luò)拓?fù)涮卣鳎ü?jié)點(diǎn)數(shù)、邊數(shù)和模塊重要性評分,以及識別網(wǎng)絡(luò)中的菌群模塊(Smoot et al.,2011)。樞紐菌群是指在菌群互作網(wǎng)絡(luò)中與其他菌群高度連接,可單獨(dú)或成簇對菌群網(wǎng)絡(luò)結(jié)構(gòu)產(chǎn)生較大影響,且在互作網(wǎng)絡(luò)中移除后可能會導(dǎo)致菌群網(wǎng)絡(luò)結(jié)構(gòu)和功能發(fā)生巨大改變的菌群(Banerjee et al.,2018)。使用Cytoscape中cytoHubba插件的馬修斯相關(guān)系數(shù)(Matthews correlation coefficient,MCC)進(jìn)行樞紐菌群識別(Chin et al.,2014);通過LEfse分析(http:/huttenhower.sph.harvard.edu/galaxy)鑒別組間差異微生物類別或功能通路(Segata et al.,2011),并以斯皮爾曼等級相關(guān)系數(shù)分析差異菌群及預(yù)測其功能通路的相關(guān)性。
2結(jié)果與分析
2.13種貴州地方雞的體質(zhì)量比較
共收集11羽烏蒙烏骨雞(5公6母)、12羽黔東南小香雞(6公6母)和12羽瑤山雞(6公6母),采用Kruskal-Wallis檢驗(yàn)比較3種貴州地方雞的體質(zhì)量,結(jié)果發(fā)現(xiàn),盡管這些雞的批次、生活環(huán)境、飼養(yǎng)管理方式及飼料一致,但相同日齡不同品種雞的體質(zhì)量存在明顯差異(圖1-A),其平均體質(zhì)量排序?yàn)闉趺蔀豕请u(1.45±0.19 kg)gt;瑤山雞(1.30±0.28 kg)gt;黔東南小香雞(1.10±0.17kg)。其中,黔東南小香雞的體質(zhì)量顯著低于烏蒙烏骨雞(Plt;0.05,下同),瑤山雞與黔東南小香雞、烏蒙烏骨雞間的體質(zhì)量均無顯著差異(Pgt;0.05,下同)(圖1-B)。此外,對相同品種不同性別的雞體質(zhì)量進(jìn)行比較,Wilcoxon檢驗(yàn)結(jié)果顯示,3種貴州地方雞不同性別間的體質(zhì)量均存在顯著差異(圖1-C),對應(yīng)的性別間差異水平(P)分別為:烏蒙烏骨雞P=0.030,黔東南小香雞P=0.020,瑤山雞P=0.026。
2.23種貴州地方雞的盲腸菌群組成及多樣性比較
通過對35羽雞的盲腸內(nèi)容物進(jìn)行微生物16S rRNA序列V3~V4可變區(qū)測序分析,共獲得2625245條Clean reads,平均每份樣品獲得75007條Clean reads,按序列相似度97%的閾值進(jìn)行聚類分析共獲得727個OTUs。雞盲腸菌群Alpha多樣性分析結(jié)果表明,3種貴州地方雞盲腸菌群的Shannon指數(shù)(圖2-A)、Simpson指數(shù)、Chaol指數(shù)、ACE指數(shù)和PD指數(shù)均未存在顯著差異。PCoA分析結(jié)果表明,瑤山雞盲腸菌群Beta多樣性與烏蒙烏骨雞和黔東南小香雞明顯分開,在第2坐標(biāo)軸(PCoA2)上瑤山雞和黔東南小香雞間的差異達(dá)顯著水平(圖2-B)。
在門分類水平上,3種貴州地方雞盲腸菌群的優(yōu)勢菌門有擬桿菌門(Bacteroidetes,相對豐度為47.70%)、厚壁菌門(Firmicutes,相對豐度為37.59%),變形菌門(Proteobacteria,相對豐度為5.86%)、互養(yǎng)菌門(Synergistetes,相對豐度為2.36%)、螺旋菌門(Spirochactes,相對豐度為1.03%)和放線菌門(Acti-nobacteria,相對豐度為1.02%),其余菌門的相對豐度均lt;1.00%(圖2-C)。此外,烏蒙烏骨雞的螺旋菌門相對豐度[(1.54±0.33)%]顯著高于黔東南小香雞[(0.64±0.24)%],瑤山雞的梭桿菌門(Fusobacteria)相對豐度[(1.58±0.72)%]顯著高于黔東南小香雞[(0.41±0.09)%]。在屬分類水平上,相對豐度最高的5個菌屬分別為擬桿菌屬(Bacteroides)、理研菌科RC9_菌群(Rikenellaceae_RC9_gut_group)、考拉桿菌屬(Phascolarctobacterium)、普拉梭菌屬(Fae-calibacterium)和脫硫弧菌屬(Desulfovibrio)(圖2-D),其對應(yīng)的相對豐度分別為17.30%、14.13%、6.10%、5.11%和4.04%。
進(jìn)一步對相同品種的公、母雞盲腸菌群組成進(jìn)行比較,發(fā)現(xiàn)3種貴州地方雞的公、母雞盲腸菌群在門分類水平相對豐度排名前4的優(yōu)勢菌門均為擬桿菌門、厚壁菌門、變形菌門和互養(yǎng)菌門。母雞盲腸菌群中相對豐度排名第5和第6的菌門為Kiritimatie llacota(1.54%)和螺旋菌門(1.10%),公雞盲腸菌群中相對豐度排名第5和第6的菌門為放線菌門(1.21%)和螺旋菌門(1.08%),而其他菌門的相對豐度均lt;1.00%(圖2-E)。在母雞上,互養(yǎng)菌門在3種貴州地方雞盲腸中存在顯著差異,其相對豐度排序?yàn)榍瓥|南小香雞gt;烏蒙烏骨雞gt;瑤山雞。在公雞上,烏蒙烏骨雞的螺旋菌門相對豐度顯著高于黔東南小香雞,而Epsilonbacteracota相對豐度顯著低于烏蒙烏骨雞;瑤山雞的迷蹤菌門(Elusimicrobia)和Kiritima tiellacota相對豐度顯著高于黔東南小香雞。在屬分類水平上,公、母雞盲腸菌群相對豐度排名前5的優(yōu)勢菌屬均為擬桿菌屬、理研菌科RC9菌群、考拉桿菌屬、普拉梭菌屬和脫硫弧菌屬,不同性別間均無顯著差異(圖2-F)。
2.3盲腸菌群互作網(wǎng)絡(luò)構(gòu)建及樞紐菌群鑒定結(jié)果
菌群間存在復(fù)雜的相互作用關(guān)系,可通過互作網(wǎng)絡(luò)構(gòu)建來解析這種復(fù)雜的互作關(guān)系(Ke et al.,2021)。為此,本研究選取相關(guān)系數(shù)大于0.75的成對OTUs構(gòu)建雞盲腸菌群互作網(wǎng)絡(luò)。經(jīng)篩選,從烏蒙烏骨雞、黔東南小香雞和瑤山雞盲腸菌群中分別獲得160、144和149個OTUs用于盲腸菌群互作關(guān)系研究(表1)。互作網(wǎng)絡(luò)穩(wěn)定性以O(shè)TU間負(fù)相關(guān)(競爭性)數(shù)量占總相關(guān)數(shù)量的比例為指標(biāo),代表菌群互作網(wǎng)絡(luò)抵抗外界因素?cái)_動的能力(Coyte et al.,2015)。結(jié)果表明,瑤山雞盲腸菌群互作網(wǎng)絡(luò)的穩(wěn)定性最大(穩(wěn)定性指數(shù)44.22%),其次是黔東南小香雞(穩(wěn)定性指數(shù)41.76%),穩(wěn)定性最小的是烏蒙烏骨雞(穩(wěn)定性指數(shù)37.56%)。網(wǎng)絡(luò)復(fù)雜性指數(shù)為連接到每個節(jié)點(diǎn)的平均邊數(shù)(Bader and Hogue,2003)。由表1可知,黔東南小香雞的網(wǎng)絡(luò)復(fù)雜性最高(復(fù)雜性指數(shù)為3.24%),其次是烏蒙烏骨雞(復(fù)雜性指數(shù)為1.38%),瑤山雞的最低(復(fù)雜性指數(shù)為1.34%)。共現(xiàn)網(wǎng)絡(luò)分析結(jié)果表明,在黔東南小香雞和瑤山雞中均發(fā)現(xiàn)重要性排序第3且以顫螺菌屬(OTU79_Oscillospira)占主導(dǎo)地位的菌群模塊(Module 3),表明以顫螺菌屬為主的模塊在這2個品種雞盲腸菌群結(jié)構(gòu)中可能發(fā)揮著重要作用。值得注意的是,在黔東南小香雞和瑤山雞的該模塊中均發(fā)現(xiàn)顫螺菌屬和瘤胃球菌NK4A214(OTU915_Ruminococcaceae_NK4A214_group)同時出現(xiàn),表明顫螺菌屬和瘤胃球菌NK4A214存在重要的共生關(guān)系,二者可能具有協(xié)同作用。
采用MCC算法鑒別3種貴州地方雞盲腸菌群中的樞紐菌群類別,表2展示了重要性評分排名前10的樞紐OTUs及其注釋信息。其中,顫螺菌屬在黔東南小香雞和瑤山雞盲腸菌群中均是重要性評分最高的菌群,但在烏蒙烏骨雞盲腸菌群中未出現(xiàn),表明顫螺菌屬在黔東南小香雞和瑤山雞的盲腸菌群互作網(wǎng)絡(luò)中發(fā)揮著重要的樞紐作用,與共現(xiàn)網(wǎng)絡(luò)分析結(jié)果一致。此外,在黔東南小香雞盲腸菌群互作網(wǎng)絡(luò)中,重要性評分排名第2、3、6的OTU41、OTU31和OTU146均注釋為乳酸桿菌屬(Lactobacil-lus),故推測乳酸桿菌屬是黔東南小香雞盲腸中重要的樞紐菌群。在烏蒙烏骨雞盲腸菌群4個可注釋到屬的樞紐菌群中,OTU969和OTU2均注釋為理研菌科_RC9_菌群。
2.4與品種相關(guān)的盲腸菌群及其功能通路預(yù)測鑒定結(jié)果
采用LefSe分析鑒定與3種貴州地方雞相關(guān)的潛在盲腸標(biāo)志菌群,結(jié)果(圖3-A)發(fā)現(xiàn)有23個OTUs的相對豐度在不同貴州地方雞間存在顯著差異(LDAgt;2,Plt;0.05)。其中,烏蒙烏骨雞盲腸富集的特征OTUs最多(15個),包括理研菌科_RC9_菌群(OTU11)、9號瘤胃球菌屬(OTU30)、紫單胞菌屬(OTU163)、另枝菌屬(OTU98)、普雷沃氏菌屬UCG-001(OTU303)、丹毒絲菌屬(OTU97)、奧里桿菌屬(OTU 140)、瘤胃球菌屬UCG-004(OTU172),5號瘤胃球菌屬(OTU176)及副擬桿菌屬(OTU285)等;瑤山雞盲腸菌群包含巨單胞菌屬(OTU18)、理研菌科_RC9_菌群(OTU2501、OTU969)、考拉桿菌屬(OTU5220)等6個特征OTUs;在黔東南小香雞中鑒定得到特征OTUs包括脫硫弧菌屬(OTU122)和普拉梭菌屬(OTU933)。
基于KEGG數(shù)據(jù)庫進(jìn)行菌群功能通路富集分析,結(jié)果(圖3-B)表明,在質(zhì)控后得到的141條二級預(yù)測功能通路中有9條通路在3種貴州地方雞間呈顯著差異(LDAgt;1,Plt;0.05)。其中,在烏蒙烏骨雞盲腸菌群中富集到6條功能通路,包括氨基酸生物合成(Biosynthesis of amino acids)、2-氧羧酸代謝(2-oxocarboxylic acid metabolism)、精氨酸生物合成(Arginine biosynthesis)等;在黔東南小香雞盲腸菌群中富集到光合作用(Photosynthesis)和鏈霉素生物合成(Streptomycin biosynthesis)2條功能通路;在瑤山雞盲腸菌群中僅富集到脂多糖生物合成(Lipo-polysaccharide biosynthesis)功能通路。為進(jìn)一步探究盲腸菌群與預(yù)測功能通路的潛在聯(lián)系,對差異菌群與差異功能通路進(jìn)行相關(guān)分析,結(jié)果發(fā)現(xiàn)瘤胃球菌廣泛與差異功能通路相關(guān),如9號瘤胃球菌(OTU30)、瘤胃球菌UCG-004(OTU172)及1個未分類的瘤胃球菌(OTU214_uncultured_bacterium f Ruminococcaceae)均與除脂多糖生物合成外的所有功能通路顯著正相關(guān),丹毒絲菌屬(OTU97)也與除脂多糖生物合成外的所有功能通路顯著相關(guān)。此外,1個未分類的毛螺菌科(OTU908_uncultured_bac-terium fLachnospiraceae)與氨基酸生物合呈顯著正相關(guān),推測OTU908參與該功能通路。
3討論
烏蒙烏骨雞、黔東南小香雞和瑤山雞是我國貴州地方雞種質(zhì)資源中具有代表性的重要品種(Liu et al.,2021;楊蓉等,2023)。烏蒙烏骨雞屬于烏骨雞品種,其機(jī)體組織中富含黑色素和肌肽,具有較高的藥用價(jià)值和營養(yǎng)價(jià)值(Tu et al.,2009)。黔東南小香雞屬于小型雞,品種特征為體型小、生長速度慢,但肉質(zhì)鮮美(周迪等,2022)。瑤山雞主要生活在瑤族聚集區(qū),較少與其品種雞混雜飼養(yǎng),其體型較大,生長速度快(林家棟等,2018;楊德鳳等,2021)。這些地方雞因具有獨(dú)特的品種特性,得到當(dāng)?shù)仞B(yǎng)殖戶和消費(fèi)者的普遍青睞。腸道菌群在雞的性狀形成過程中發(fā)揮重要作用(Wen et al.,2021;Zhang et al.,2022a,2022b),不同品種雞具有特征性的腸道菌群結(jié)構(gòu),因此腸道菌群結(jié)構(gòu)特征也是品種特性的重要組成部分。為此,本研究基于微生物16S rRNA測序技術(shù)探究這3種貴州地方雞盲腸菌群組成輪廓及多樣性,鑒定不同品種雞潛在的標(biāo)志菌群,并明確3種貴州地方雞盲腸菌群與功能通路的潛在聯(lián)系,研究結(jié)論可為從腸道菌群角度解析地方雞特異性狀的形成提供參考依據(jù)。
本研究從3種貴州地方雞盲腸內(nèi)容物中共鑒定出16個菌門,其中相對豐度最高的為擬桿菌門(47.70%),其次為厚壁菌門(37.59%)、變形菌門(5.86%)和互養(yǎng)菌門(2.36%),與其他品種雞的盲腸菌群組成存在一定差異。Asare等(2021)研究發(fā)現(xiàn),Cobb-500TM雞盲腸菌群以厚壁菌門[(79.9±8.7)%]為主,其次為擬桿菌門[(13.9±7.9)%]、變形菌門[(4.5±2.3)%]和藍(lán)藻菌門[(0.4±0.3)%];Chica Cardenas等(2021)通過雞盲腸菌群組成Meta分析證實(shí),雞盲腸菌群最常見的11個菌門包括厚壁菌門、擬桿菌門和變形菌門等;Yadav等(2021)研究表明,夏威夷雞盲腸菌群主要包含厚壁菌門(55.3%)、擬桿菌門(32.5%)和變形菌門(7.1%)。與上述研究不同,本研究發(fā)現(xiàn)互養(yǎng)菌門在3種貴州地方雞盲腸菌群中的相對豐度均較高(1.77%~3.11%),在門分類水平上排名第4,但在其他品種雞的研究中鮮見報(bào)道,可能是這些地方雞潛在的特征性菌群類別,但也有可能是營養(yǎng)配方、飼喂模式或地理區(qū)位因素不同所致?;ヰB(yǎng)菌門是從草食動物的反芻食物中分離獲得,其中一些細(xì)菌可在厭氧消解罐中降解蛋白性廢物,與氨基酸合成代謝密切相關(guān)(Ariesyady et al.,2007)。此外,在不同性別雞盲腸菌群相對豐度排名第5的菌門也不同,公雞為放線菌門(1.21%),母雞為Kiritimatiellaeota(1.54%)。放線菌門是雞腸道內(nèi)常見的基礎(chǔ)菌群,對維持腸道穩(wěn)定性起重要作用(Xiao et al.,2017);Kiritimatiellaeota是一類從高鹽湖中分離獲得的菌群(Sackett et al.,2019),能在糖類物質(zhì)中生長,進(jìn)行硫酸化多糖的厭氧降解(van Vliet et al.,2019),其在采用墊料舍飼養(yǎng)雞腸道菌群中的豐度更高(Wan et al.,2021)。在屬分類水平,本研究發(fā)現(xiàn)相對豐度排名前5的盲腸菌群分別是擬桿菌屬、理研菌科_RC9_菌群、考拉桿菌屬、普拉梭菌屬和脫硫弧菌屬,與Chica Cardenas等(2021)的研究結(jié)果存在一定差異,提示品種對雞腸道菌群組成有重要影響。PCoA分析發(fā)現(xiàn)瑤山雞盲腸菌群樣品聚類在一起,與烏蒙烏骨雞和黔東南小香雞明顯分開,可能與貴州瑤山雞相對封閉的飼養(yǎng)環(huán)境、較少與其他品種混雜飼養(yǎng)有關(guān)(林家棟等,2018)。
本研究通過對烏蒙烏骨雞、黔東南小香雞和瑤山雞盲腸菌群進(jìn)行LEfSe分析,發(fā)現(xiàn)普拉梭菌屬和脫硫弧菌屬是黔東南小香雞盲腸重要的特征菌群,且二者存在協(xié)同作用。前人研究也發(fā)現(xiàn),普拉梭菌屬和脫硫弧菌屬具有共生關(guān)系,由于脫硫弧菌屬是一種能代謝乳酸生成乙酸的微生物,而普拉梭菌(F prausnizi)可產(chǎn)生乳酸,為脫硫弧菌屬提供底物,而形成重要的共生關(guān)系(Chen et al.,2021;Marquis et al.,2021;Murros et al.,2021)。此外,通過對3種貴州地方雞盲腸菌群互作網(wǎng)絡(luò)樞紐菌群的鑒別,發(fā)現(xiàn)顫螺菌屬為黔東南小香雞和瑤山雞重要性評分最高的樞紐菌群,但未出現(xiàn)在烏蒙烏骨雞相對豐度排名前10的菌屬中,說明顫螺菌屬對黔東南小香雞和瑤山雞的盲腸菌群互作網(wǎng)絡(luò)具有調(diào)控作用。顫螺菌屬可降解復(fù)雜的植物多糖而生成丁酸,是重要的產(chǎn)丁酸菌(Konikoff and Gophna,2016)。在黔東南小香雞盲腸菌群互作網(wǎng)絡(luò)的樞紐菌群中,多個OTUs均注釋為乳酸桿菌屬,提示乳酸桿菌屬對黔東南小香雞盲腸菌群互作網(wǎng)絡(luò)的穩(wěn)態(tài)起重要作用。乳酸桿菌屬是一種短鏈脂肪酸產(chǎn)生菌(Chica Cardenas et al.,2021;從光雷等,2023),可減少腸道中有害代謝物產(chǎn)生,增加肌內(nèi)脂肪沉積,從而改善肉質(zhì)風(fēng)味等品質(zhì)特征(Wang et al.,2017),但與黔東南小香雞肉質(zhì)鮮美是否存在關(guān)聯(lián)還有待進(jìn)一步探究。
本研究對不同貴州地方雞盲腸菌群進(jìn)行探討,但尚存在一定局限性。首先,雞盲腸菌群的研究僅在貴州地方雞中開展,未與國內(nèi)外其他的地方品種或商業(yè)化品種進(jìn)行比較。其次,腸道菌群在動物整個生命周期中都在發(fā)生變化,但由于盲腸糞便樣本采集需屠宰雞,很難對其盲腸菌群在時間軸上的變化進(jìn)行研究。此外,本研究雖然探討了不同貴州地方雞的盲腸菌群特征,但這些特征是否與不同品種雞特異性狀的形成有關(guān)還有待進(jìn)一步探究。因此,今后應(yīng)進(jìn)行多品種、多時間點(diǎn)的樣品采集,結(jié)合雞品種性狀的形成機(jī)制展開深入研究,從腸道菌群角度解析地方雞遺傳資源特性。
4結(jié)論
品種是影響貴州地方雞盲腸菌群組成和結(jié)構(gòu)的重要因素,一些特定微生物存在于不同品種雞盲腸中。其中,理研菌科_RC9_菌群、瘤胃球菌屬、紫單胞菌屬等在烏蒙烏骨雞盲腸中富集;巨單胞菌屬、理研菌科_RC9_菌群、考拉桿菌屬等在瑤山雞盲腸中富集;脫硫弧菌屬和普拉梭菌屬在黔東南小香雞盲腸中富集。
參考文獻(xiàn)(References):
陳雙雙,司華哲,李光玉,劉晗璐.2018.動物腸道菌群與營養(yǎng)物質(zhì)代謝的研究進(jìn)展[J].飼料工業(yè),39(2):287-294.[Chen SS,SiHZ,LiGY,Liu HL.2018.Research prog ress ofanimal gut microbiota and nutrient metabolism[J]Feed Industry,39(2):287-294.]doi:10.13302/j.cnki.fi.2018.02.006.
從光雷,夏雙雙,劉春雪,洪平.2023.辣椒堿對動物腸道功能和腸道菌群的影響及其緩解腸道炎癥的研究進(jìn)展[J].江蘇農(nóng)業(yè)學(xué)報(bào),39(1):287-294.[Cong GL,Xia SS,Liu CX,Hong P.2023.Research progress of the effect of capsai-cin on animal intestinal function and intestinal microflora and its relieving effect on intestinal inflammation[J].Jiang su Journal of Agricultural Sciences,39(1):287-294.]doi:10.3969/j.issn.1000-4440.2023.01.032.
林家棟,張福平,龔俞,李雪松,張游宇,任麗群,李洪林,祖盤玉,吳立鑫,李維.2018.瑤山雞慢羽系羽型與出殼體重相關(guān)性研究[J].黑龍江畜牧獸醫(yī),(15):114-116.[Lin JD,Zhang FP,GongY,LiXS,Zhang YY,Ren LQ,Li HL,Zu PY,Wu LX,LiW.2018.Study on the correlation between feather type and hatching body weight of Yaoshan chicken slow feather line[J].Heilongjiang Animal Science and Veterinary Medicine,(15):114-116.]doi:10.13881/j.cnki.hljxmsy.2017.11.0329.
裴利君,楊巧麗,王鵬飛,滾雙寶.2021.合作豬夏冬季的腸道菌群結(jié)構(gòu)[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),56(4):8-15.[Pei LJ,Yang QL,Wang PF,Gun SB.2021.Study on the struc-ture of intestinal microflora in Hezuo pigs in summer and winter[J].Journal of Gansu Agricultural University,56(4):8-15.]doi:10.13432/j.cnki.jgsau.2021.04.002.
楊德鳳,李維,劉洋,張蕓,龔俞,張藍(lán)藝,陳穎,林家棟,張福平,唐繼高.2021.MyoG基因多態(tài)性與瑤山雞體尺、屠宰性能及肉質(zhì)性狀的關(guān)聯(lián)分析[J].南方農(nóng)業(yè)學(xué)報(bào),52(10):2887-2895.[Yang DF,Li W,Liu Y,Zhang Y,Gong Y,Zhang LY,Chen Y,Lin JD,Zhang FP,Tang JG.2021.Correlations between MyoG gene polymorphism and body"size,slaughter performance and meat traits of Yaoshan chickens[J].Journal of Southern Agriculture,52(10):2887-2895.]doi:10.3969/j.issn.2095-1191.2021.10.030.
楊蓉,周迪,李俊,任麗群,李建偉,王府,敖葉,吳小敏,黃明捷,王鑫,王昌毅.2023.貴州4個地方雞種蛋品質(zhì)比較分析[J].中國家禽,45(5):111-115.[Yang R,Zhou D,LiJ,Ren LQ,Li JW,Wang F,Ao Y,Wu XM,Huang MJ,Wang X,Wang CY.2023.Comparative analysis of egg quality of four local breeds inGuizhou Province[J].China Poultry,45(5):111-115.]doi:10.16372/j.issn.1004-6364.2023.05.017
周迪,李俊,楊蓉,趙忠海,李輝,敖葉,蔣桂榮,沈銀,蔡福陶.2022.黔東南小香雞BMP15、GDF9基因多態(tài)性及其與生長性狀關(guān)聯(lián)分析[J].中國家禽,44(7):17-23.[Zhou D,Li J,Yang R,Zhao ZH,LiH,Ao Y,Jiang GR,Shen Y,Cai FT.2022.Gene polymorphisms of BMP15 and GDF9 and association analysis with growth traitsin Qiandongnan Xiaoxiang chicken[J].China Poultry,44(7):17-23.]doi:10.16372/j.issn.1004-6364.2022.07.004.
Ariesyady HD,Ito T,Okabe S.2007.Functional bacterial and archaealcommunity structures of major trophic groups in afull-scale anaerobic sludge digester[J].Water Research,41(7):1554-1568.doi:10.1016/j.watres.2006.12.036.
Asare PT,Greppi A,Pennacchia A,Brenig K,Geirnaert A,Schwab C,Stephan R,Lacroix C.2021.In viro modeling ofchicken cecal microbiota ecology and metabolism using the PolyFermS Platform[J].Frontiers in Microbiology,12:780092.doi:10.3389/fmicb.2021.780092.
Bader GD,Hogue CW V.2003.An automated method for finding molecular complexes in large protein interaction networks[J].BMC Bioinformatics,4:2.doi:10.1186/1471-2105-4-2.
Banerjee S,Schlaeppi K,van der Heijden MG A.2018.Key-stone taxa as drivers of microbiome structure and functio-ning[J].Nature Reviews Microbiology,16:567-576.doi:10.1038/s41579-018-0024-1.
Bolger AM,Lohse M,Usadel B.2014.Trimmomatic:A flexible trimmer for Illumina sequence data[J].Bioinformatics,30(15):2114-2120.doi:10.1093/bioinformatics/btu170
CaporasoJ G,Lauber CL,Walters WA,Berg-Lyons D,Lozu-pone CA,Turnbaugh PJ,F(xiàn)ierer N,Knight R.2011.Global patterns of16S rRNA diversity at adepth of mil-lions of sequences per sample[J].Proceedings of theNatio-nalAcademy of Sciences of the United Statesof America,108(S1):4516-4522.doi:10.1073/pnas.1000080107.
ChenYR,Jing QL,Chen FL,Zheng HM,Chen LD,YangZ C.2021.Desulfovibrio is not always associated with adverse health effects in the Guangdong gut microbiome project[J].PeerJ,9:e 12033.doi:10.7717/peerj.12033.
Chica Cardenas LA,Clavijo V,Vives M,Reyes A.2021.Bacte-rial meta-analysis of chicken cecal microbiota[J].PeerJ,9:e10571.doi:10.7717/peerj.10571.
Chin CH,Chen SH,Wu HH,Ho CW,Ko MT,Lin CY.2014.cytoHubba:Identifying hub objects and sub-networks"from complex interactome[J].BMC Systems Biology,8(S4):S11.doi:10.1186/1752-0509-8-S4-S11.
Coyte KZ,Schluter J,F(xiàn)oster KR.2015.The ecology ofthe microbiome:Networks,competition,and stability[J].Scien-ce,350(6261):663-666.doi:10.1126/science.aad2602.
Du WY,Deng JX,Yang ZL,Zeng LH,Yang XR.2020.Metagenomic analysis reveals linkages between cecal mi-crobiota and feed efficiency in Xiayan chickens[J].Poul-try Science,99(12):7066-7075.doi:10.1016j.psj.2020.09.076.
Duah KK,Essuman EK,Boadu VG,Olympio OS,Akwetey W.2020.Comparative study of indigenous chickens on the basis of their health and performance[J].Poultry Science,99(4):2286-2292.doi:10.1016/j.psj.2019.11.049.
Edgar RC.2013.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,10:996-998.doi:10.1038/nmeth.2604.
Glendinning L,Stewart RD,Pallen MJ,Watson KA,Watson M.2020.Assemblyofhundreds of novelbacterial genomes from the chicken caecum[J].Genome Biology,21(1):34.doi:10.1186/s13059-020-1947-1.
Guo SC,Liu LL,LeiJX,QuXY,He CQ,Tang SG,Xiao B,LiP,Gao QQ,Lan FL,Zhu SW,Zou XY.2021.Modu-lation of intestinal morphology and microbiota by dietary Macleaya cordata extract supplementation in Xuefeng Black-boned Chicken[J].Animal,15(12):100399.doi:10.1016/j.animal.2021.100399.
Ke SL,PollockNR,Wang XW,Chen XH,Daugherty K,Lin QY,Xu H,Garey KW,Gonzales-Luna AJ,Kelly CP,Liu YY.2021.Integrating gut microbiome and host im-mune markers to understand the pathogenesis of Clostri-dioides difficile infection[J].Gut Microbes,13(1):1935186.doi:10.1080/19490976.2021.1935186.
Kechin A,Boyarskikh U,Kel A,F(xiàn)ilipenko M.2017.cutPri-mers:A new tool for accurate cutting of primers from reads of targeed next generation sequencing[J].Journal of Com-putational Biology,24(11):1138-1143.doi:10.1089/cmb.2017.0096.
Konikoff T,Gophna U.2016.Oscillospira:A central,enig-matic component of the human gut microbiota[J].Trends in Microbiology,24(7):523-524.doi:10.1016/j.tim.2016.02.015.
Langille MG I,Zaneveld J,Caporaso JG,McDonald D,Knights D,Reyes JA,Clemente JC,Burkepile DE,Vega Thurber RL,Knight R,Beiko RG,Huttenhower C.2013.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J].Nature Bio-technology,31(9):814-821.doi:10.1038/nbt.2676.
Liu J,Wang J,Zhou Y,Han HX,Liu W,LiD P,LiFW,Cao DG,LeiQX.2022.Integrated omics analysis reveals dif-ferences in gut microbiota and gut-host metabolite profiles between obese and lean chickens[J].Poultry Science,101(11):102165.doi:10.1016j.psj.2022.102165
Liu YF,Zhang M,TuYJ,Zou JM,Luo KY,JiGG,Shan YJ,Ju XJ,Shu JT.2021.Population structure and genetic diversity of seven chinese indigenous chicken populations in Guizhou Province[J].The Jourmal of Poultry Science,58(4):211-215.doi:10.2141/jpsa.0200060.
Lopes CT,F(xiàn)ranz M,Kazi F,Donaldson SL,Morris Q,Bader GD.2010.CytoscapeWeb:An interactive web-based net-work browser[J].Bioinformatics,26(18):2347-2348.doi:10.1093/bioinformatics/btq430.
Magoě T,Salzberg SL.2011.FLASH:Fast length adjustment of short reads to improve genome assemblies[J].Bioinfor-matics,27(21):2957-2963.doi:10.1093/bioinformatics/btr507.
Marquis TJ,Williams VJ,Banach DB.2021.Septic arthritis"caused by Desulfovibrio desulfiuricans:A case report and"review of the literature[J].Anaerobe,70:102407.doi:10.1016/j.anaerobe.2021.102407.
Murros KE,Huynh VA,Takala TM,SarisPE J.2021.Desul-fovibrio bacteria are associated with parkinson's disease[J].Frontiers in Cellular and Infection Microbiology,11:652617.doi:10.3389/fcimb.2021.652617.
Paul SS,Chatterjee RN,Raju MVLN,PrakashB,Rao SV R,Yadav SP,Kannan A.2021.Gu microbial composition differs extensively among Indian Native chicken breeds originated in different geographical locations and acom-mercial broiler line,but breed-specific,as well as across-breed core microbiomes,are found[J].Microorganisms,9(2):391.doi:10.3390/microorganisms9020391.
Quast C,Pruesse E,Yilmaz P,Gerken J,Schweer T,Yarza P,Peplies J,Gl?ckner FO.2013.The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J].Nucleic Acids Research,41(D1):D590-D596.doi:10.1093/nar/gks1219.
Sackett JD,Kruger BR,Becraft ED,Jarett JK,Stepanauskas R,Woyke T,Moser DP.2019.Four draft single-cell genome sequences of novel,nearly identical Kiriimatiel-laeota strains isolated from the continental deep subsur-face[J].Microbiology Resource Announcements,8(11):e01249-18.doi:10.1128/MRA.01249-18.
Segata N,Izard J,Waldron L,GeversD,Miropolsky L,Garrett WS,Huttenhower C.2011.Metagenomic biomarker dis-covery and explanation[J].Genome Biology,12(6):R60.doi:10.1186/gb-2011-12-6-r60.
Smoot ME,Ono K,Ruscheinski J,Wang PL,Ideker T.2011 Cytoscape 2.8:New features for data integration and net-workvisualization[J].Bioinformatics,27(3):431-432.doi:10.1093/bioinformatics/btq675
Tu YG,Xie MY,Sun YZ,Tian YG.2009.Structural charac-terization of melanin from Black-bone silky fowl(Galls gallzs domesticus Brisson)[J].Pigment Cellamp;Melanoma Research,22(1):134-136.doi:10.1111j.1755-148X.2008.00529.x.
van VlietDM,Na Ayudthaya SP,DiopS,Villanueva L,Stams AJM,Sánchez-Andrea I.2019.Anaerobic degradation of sulfated polysaccharides by two novel kiritimatiellales strains isolated from Black Sea Sediment[J].Frontiers in Microbiology,10:253.doi:10.3389/fmicb.2019.00253.
Wan Y,Ma RY,Zhang HY,Li L,ChaiLL,QiRR,Liu W,Li JY,Li Y,Zhan K.2021.Different non-cage housing sys-tems alter duodenal and cecal microbiota composition in Shendan chickens[J].Frontiers in Veterinary Science,8:728538.doi:10.3389/fvets.2021.728538.
Wang LQ,Zhang FP,Li H,Yang SL,Chen X,Long SH,Yang SH,YangYX,Wang Z.2023.Metabolic andinflam-matory linkageof the chicken cecalmicrobiome to growth performance[J].Frontiers in Microbiology,14:1060458.doi:10.3389/fmicb.2023.1060458.
Wang Y,Sun J,Zhong H,Li NZ,Xu HY,Zhu Q,LiuY P.2017.Effect of probiotics on the meat flavour and gut microbiota of chicken[J].Scientific Reports,7(1):6400 doi:10.1038/s41598-017-06677-z.
Wen CL,Yan W,MaiCN,Duan ZY,ZhengJX,Sun CJ,Yang N.2021.Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens[J].Micro-biome,9(1):126.doi:10.1186/s40168-021-01040-x.
Wen CL,Yan W,Sun CJ,JiCL,Zhou QQ,Zhang DX,Zheng JX,Yang N.2019.The gutmicrobiota is largely independent of host genetics in regulating fat deposition in chickens[J].The ISME Journal,13(6):1422-1436.doi:10.1038/s41396-019-0367-2.
Xiao YQ,Xiang Y,Zhou WD,Chen JG,Li KF,Yang H.2017.Microbial community mapping in intestinal tract of broiler chicken[J].Poultry Science,96(5):1387-1393.doi:10.3382/ps/pew372.
YadavS,CalibosoK D,Nanquil JE,Zhang J,Kae H,Neupane K,Mishra B,Jha R.2021.Cecal microbiome profile of Hawaiian feral chickens and pasture-raised broiler(com-mercial)chickens determined using 16S rRNA amplicon sequencing[J].Poultry Science,100(7):101181.doi:10.1016/j.psj.2021.101181.
Yan C,Xiao JL,Chen D,Turner SP,LiZW,Liu H,Liu W,LiuJ,Chen SY,Zhao XB.2021.Feed restriction induced changes in behavior,corticosterone,and microbial pro-gramming in slow-and fast-growing chicken breeds[J].Animals(Basel),11(1):141.doi:10.3390/ani11010141.
Yan W,Sun CJ,Yuan JW,Yang N.2017.Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency[J].Scientific Re-ports,7:45308.doi:10.1038/srep45308.
YangX,Tai YR,Ma YH,Xu ZH,Hao JQ,Han DP,LiJY,Deng XM.2022.Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages[J].Frontiers in Microbiology,13:984654.doi:10.3389/fmicb.2022.984654.
Yin HC,Liu ZD,Zhang WW,Yang QZ,YuT F,Jiang XJ.2022.Chicken intestinal microbiota modulation of resis-tance tonephropathogenic infectious bronchitis virus infec-tion through IFN-I[J].Microbiome,10(1):162.doi:10.1186/s40168-022-01348-2.
Zenner C,Hitch TCA,Riedel T,Wortmann E,Tiede S,Buhl EM,Abt B,Neuhaus K,Velge P,Overmann J,Kaspers B,Clavel T.2021.Early-life immune system maturation in chickens usinga synthetic community of cultured gut bac-teria[J].mSystems,6(3):e01300-20.doi:10.1128/mSys-tems.01300-20.
Zhang XL,Akhtar M,Chen Y,Ma ZY,Liang YY,Shi DS Cheng RR,Cui L,Hu YF,Nafady AA,Ansari AR,Abdel-Kafy ES M,Liu HZ.2022a.Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation[J].Microbiome,10(1):107.doi:10.1186/s40168-022-01299-8.
Zhang XL,Hu YF,Ansari AR,Akhtar M,Chen Y,Cheng RR,Cui L,Nafady AA,Elokil AA,Abdel-KafyESM,Liu HZ.2022b.Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism[J].Microbial Biotechnology,15(3):844-861.doi:10.1111/1751-7915.13841.
(責(zé)任編輯 蘭宗寶)