摘要:【目的】揭示外源茉莉酸(Jasmonic acid,JA)對(duì)脂氧合酶基因LOX3敲除水稻株防御響應(yīng)的影響,為利用外源JA等激發(fā)子提高農(nóng)作物因抗性相關(guān)基因喪失導(dǎo)致的水稻防御響應(yīng)降低問題提供基礎(chǔ)數(shù)據(jù)?!痉椒ā恳愿胁【钧惤聢F(tuán)黑谷(LTH)及其LOX3敲除水稻株系(Alox3#1、Alox?#10和Alox?#20)為材料,開展水稻株高、分蘗數(shù)和百粒重等表型分析、過氧化物酶(POD)、活性氧(ROS)和木質(zhì)素等抗菌化合物活性(含量)測(cè)定,以及防御相關(guān)基因表達(dá)分析;進(jìn)一步對(duì)供試水稻進(jìn)行稻瘟菌接種,調(diào)查供試水稻稻瘟病癥狀,檢測(cè)稻瘟菌接種水稻中抗菌化合物活性(含量)及防御相關(guān)基因表達(dá)等,并觀察稻瘟菌在水稻中的侵染進(jìn)程;在此基礎(chǔ)上,使用外源JA處理稻瘟菌接種36和48 hpi時(shí)的Alox3敲除水稻株和LTH,分析JA對(duì)水稻稻瘟病癥狀及稻瘟菌侵染的水稻中抗菌化合物活性(含量)和防御相關(guān)基因表達(dá)等的影響,同時(shí)觀察JA對(duì)稻瘟菌侵染進(jìn)程的影響。【結(jié)果】4lox3敲除水稻株種子發(fā)芽速度快于野生型,但株高、分蘗數(shù)和百粒重等與野生型相近;稻瘟菌接種的Alox3敲除水稻株稻瘟病癥狀較稻瘟菌接種的野生型水稻嚴(yán)重,且胼胝質(zhì)數(shù)、POD活性及木質(zhì)素含量降低,ROS含量和死細(xì)胞數(shù)增加,OsWRKY45、OsPRla和OsPOX7基因下調(diào)幅度和稻瘟菌菌絲定殖量明顯高于稻瘟菌接種野生型水稻;外源JA可有效減緩稻瘟菌接種36和48 hpi的Alox3敲除水稻株稻瘟病癥狀,且JA提高了稻瘟菌接種36和48 hpi的Alox3敲除水稻株中胼胝質(zhì)數(shù)、POD活性和木質(zhì)素含量以及防御相關(guān)基因OsWRKY45、OsPRla和OsPOX7表達(dá)水平,而降低了OsRbohB表達(dá)量及ROS含量和細(xì)胞死亡數(shù),同時(shí)限制了稻瘟菌菌絲擴(kuò)展;其中JA對(duì)稻瘟菌接種48 hpi的Alox3敲除水稻株稻瘟病癥狀減輕效果優(yōu)于JA對(duì)稻瘟菌接種36 hpi的Alox3敲除水稻株,主要體現(xiàn)在JA使稻瘟菌接種48 hpi的Alox3敲除水稻株中抗菌化合物增加幅度、防御相關(guān)基因表達(dá)水平、細(xì)胞死亡數(shù)和稻瘟菌菌絲擴(kuò)展受限等優(yōu)于JA處理稻瘟菌接種36 hpi的Alox3敲除水稻株?!窘Y(jié)論]LOX3基因敲除提升了水稻種子發(fā)芽速度而降低了水稻抗瘟性,外源JA則減緩LOX3敲除導(dǎo)致的水稻防御響應(yīng)降低,提高了水稻抗瘟性。JA在減緩農(nóng)作物因抗性基因持久性短而造成的抗性降低或喪失方面具有潛在的應(yīng)用前景。
關(guān)鍵詞:水稻;稻瘟菌;脂氧合酶基因;茉莉酸;防御響應(yīng)
中圖分類號(hào):S435.111.41文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)02-0397-14
Effects of exogenous jasmonic acid on defense response of lipoxygenase gene LOX3 knockout japonica rice
YANG Jing,SU Shun-yu,ZHAO Tian-qi,LI Yong-jie,TANG Ping,ZUO Ru-bin,LIU Chong-lan,YANG Jing*
(State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan/Key Laboratory of Agro-biodiversity and Pest Management of Ministryof Education/College of Plant Protection,Yunnan Agricultural University,Kunming, Yunnan 650201,China)
Abstract:[Objective]The purpose of the study was to reveal the effects of exogenous jasmonic acid(JA)on defense response of lipoxygenase gene LOX3 knockout rice plants,and to provide basic data for the use of exogenous JA and other exciters to improve the reduced defense response of rice caused by the loss of resistance related genes in crops【Method】The susceptible japonica rice LijiangXintuan Heigu(LTH)and its LOX3 knockout rice lines(Alox3#1,Aox3#10 and Alox3#20)were used as materials.Phenotypic analysis including plant height,tiller number and 100-grain weight,detection of the antimicrobial compound activity(content)of peroxidase(POD),reactive oxygen species(ROS)and lig-nin,as well as analysis of the expression of defense-related genes were carried out.Further,the tested rice was inoculated with Magnaporthe oryzae,the rice blast symptoms of the tested rice were investigated,the activity(content)ofantimi-crobial compounds and expression of defense-related genes in M.oryzae inoculated rice plants were examined,and the in-oculation process of M.oryzae in rice was observed.On this basis,exogenous JA was applied to M.oryzae inocu-latedAlox3 knockout rice lines and LTH at 36 and 48 hpi.The effects of JA on rice blast symptom,activity(content)of antimicrobial compounds and expression of defense-related genes in M.oryzae inoculated rice were analyzed,and the ef-fects of JA on the inoculation process of M.oryzae were also observed.[Result]The seeds of Alox3 knockout rice plants exhibited faster germination speed than that of the wild type,but the plant height,tiller number and 100-grain weight were similar to those of the wild type.The more serious blast symptom appeared on M.oryzae inoculated Alox3 knockout rice plants than that on M.oryzae inoculated wild type rice.M.oryzae inoculated Alox3 knockout rice plants exhibited lower number of callose,POD activity and lignin content,and higher ROS content and number of dead cells,and the magnitude of the down-regulation of OsWRKY45,OsPRla,and OsPOXI genes and the amount of M.oryzae hyphae colonization were greatly higher than that of M.oryzae inoculated wild type rice.Exogenous JA effectively alleviated rice blast symptom in△lox3 knockout rice plants inoculated with M.oryzae for 36 and 48 hpi.Moreover,JA enhanced the number of callose,POD activity,lignin content and expression levels of defense-related genes OsWRKY45,OsPRla and OsPOXI in Alox3 knockout rice plants inoculated with M.oryzae for 36 and 48 hpi,decreased expression of OsRbohB ROS content and number of dead cells,and inhibited expansion of M.oryzae hyphae.The effects of JA on the alleviation of rice blast symptoms in Alox3 knockout rice plants inoculated with M.oryzaefor48 hpi were better than those of JA on Alox3 knockout rice plants inoculated withM.oryzae for 36 hpi.It was mainly reflected in the fact that JA induced abetter increase in antimicrobial compounds,expression levelsof defense-related genes,number of cll deaths,and inhibition of M.oryzae hyphae expansion in the△lox3 knockout rice plants inoculated with M.oryzae for 48 hpithan in the△lox3 knockout rice plants inoculated with M.oryzae for 36 hpi under JA treatment.【Conclusion]LOX3 gene knockout en-hances rice seed germination speed and decreases rice blast resistance,while exogenous JA alleviates the decrease of rice defense response caused by LOX3 knockout and enhances rice blast resistance.JA has apotential application prospect in mitigating reduction or loss of crop resistance resulted from short durability of resistance genes.
Keywords:rice;Magnaporthe oryzae;lipoxygenase gene;jasmonicacid;defense response
Foundation items:National Natural Science Foundation ofChina(32160643);Yunnan Fundamental Research Pro-gram Key Project(202101AS070038);Reserve Talents Project for Young and Middle-aged Academic and Technical Leaders of Yunnan(202305AC160006)
0引言
【研究意義】水稻作為我國乃至全世界的主要糧食作物之一,每年因稻瘟菌(Magnaporthe oryzae)侵染引起的稻瘟病危害給水稻生產(chǎn)造成了嚴(yán)重?fù)p失,其危害面積和危害程度較大,嚴(yán)重時(shí)甚至造成顆粒無收,極大地影響了水稻的產(chǎn)量和品質(zhì),被稱為水稻的“癌癥”(王軍等,2012;桑世飛等,2022)。種植抗病品種是最安全有效的防治方法,但病原菌群體的快速變異和毒力變化,造成抗性基因(R基因)的有效性持續(xù)時(shí)間受到挑戰(zhàn)(Lapin and Van den Ackerve-ken,2013;Wang and Valent,2017),因此,這類抗病品種容易被生產(chǎn)上淘汰。為避免優(yōu)質(zhì)抗病品種被淘汰,保證水稻產(chǎn)量和品質(zhì),有必要尋找安全有效的方法來彌補(bǔ)R基因抗性持久性短造成的抗病品種抗性降低或喪失,而外源施用茉莉酸(Jasmonic acid,JA)等激發(fā)子可激活水稻JA防御,彌補(bǔ)R基因持久性短造成的抗性降低或喪失,在農(nóng)業(yè)生產(chǎn)上具有潛在的應(yīng)用前景?!厩叭搜芯窟M(jìn)展】脂氧合酶(13-lipoxygen-ase,LOXs)是一種含非血紅素鐵的酶,是JA合成途徑的關(guān)鍵酶(Porta and Rocha-Sosa,2002;崔丹丹等,2020),能催化亞油酸和α-亞麻酸等多聚不飽和脂肪酸氧化為一種脂肪酸氫過氧化物[(13S)-hydro-peroxyoctadecatrienoic acid,13-HPOT],導(dǎo)致糧食儲(chǔ)存時(shí)產(chǎn)生陳腐的味道(Anthon and Barrett,2001),同時(shí),13-HPOT繼續(xù)參與JA合成前體的合成途徑(Wasternack et al.,2013),最終合成JA。LOX除了催化作用外,還在植物生長(zhǎng)、發(fā)育、成熟、衰老和抗病蟲害等過程中發(fā)揮重要作用(Kolomiets et al.,2001)。Halitschke和Baldwin(2003)通過研究沉默LOX3的轉(zhuǎn)基因水稻株,發(fā)現(xiàn)LOX3參與JA的生物合成,但不影響綠葉揮發(fā)物(Green leaf volatiles,GLVs)的生物合成;Allmann等(2010)通過沉默煙草中的LOX2,發(fā)現(xiàn)LOX2參與GLVs的生物合成,但是不影響JA相關(guān)代謝物的產(chǎn)生。Vellosillo等(2007)利用9-羥基十八碳三烯酸處理擬南芥葉片,發(fā)現(xiàn)LOX5在擬南芥防御中發(fā)揮重要作用;Grebner等(2013)采用JA缺失突變體嫁接試驗(yàn)發(fā)現(xiàn),LOX6在擬南芥根系生長(zhǎng)和JA合成中起作用。Liu等(2008)通過構(gòu)建LOX3缺失轉(zhuǎn)基因水稻株系,發(fā)現(xiàn)LOX3缺失的轉(zhuǎn)基因水稻株對(duì)干旱脅迫、稻瘟菌和白葉枯菌較敏感;Su等(2023)在秈稻中構(gòu)建LOX3敲除轉(zhuǎn)基因水稻株,發(fā)現(xiàn)LOX3敲除后降低了秈稻品種的稻瘟病抗性。
Marla和Singh(2012)發(fā)現(xiàn)LOX3在抗瘟性方面發(fā)揮重要作用。Xu等(2015)發(fā)現(xiàn)反義抑制LOX3的表達(dá),減輕了水稻種子儲(chǔ)存過程中的霉味,提高了水稻種子的壽命和發(fā)芽率。因此,LOX3在JA合成和抗病性中起重要作用。JA作為誘導(dǎo)植物防御的激發(fā)子,參與植物對(duì)病原菌的響應(yīng)和防御相關(guān)信號(hào)的傳遞(Gómez-Vasquez et al.,2004)。JA信號(hào)誘導(dǎo)防御相關(guān)基因OsWRKY45、OsPRla和OsbHLH35等表達(dá)、抗菌化合物過氧化物酶(POD)、活性氧(ROS)和木質(zhì)素產(chǎn)生以及胼胝質(zhì)沉積等,同時(shí)JA能有效抑制OsRbohB介導(dǎo)的ROS產(chǎn)生,而過量ROS易造成細(xì)胞死亡數(shù)增加(Mishra et al.,2011;Sharma et al.,2012)。
Su等(2023)通過噴施外源JA于稻瘟菌侵染的LOX3敲除秈稻轉(zhuǎn)基因株系,減緩了LOX3敲除造成的秈稻抗瘟性降低。綜上,LOX3敲除或缺失明顯影響JA合成和JA防御,而JA信號(hào)在植物防御響應(yīng)中的重要作用已有廣泛報(bào)道,表明JA在激活植物防御響應(yīng)提高水稻抗性方面發(fā)揮作用。因此,可通過噴施外源JA減緩R基因抗性持久性短引起的水稻抗性降低或喪失的問題?!颈狙芯壳腥朦c(diǎn)】許多研究報(bào)道了LOX3在水稻抗瘟性和種子貯存等方面的重要作用,但LOX3敲除對(duì)感病粳稻防御響應(yīng)的影響及外源JA對(duì)LOX3敲除的粳稻抗瘟性影響等方面的研究尚未見報(bào)道?!緮M解決的關(guān)鍵問題】以課題組前期獲得的△lox3粳稻敲除株系為研究對(duì)象,開展△ox3敲除株系株高、分蘗數(shù)、百粒重和種子發(fā)芽等表型分析、△lox3敲除株中POD活性及ROS和木質(zhì)素含量測(cè)定,以及防御相關(guān)基因的表達(dá)分析,明確LOX3敲除對(duì)粳稻基本防御的影響;利用稻瘟菌接種△lox3敲除株,深入解析LOX3對(duì)粳稻防御響應(yīng)的影響;結(jié)合腐生真菌及半活體寄生真菌的死體營養(yǎng)期菌絲對(duì)JA較敏感,以及JA可有效控制稻瘟菌接種36和48 hp(Hours post inoculation,hpi)時(shí)感病粳稻稻瘟病癥狀的報(bào)道,利用外源JA處理稻瘟菌接種36和48 hpi時(shí)的水稻,分析JA對(duì)稻瘟菌接種的△lox3敲除粳稻防御響應(yīng)的影響,為利用外源JA等激發(fā)子提高農(nóng)作物因抗性相關(guān)基因喪失導(dǎo)致的水稻防御響應(yīng)降低的問題提供基礎(chǔ)數(shù)據(jù)。
1材料與方法
1.1試驗(yàn)材料
LOX3敲除株系是課題組前期以感病粳稻麗江新團(tuán)黑谷(LTH)為背景構(gòu)建而成,其構(gòu)建、轉(zhuǎn)化和鑒定等方法與Su等(2023)報(bào)道一致。本試驗(yàn)所用的LOX3敲除株為T1代的3個(gè)株系(△Lox3#1、△Lox3#10和△Lox3#20)。LTH是云南地方粳稻普感品種,對(duì)全球近2800個(gè)稻瘟菌生理小種都表現(xiàn)為感病表型(凌忠專等,2011);供試稻瘟菌菌株95234I-1b為強(qiáng)致病性菌株(Wang et al.,2019;Duan et al.,2021),水稻品種和稻瘟病菌菌株均保存于云南農(nóng)業(yè)大學(xué)農(nóng)業(yè)生物多樣性應(yīng)用技術(shù)國家工程研究中心。
1.2水稻種子發(fā)芽率及株高等農(nóng)藝性狀分析
分別從LTH(即野生型水稻,WT)和3個(gè)△Lox3株系種子中隨機(jī)挑選50粒飽滿種子,種子經(jīng)消毒及滅菌水浸種后置于28℃培養(yǎng)箱中,待第4d時(shí)統(tǒng)計(jì)其發(fā)芽率,將發(fā)芽的水稻種子種于育苗盤,14 d時(shí)移栽至育苗桶中,設(shè)3個(gè)重復(fù),每重復(fù)3株,待水稻生長(zhǎng)至40d時(shí)測(cè)量其株高和分蘗數(shù)。
1.3水稻育苗及稻瘟菌接種
1.3.1水稻育苗分別從供試水稻品種種子中隨機(jī)挑選200粒于1.5%次氯酸鈉溶液中消毒5 min,滅菌水清洗3~5次,種子加滅菌水浸種后置于28℃恒溫培養(yǎng)箱中催芽,待種子露白后播種于裝有基質(zhì)土(滅菌)的育苗盤中,水稻長(zhǎng)至3葉1心期時(shí)用于稻瘟菌接種試驗(yàn)。
1.3.2稻瘟菌接種
1.3.2.1培養(yǎng)基配制PDA固體培養(yǎng)基:馬鈴薯
200 g、葡萄糖20 g、瓊脂粉15 g、蒸餾水1000 mL;PDB液體培養(yǎng)基:馬鈴薯200 g、葡萄糖20 g、蒸餾水1000 mL;西梅汁培養(yǎng)基:西梅汁40 mL、酵母提取物1 g、乳糖5 g、瓊脂粉15 g、蒸餾水定容至1000 mL,pH6.5。
1.3.2.2稻瘟菌菌株活化將保存的稻瘟菌菌株95234I-1b置于PDA培養(yǎng)基上,放入28℃恒溫培養(yǎng)箱中培養(yǎng),菌絲長(zhǎng)出后將其移至PDB培養(yǎng)基中培養(yǎng)至有大量菌絲產(chǎn)生(4~5d),將菌絲涂布于西梅汁培養(yǎng)基中并置于28℃光照培養(yǎng)箱中培養(yǎng)(光周期L:D=12 h:12 h),當(dāng)培養(yǎng)基上長(zhǎng)滿菌絲后,刮去培養(yǎng)基表面的菌絲再培養(yǎng)5d即可長(zhǎng)出大量的分生孢子。
1.3.2.3接菌將配置好的稻瘟菌孢子(1.5×10?個(gè)/mL)懸浮液噴霧接種于3葉1心期的水稻葉片上,接種后的水稻幼苗置于28℃培養(yǎng)箱中黑暗保溫保濕(相對(duì)濕度95%以上)24 h,后轉(zhuǎn)移至室溫常規(guī)培養(yǎng),同時(shí)保持葉面一定的濕度,于接種0、24、36、48、72、96和120 hpi取樣,用于死細(xì)胞和胼胝質(zhì)觀察和統(tǒng)計(jì)、POD活性及ROS和木質(zhì)素含量測(cè)定,以及防御相關(guān)基因表達(dá)分析。每個(gè)樣品3次生物學(xué)重復(fù),水稻育苗及稻瘟菌接種方法參照Duan等(2021)。于144 hpi隨機(jī)選取120株水稻苗進(jìn)行病害調(diào)查統(tǒng)計(jì),調(diào)查及病情指數(shù)統(tǒng)計(jì)方法參照許志剛和胡白石(2022)。
1.4稻瘟菌致傷活體接種水稻及單個(gè)病斑真菌相對(duì)生物量測(cè)定
對(duì)溫室中生長(zhǎng)至40d的水稻葉片進(jìn)行致傷,取10.0μL稻瘟菌孢子懸浮液(3×10?個(gè)/mL)接種于致傷葉片的致傷點(diǎn),將接種后的致傷部位進(jìn)行黑暗保濕處理24 h,于接種144 hpi測(cè)量病斑長(zhǎng)度,并用CTAB法提取單個(gè)病斑的總DNA,通過實(shí)時(shí)熒光定量PCR分析水稻基因OsUBQ和稻瘟菌基因Mopot2的CT值,OsUBQ和Mopot2的引物序列見表1。反應(yīng)體系20.0μL:上、下游引物各0.8μL,DNA模板0.5μL,熒光染料10.0μL,去離子水補(bǔ)足至20.0μL。擴(kuò)增程序:95℃預(yù)變性3 min;95℃20s,進(jìn)行44個(gè)循環(huán);59℃延伸20s,65℃收集熒光信號(hào);溫度從58℃升高,每升高0.5℃采集1個(gè)循環(huán)的熒光信號(hào),持續(xù)80個(gè)循環(huán),獲取熔解曲線。每個(gè)樣本3次重復(fù),并根據(jù)CT值計(jì)算真菌的相對(duì)生物量。真菌相對(duì)生長(zhǎng)量=2[CT(MoPot2)-CT(OsUBQ)]×100(Park et al.,2012)。
1.5稻瘟菌侵染進(jìn)程觀察
稻瘟菌侵染進(jìn)程觀察參照J(rèn)ones等(2016)。稻瘟菌孢子懸浮液(1.5×10?個(gè)/mL)注射接種于生長(zhǎng)40d的水稻葉鞘,于28℃下黑暗保濕24h后轉(zhuǎn)至室溫,于24、36、48和72 hpi時(shí)撕取葉鞘內(nèi)表皮1~2層細(xì)胞,使用活死細(xì)胞雙染試劑盒(Abbkine,中國)中的紅色熒光染料(NucleiDye)對(duì)撕取的葉鞘細(xì)胞進(jìn)行染色,觀察稻瘟菌菌絲在葉鞘細(xì)胞中的侵染和定殖情況。染液配制方法:去離子水將10×實(shí)驗(yàn)緩沖液(Assay Buffer)(使用前于37℃水浴鍋加熱融化)稀釋為1×Assay Buffer,最后每1×Assay Buffer中加入1μLNucleiDye。
1.6外源JA處理稻瘟菌接種的水稻葉片
以20μmol/L JA噴霧處理稻瘟菌接種36 hpi的水稻,于36 hpi(0h)、48 hpi(12 h)和72 hpi(36h)取樣;以20μmol/LJA噴霧處理稻瘟菌接種48 hpi的水稻,于48 hpi(0h)、72 hpi(24h)和96 hpi(48 h)取樣;以滅菌ddH?O噴霧處理稻瘟菌接種36或48 hpi時(shí)的水稻葉片為對(duì)照。所取樣品用于死細(xì)胞和胼胝質(zhì)統(tǒng)計(jì)、POD活性及ROS和木質(zhì)素含量測(cè)定,以及防御相關(guān)基因表達(dá)分析。JA濃度配制參照王云鋒等(2018)的方法,溶于100%乙醇中配制成300 mmol/L的母液,再用滅菌ddH?O稀釋300μmol/L的工作液。于144 hpi時(shí)選取120株水稻苗用于稻瘟菌癥狀調(diào)查和統(tǒng)計(jì)。
1.7死細(xì)胞數(shù)和胼胝質(zhì)數(shù)統(tǒng)計(jì)
1.7.1死細(xì)胞數(shù)統(tǒng)計(jì)無菌水清洗3次樣品,將清洗后的樣品置于1 mg/mL的二氨基聯(lián)苯胺中染色24 h,將染色后的樣品取出置于100%乙醇中浸泡至葉片綠色完全褪去,葉片制成玻片后,置于熒光倒置顯微鏡(LEICA DMI4000B,德國徠卡生物系統(tǒng)有限公司)觀察統(tǒng)計(jì)死細(xì)胞數(shù)目,每個(gè)樣品觀察20個(gè)視野。
1.7.2胼胝質(zhì)數(shù)統(tǒng)計(jì)先用95%乙醇浸泡水稻葉片10 min,然后將葉片置于乙醇乳酚溶液(苯酚:甘油:乳酸:水:乙醇=1:1:1:1:8),于65℃水浴鍋中溫育至葉片綠色褪去,分別用50%乙醇和無菌水先后清洗3次,樣品置于0.1%苯胺藍(lán)染色液中染色1h,于熒光倒置顯微鏡觀察并統(tǒng)計(jì)胼胝質(zhì)數(shù)。
1.8 POD活性及ROS和木質(zhì)素含量測(cè)定用酶聯(lián)免疫吸附測(cè)定(Enzyme-linked immuno-sorbent assay,ELISA)試劑盒(上海極威生物科技有限公司)測(cè)定樣品ROS和木質(zhì)素含量。將水稻葉片樣品用液氮研磨成粉末,取0.1 g粉末于無菌離心管中,加入500μL1×磷酸緩沖鹽溶液劇烈振蕩,4℃下1000r/min離心20min后,取上清液備用。加入50μL標(biāo)準(zhǔn)品于標(biāo)準(zhǔn)品孔,每個(gè)標(biāo)準(zhǔn)品設(shè)3個(gè)重復(fù),用于制備標(biāo)準(zhǔn)曲線;樣品孔中加入10μL上清液和40μL樣品稀釋液,每種樣品3個(gè)重復(fù),然后加入100μL辣根過氧化物酶(Horseradish peroxidase,HRP),于37℃恒溫箱孵育60 min,后洗板5次并甩干,加入反應(yīng)底物A和底物B各50μL,37℃避光孵育15 min后,加入終止液50μL,置于波長(zhǎng)450 nm酶標(biāo)儀(Varioskan LUX,美國賽默飛生物有限公司)測(cè)定樣品的OD值,代入標(biāo)準(zhǔn)曲線計(jì)算樣品濃度。使用POD活性檢測(cè)試劑
盒(BC0095,北京索萊寶科技有限公司)測(cè)定POD活性,用每克樣本組織每毫升反應(yīng)體系中每分鐘OD?70變化0.005作為1個(gè)酶活力單位。
1.9水稻防御相關(guān)基因表達(dá)分析
利用RNA提取試劑盒(北京康潤(rùn)誠業(yè)生物科技有限公司)提取水稻葉片總RNA,使用TransScript All-in-One First-Strand cDNA Synthesis SuperMix(北京全式金生物技術(shù)有限公司)試劑盒進(jìn)行逆轉(zhuǎn)錄,利用2XTS-INGKE? MasterqPCRMix(SYBRGreenI)TSE201(北京擎科新業(yè)生物技術(shù)有限公司)試劑盒進(jìn)行實(shí)時(shí)熒光定量PCR分析。反應(yīng)體系20.0μL:上、下游引物各0.8μL,cDNA模板0.5μL,熒光染料10.0μL,dH?O補(bǔ)足至20.0μL。擴(kuò)增程序:95℃預(yù)變性1 min;95℃10s,57℃10s,72℃15s,進(jìn)行40個(gè)循環(huán)。65℃升高到95℃獲取熔解曲線。試驗(yàn)重復(fù)3次。根據(jù)Wang等(2019)描述的2-0方法進(jìn)行基因相對(duì)表達(dá)量計(jì)算,即基因的相對(duì)表達(dá)量=2-(Ctl-astinCt1) (Ct2-actinCt2)。引物序列見表1。
1.10統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用SPSS 19.0進(jìn)行處理,GraphPad Prism 8.0.2作圖。
2結(jié)果與分析
2.1 LOX3敲除對(duì)水稻種子發(fā)芽率等表型的影響
為明確LOX3敲除對(duì)水稻種子發(fā)芽率的影響,對(duì)3個(gè)△Lox3敲除水稻株系的種子進(jìn)行發(fā)芽試驗(yàn)。△lox3敲除水稻株系種子在浸種第2d開始發(fā)芽,而野生型水稻種子在浸種第3d才開始發(fā)芽,至浸種第4d,3個(gè)△Lox3敲除水稻株系和野生型水稻的種子均全部發(fā)芽(圖1-A);3個(gè)△Lox3敲除水稻株的葉片較野生型水稻葉片綠,但分蘗數(shù)、株高和百粒重等與野生型水稻相似(圖1-B、圖1-C-1、圖1-C-2、圖1-D-1和圖1-D-2),差異均不顯著(Pgt;0.05,下同)。表明LOX3敲除提高了水稻種子的發(fā)芽速度,使水稻生長(zhǎng)狀態(tài)較好。
2.2 LOX3敲除對(duì)水稻植株內(nèi)抗菌化合物和防御相關(guān)基因表達(dá)的影響
檢測(cè)3個(gè)△lox3敲除水稻植株內(nèi)的POD活性及ROS和木質(zhì)素含量等指標(biāo),發(fā)現(xiàn)3個(gè)△lox3敲除水稻植株內(nèi)POD活性和木質(zhì)素含量均顯著低于野生型水稻(Plt;0.05,下同)(圖2-A、圖2-B),而ROS含量則顯著高于野生型水稻植株(圖2-C);3個(gè)△lox3敲除水稻植株中OsWRKY45、OsPRla和OsPOX7基因的表達(dá)量顯著低于野生型水稻(和圖2-D-1、圖2-D-2和圖2-D-4),而OsRbohB基因的表達(dá)量則顯著高于野生型水稻(圖2-D-3)。表明LOX3敲除負(fù)面影響了水稻植株內(nèi)POD活性和木質(zhì)素等抗菌化合物含量以及防御相關(guān)基因的表達(dá)水平。
2.3 LOX3敲除對(duì)水稻稻瘟病抗性的影響
為檢測(cè)LOX3敲除對(duì)水稻稻瘟病抗性的影響,選取△Lox3敲除水稻株系(△Lox3#1)進(jìn)行抗瘟性分析。稻瘟菌接種△Lox3敲除水稻株引起的稻瘟病癥狀和病情指數(shù)顯著高于稻瘟菌接種野生型水稻(圖3-A-1和圖3-A-2)?;铙w致傷接種△Lox3敲除水稻株的葉片,發(fā)現(xiàn)LOX3敲除水稻株葉片單個(gè)病斑的長(zhǎng)度和真菌相對(duì)生長(zhǎng)量顯著高于野生型水稻(圖3-B-1、圖3-B-2和圖3-B-3),表明LOX3敲除降低了水稻對(duì)稻瘟菌的抗性。
在明確△Lox3敲除水稻株抗瘟性下降的基礎(chǔ)上,進(jìn)一步分析稻瘟菌接種△Lox3敲除水稻中死細(xì)胞數(shù)和胼胝質(zhì)數(shù),發(fā)現(xiàn)稻瘟菌接種△Lox3敲除水稻株不同時(shí)間點(diǎn)死細(xì)胞數(shù)和ROS含量高于或顯著高于稻瘟菌接種野生型水稻(圖3-C-1、圖3-C-2和圖3-G),而胼胝質(zhì)數(shù)、POD活性及木質(zhì)素含量則相反(圖3-D-1、圖3-D-2、圖3-E和圖3-F);防御相關(guān)基因OsWRKY45、OsPRla和OsPOXI在稻瘟菌接種△Lox3敲除水稻株中的表達(dá)量顯著低于稻瘟菌接種野生型水稻(圖3-H-1、圖3-H-2和圖3-H-4),而OsRbohB則相反(圖3-H-3)。表明LOX3敲除導(dǎo)致稻瘟菌接種水稻植株中胼胝質(zhì)、POD活性、木質(zhì)素等抗菌化合物含量以及防御基因表達(dá)水平降低,而OsRbohB表達(dá)水平、ROS含量和細(xì)胞死亡數(shù)增加。
稻瘟菌接種Lox3敲除水稻株和野生型水稻,細(xì)胞學(xué)觀察稻瘟菌侵染進(jìn)程發(fā)現(xiàn),在24、36和48 hpi時(shí)△Lox3敲除水稻株的稻瘟菌菌絲定殖量高于稻瘟菌接種的野生型水稻(圖4-A)。同時(shí),檢測(cè)到△Lox3敲除水稻株和野生型水稻活體營養(yǎng)晚期特異表達(dá)基因BAS4在48 hpi時(shí)的表達(dá)量最大,且BAS4在稻瘟菌接種△Lox3敲除水稻株中的表達(dá)量顯著高于稻瘟菌接種的野生型水稻(圖4-B),△Lox3敲除水稻株中死體營養(yǎng)期特異表達(dá)基因MoCDIP1在96 hpi時(shí)表達(dá)量最大,在野生型水稻中120 hpi時(shí)表達(dá)量最大(圖4-C)
2.4外源JA對(duì)△Lox3敲除水稻株稻瘟病癥狀及其防御響應(yīng)的影響
為明確外源JA能否提高稻瘟菌接種的△Lox3敲除水稻株抗瘟性,分別利用外源JA處理稻瘟菌接種36和48 hpi時(shí)的△Lox3敲除水稻株,發(fā)現(xiàn)JA可降低稻瘟菌接種△Lox3敲除水稻稻瘟病癥狀和病情指數(shù),其中JA能更有效地減輕稻瘟菌接種48 hpi的△Lox3敲除水稻株稻瘟病癥狀(圖5-A-1和圖5-A-2);JA處理稻瘟菌噴霧接種△Lox3敲除水稻株水稻葉片上單個(gè)病斑長(zhǎng)度和真菌相對(duì)生長(zhǎng)量數(shù)據(jù)與JA處理稻瘟菌活體致傷接種△Lox3敲除水稻株的結(jié)果相似(圖5-B-1、圖5-B-2和圖5-B-3)。表明JA可減輕稻瘟菌接種△Lox3敲除水稻株稻瘟病癥狀,以外源JA對(duì)稻瘟菌接種48 hpi的△Lox3敲除水稻株稻瘟病癥狀的控制效果較明顯。
外源JA處理稻瘟菌接種36 hpi水稻中POD活性和胼胝質(zhì)增加幅度高于JA處理稻瘟菌接種48 hpi的水稻,ROS含量和ROS介導(dǎo)的細(xì)胞死亡數(shù)則相反(圖5-C~圖5-H),同樣的,外源JA處理稻瘟菌接種36 hpi水稻中防御相關(guān)基因OsWRKY45、OsPRIa和OsPOXI上調(diào)幅度大于JA處理稻瘟菌接種48 hpi時(shí)的△Lox3敲除水稻株,而OsRbohB則相反(圖6);外源JA處理稻瘟菌接種36和48 hpi的△Lox3敲除水稻株中POD活性和胼胝質(zhì)增加幅度低于JA處理稻瘟菌接種36和48 hpi的野生型水稻,ROS含量和ROS介導(dǎo)的細(xì)胞死亡數(shù)則相反(圖5-C~圖5-H),外源JA處理稻瘟菌接種36和48 hpi的△Lox3敲除水稻株中防御相關(guān)基因OsWRKY45、OsPRIa和OsPOXI上調(diào)幅度小于JA處理稻瘟菌接種36和48 hpi野生型水稻,OsRbohB則相反(圖6)。細(xì)胞學(xué)觀察到外源JA限制了稻瘟菌接種36和48 hpi時(shí)的水稻中稻瘟菌菌絲的擴(kuò)展,其中以外源JA對(duì)稻瘟菌接種48 hpi水稻組織中稻瘟菌菌絲擴(kuò)展的限制程度高于JA對(duì)稻瘟菌接種36 hpi水稻(圖5-I)。表明JA減輕△Lox3敲除水稻株稻瘟病癥狀,主要體現(xiàn)在JA提高了稻瘟菌接種△Lox3敲除水稻株中POD活性和胼胝質(zhì)數(shù),以及OsWRKY45、OsPRla和OsPOXI表達(dá)量,降低細(xì)胞死亡數(shù)和限制菌絲擴(kuò)展。
3討論
LOXs是JA生物合成的關(guān)鍵酶,已被報(bào)道參與植物的多個(gè)生物學(xué)過程,在植物生長(zhǎng)、發(fā)育和脅迫反應(yīng)中發(fā)揮重要作用(Gao et al.,2011)。LOXs基因在抵御干旱和植物真菌/細(xì)菌病害中發(fā)揮作用,如稻瘟菌、白葉枯菌和煙草疫霉菌均能誘導(dǎo)植物體內(nèi)LOXs基因表達(dá),除此之外,其在維持水稻種子穩(wěn)定性、提高水稻種子壽命方面也發(fā)揮重要作用(沙愛華等,2005)。本研究結(jié)果顯示,△lox3敲除水稻株的株高和分蘗數(shù)與野生型水稻相比無顯著差異,但種子發(fā)芽速度明顯加快,與Bollinedi等(2022)的研究結(jié)果一致。由于LOX3敲除,水稻植株不能合成內(nèi)源JA,Su等(2023)報(bào)道△Lox3敲除水稻株(抗病水稻Ilmibyeo為遺傳背景)未檢測(cè)到內(nèi)源JA,但JA可抑制植物幼苗和根生長(zhǎng)(Monte et al.,2014;Kim et al.,2015),而本研究發(fā)現(xiàn)△Lox3敲除水稻株葉片較野生型水稻綠,表明△Lox3敲除水稻株生長(zhǎng)狀態(tài)較好。同時(shí),本研究檢測(cè)到△Lox3敲除水稻株中POD活性和木質(zhì)素含量降低,而ROS含量增加,防御相關(guān)基因OsWRKY45、OsPRIa和OsPOXI下調(diào),由于胼胝質(zhì)數(shù)、POD、ROS和木質(zhì)素在植物防御響應(yīng)中起作用(Han and Kahmann,2019),并且OsWRKY45、OsPOXI和OsPRla基因在水稻稻瘟病抗性或水稻防御響應(yīng)中發(fā)揮重要作用(Agrawal et al.,2001;Shimono et al.,2012;Guo et al.,2022),表明LOX3敲除后促進(jìn)了水稻生長(zhǎng)而降低了水稻基本防御響應(yīng)。進(jìn)一步研究發(fā)現(xiàn),稻瘟菌接種△Lox3敲除水稻株稻瘟病癥狀加重,且胼胝質(zhì)數(shù)、POD活性和木質(zhì)素含量,以及OsWRKY45、OsPRla和OsPOXI表達(dá)量明顯低于稻瘟菌接種野生型水稻,而OsRbohB表達(dá)量和死細(xì)胞數(shù)及稻瘟菌菌絲定殖量明顯高于稻瘟菌接種野生型水稻,表明LOX3敲除明顯降低了水稻稻瘟病抗性,與Liu等(2008)的研究結(jié)果一致。
JA作為誘導(dǎo)植物防御的激發(fā)子,參與植物對(duì)病原菌的響應(yīng)和防御相關(guān)信號(hào)傳遞(Gómez-Vasquez et al.,2004)。其中,腐生真菌及半活體寄生真菌的死體營養(yǎng)期菌絲對(duì)JA較敏感(Pieterse et al.,2012)。稻瘟菌是典型的半活體寄生菌,細(xì)的次生菌絲出現(xiàn)是稻瘟菌活體營養(yǎng)晚期,而大量次生菌絲出現(xiàn)是死體營養(yǎng)期開始的標(biāo)志(Chowdhury et al.,2017)。研究中觀察到,稻瘟菌接種野生型水稻和△Lox3敲除水稻株后,在36 hpi時(shí)野生型水稻和△Lox3敲除水稻株中細(xì)的次生菌絲出現(xiàn)并向臨近細(xì)胞擴(kuò)展,而在48 hpi時(shí)觀察到大量次生菌絲的定殖和擴(kuò)展,表明36 hpi是活體營養(yǎng)晚期,而48 hpi是死體營養(yǎng)期的開始。因此,本研究利用外源JA處理稻瘟菌接種36和48 hpi時(shí)的△Lox3敲除水稻株,發(fā)現(xiàn)JA減輕了水稻株稻瘟病癥狀。JA處理后增加了稻瘟菌接種水稻細(xì)胞內(nèi)POD活性,而ROS介導(dǎo)的細(xì)胞死亡數(shù)減少,防御相關(guān)基因表達(dá)量增加,而且菌絲擴(kuò)展受限,其中以JA增加稻瘟菌接種48 hpi時(shí)水稻中POD活性、減少ROS介導(dǎo)的細(xì)胞死亡數(shù)等較JA對(duì)稻瘟菌接種36 hpi時(shí)水稻中的明顯,表明JA通過增加POD活性、抑制ROS介導(dǎo)的細(xì)胞死亡以及限制稻瘟菌菌絲擴(kuò)展以達(dá)到減緩△lox3敲除水稻株稻瘟病癥狀,證實(shí)半活體寄生真菌活體營養(yǎng)期的稻瘟菌菌絲對(duì)JA敏感。結(jié)合Su等(2023)報(bào)道外源JA噴施△Lox3敲除水稻株中檢測(cè)到一定量的JA,表明外源JA可有效彌補(bǔ)LOX3基因敲除帶來的水稻抗瘟性降低的問題。鑒于JA是一種植物激素,作為環(huán)境友好型激發(fā)子,在調(diào)控植物生長(zhǎng)和防御響應(yīng)中發(fā)揮重要作用,因此,JA在協(xié)調(diào)水稻生長(zhǎng)和防御間的不平衡方面具有潛在的應(yīng)用前景。
4結(jié)論
LOX3基因敲除提升了水稻種子發(fā)芽速度而降低了水稻抗瘟性;外源JA通過增加POD活性等生理指標(biāo)和防御相關(guān)基因表達(dá)水平,以及降低ROS介導(dǎo)的細(xì)胞死亡和限制死體營養(yǎng)期稻瘟菌菌絲擴(kuò)展而提高水稻抗瘟性。JA在減緩農(nóng)作物因抗性基因持久性短而造成的抗性降低或喪失方面具有潛在的應(yīng)用前景。
參考文獻(xiàn)(References):
崔丹丹,楊巧玲,張俊蓮,張峰.2020.茉莉酸抑制劑對(duì)馬鈴薯離體塊莖形成和發(fā)育的影響[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),55(1):82-90.[Cui DD,Yang QL,Zhang JL,Zhang F 2020.Effect of jasmonic acid inhibitor on potato tuber for mation and development in vimo[J].Journal of Gansu Agricultural University,55(1):82-90.]doi:10.13432/j.cnki.jgsau.2020.01.011.
凌忠專,蔣琬如,王久林,雷財(cái)林.2001.水稻品種麗江新團(tuán)黑谷普感特性的研究和利用[J].中國農(nóng)業(yè)科學(xué),34(1):116.[Ling ZZ,Jiang WR,Wang JL,LeiC L.2001.Research and utilization of universally susceptible prope-rty of japonica rice variety Lijiangxintuanheigu[J].Chi-nese Agricultural Sciences,34(1):116.]doi:10.3321/j.issn:0578-1752.2001.01.025.
桑世飛,王亞男,王君怡,曹夢(mèng)雨,孫曉涵,姬生棟.2022.9個(gè)抗稻瘟病基因在291份水稻種質(zhì)資源中的分布及組合特征[J].河南農(nóng)業(yè)科學(xué),51(12):19-27.[Sang SF,Wang YN,Wang JY,Cao MY,Sun XH,JiS D.2022.Distribu-tion and combination features of nine blast resistant genes in 291 rice germplasm resources[J].Journal of Henan Agricultural Sciences,51(12):19-27.]doi:10.15933/j.cnki.1004-3268.2022.12.003.
沙愛華,林興華,黃俊斌,張端品,2005.防衛(wèi)基因PAL、LOX和PBZ1在水稻白葉枯病成株抗性中的作用(英文)[J].中國生物化學(xué)與分子生物學(xué)報(bào),21(2):159-163.[Sha A"H,LinXH,Huang JB,Zhang DP.2005.Roles of defense genes PAL,LOXand PBZl in adult plant resistance to rice bacterial blight[J].Chinese Journal of Biochemistry and Molecular Biology,21(2):159-163.]doi:10.13865/j.cnki cjbmb.2005.02.003.
王軍,楊杰,楊金歡,范方軍,朱金燕,陳志德,仲維功.2012.Pi-ta、Pi-b基因在江蘇粳稻穗頸瘟抗性育種中的價(jià)值分析[J].華北農(nóng)學(xué)報(bào),27(6):141-145.[Wang J,Yang J,"Yang JH,F(xiàn)an FJ,Zhu JY,Chen ZD,Zhong WG.2012.Analysis on breeding value of Pi-ta,Pi-b genes in Japonica rice breeding with neck resistance in Jiangsu[J].Acta Agri-culturae Boreali-Sinica,27(6):141-145.]doi:10.3969/j"issn.1000-7091.2012.06.028.
王云鋒,王長(zhǎng)秘,李春琴,劉林,李曉杰,李曉疆,楊靜.2018.稻瘟病菌侵染時(shí)水稻防御體系對(duì)外源茉莉酸的響應(yīng)分析[J].南方農(nóng)業(yè)學(xué)報(bào),49(7):1324-1331.[Wang YF,Wang CM,Li CQ,Liu L,Li XJ,Li XJ,Yang J.2018"Response analysisof rice defense system to exogenous jas-monic acid during rice blast fungus infection[J].Journal of Southern Agriculture,49(7):1324-1331.]doi:10.3969/j.issn.2095-1191.2018.07.10.
許志剛,胡白石.2022.普通植物病理學(xué)[M].第3版.北京:中國農(nóng)業(yè)出版社:2-18.[Xu ZG,Hu BS.2022.General plant pathology[M].The 30Edition.Beijing:China Agri-culture Press:2-18.]
Agrawal GK,Rakwal R,Jwa NS,AgrawalVP.2022.Effects of signaling molecules,proteinphosphatase inhibitors and blast pathogen(Magnaporthe grisea)on the mRNA level of arice(Oryza sativa L.)phospholipid hydroperoxide glu-tathioneperoxidase(OsPHGPX)gene in seedling leaves[J].Gene,283(1-2):227-236.doi:10.1016/s0378-1119(01)00854-x.
Allmann S,Halitschke R,Schuurink RC,Baldwin IT.2010."Oxylipin channelling in Nicotiana attenuata:Lipoxyge-nase 2 supplies substrates for green leaf volatile production[J].Plant Cell Environment,33(12):2028-2040.doi:10.1111/j.1365-3040.2010.02203.x.
Anthon GE,Barrett DM.2001.Colorimetric method for the determinationof lipoxygenase activity[J].Journal of Agri-cultural and Food Chemistry,49(1):32-37.doi:10.1021/jf000871s.
Bollinedi H,Singh N,Krishnan SG,VinodKK,Bhowmick PK,Nagarajan M,Ellur RK,Singh AK.2022.A novel ALOX3-1 allele(4Lox3-b)originated in the aromatic Basmatirice cultivars impartsstorage stability to rice bran[J].Food Chemistry,369:130887.doi:10.1016/j.food-chem.2021.130887.
Chowdhury S,BasuA,Kundu S.2017.Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling path-ways at different phases[J].Scientific Reports,7(1):17251.doi:10.1038/s41598-017-17248-7.
Duan GH,LiCQ,Liu YF,Ma XQ,Luo Q,Yang J.2021."Magnaporthe oryzae systemic defense triggerl(MoSDT1)-mediated metabolites regulate defense response in rice[J].BMCPlant Biology,21:40.doi:10.1186/s12870-020-02821-6.
GaoG L,Zhang SC,Wang CF,Yang X,Wang YQ,Su XJ,Du JJ,Yang CW.2011.Arabidopsis CPR5 independently"regulates seed germination and post germination arrest of development through LOX pathway and ABA signaling[J].PLoS One,6(4):e19406.doi:10.1371/journal.pone 0019406.
Gómez-Vasquez R,Day R,Buschmann H,Randles S,Beec-hing JR,Cooper RM.2004.Phenylpropanoids,phenylala-nine ammonia lyase and peroxidases in elicitor-challenged cassava(Manihot esculenta)suspension cells and leaves[J].Annals of Botany,94(1)1:87-97.doi:10.1093/aob/mch107.
Grebner W,Stingl NE,Oenel A,Mueller MJ,Berger S.2013 Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabi-dopsis[J].PlantPhysiology,161(4):2159-2170.doi:10."1104/pp.113.214544.
Guo ZH,Cai LJ,Liu CX,Chen ZQ,Guan SW,Ma WD,"Pan GJ.2022.Low-temperature stress affects reactive oxy-gen species,osmotic adjustment substances,and antioxi-dants in rice(Oryza sativa L.)at the reproductive stage[J].Scientific Reports,12:6224.doi:10.1038/s41598-022-10420-8.
Halitschke R,Baldwin IT.2003.Antisense LOX expression increases herbivore performance by decreasing defense responses and inhib-iting growth-related transcriptional"reorganization in Nicotiana attemuata[J].The Plant Jour-nal,36(6):794-807.doi:10.1046/j.1365-313X.2003.01921.x.
Han XW,Kahmann R.2019.Manipulation of phytohormone pathways by effectors of filamentous plant pathogens[J]Frontiersin Plant Science,10:822.doi:10.3389/fpls.2019.00822
Jones K,KimDW,Park JS,KhangCH.2016.Live-cell fluo-rescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magna porthe oryzae[J].BMC Plant Biology,16:69.doi:10.1186/s?2870-016-0756-x.
Kim JChang C,Tucker ML.2015.To grow old:Regulatory role of ethylene andjasmonic acid in senescence[J].Fron-tiers inPlant Science,6:20.doi:10.3389/fpls.2015.00020.
KolomietsMV,Hannapel DJ,Chen H,Tymeson M,Gladon RJ.2001.Lipoxygenase is involved in the control of potato tuber development[J].The Plant Cell,13(3):613-626.doi:10.1105/tpc.13.3.613.
Lapin D,Van den Ackerveken G.2013.Susceptibility to plant disease:More than afailure of host immunity[J].Trends Plant Science,18(10):546-554.doi:10.1016/j.tplants.2013.05.005.
Liu NN,Jiang L,Zhang WW,Liu LL,ZhaiHQ,Wan JM 2008.Role of LOX3 gene in alleviating adverse effects of drought and pathogens in rice[J].Rice Science,15(4):276-282.doi:10.1016/S1672-6308(09)60004-4.
Marla SS,Singh V.2012.LOX genes inblast fungus(Magna-porthe grisea)resistance in rice[J].Functionalamp;Integra-tive Genomics,12(2):265-275.doi:10.1007/s10142-012-0268-1.
Mishra S,Jha AB,Dubey RS.2011.Arsenite treatment induces oxidative stress,upregulates antioxidant system,and causes phytochelatin synthesis in rice seedlings[J].Protoplasma,248(3):565-577.doi:10.1007/s00709-010-0210-0.
Monte I,Hamberg M,Chini A,Gimenez-Ibanez S,Garcia-Casado G,Porzel APazos F,Boter M,Solano R.2014.Rational design ofa ligand-based antagonist of jasmonate perception[J].NatureChemical Biology,10:671-676.doi:10.1038/NCHEMBI0.1575.
Park CH,Chen SB,Shirsekar G,ZhouB,Khang CH,Songku-marn P,Afzal AJ,Ning YS,Wang RY,Bellizzi M.2012.The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J].Plant Cell,24(11):4748-4762.doi:10.1105/tpc.112.105429.
Pieterse CM,Van der Does D,Zamioudis C,Leon-ReyesA,VanWees SC.2012.Hormonal modulation of plant immu-nity[J].Annual Review of Cell and Developmental Bio-logy,28:489-521.doi:10.1146/annurev-cellbio-092910-154055.
Porta H,Rocha-Sosa M.2002.Plant lipoxygenase:Physiologi-cal and molecular features[J].Plant Physiology,130(1):15-21.doi:10.1104/pp.010787.
Sharma P,Jha AB,Dubey RS,Pessarakli M.2012.Reactive oxygen species,oxidative damage,and antioxidative defense mechanism in plants under stressful conditions[J].Journal of Botany,2012:1-26.doi:10.1155/2012/217037.
Shimono M,Koga H,Akagi A,Hayashi N,Goto S,Sawada M,Kurihara T,Matsushita A,Sugano S,Jiang CJ,Kaku H,Inoue H,Takatsuji H.2012.Rice WRKY45 plays impor-tant roles in fungal and bacterial disease resistance[J]Molecular Plant Pathology,13(1):83-94.doi:10.1111/J.1364-3703.2011.00732.X.
Su SY,Tang P,Zuo RB,Chen HF,Zhao TQ,Yang SM,Yang J.2023.Exogenous jasmonic acid alleviates blast resistance reduction caused by LOX3 knockout in rice[J].Biomolecules,13(8):1197.doi:10.3390/biom13081197.
Vellosillo T,Martinez M,López MA,Vicente J,Cascón T,Dolan L,Hamberg M,Castresana C.2007.Oxylipins pro-duced by the 9-lipoxygenase pathway in Arabidopsis regu-latelateral rootdevelopmentand defense responses through aspecific signaling cascade[J].The Plant Cell,19(3):831-846.doi:10.1105/tpc.106.046052.
Wang GL,Valent B.2017.Durable resistance to rice blast[J].Science,355(6328):906-907.doi:10.1126/science.aam9517.
Wang YF,LiCQ,Han GY,Wang C,Liu L,LiXJ,YangJ.2019.Effect of different treatments ofjasmonic acid on rice blast disease control and its effect on rice defense sys-tem[J].Journal of Southern Agriculture,50(3):562-569.doi:10.1104/pp.112.3.997.
Wasternack C,F(xiàn)orner S,Strnad M,Hause B.2013.Jasmonates in flower and seed development[J].Biochimie,95(1):79-85.doi:10.3969/j.issn.2095-1191.2019.03.17.
Xu HB,WeiYD,ZhuYS,Lian L,XieH G,CaiQH,ChenQ S,Lin ZP,Wang ZH,Xie HA,Zhang JF.2015.Anti-sense suppression of LOX3 gene expression in rice endo-sperm enhances seed longevity[J].Plant Biotechnology Journal,13(4):526-39.doi:10.1111/pbi.12277.
(責(zé)任編輯 麻小燕)