摘要: 以多泥沙河流為取水水源的泵站正向進(jìn)水前池存在泥沙沉積、泵站性能降低等問(wèn)題.選取甘肅省景泰川電力提灌工程某泵站正向進(jìn)水前池作為研究對(duì)象,設(shè)計(jì)圓弧擴(kuò)散型正向進(jìn)水前池體型結(jié)構(gòu),采用Fluent軟件基于Realizable k-ε模型和Mixture多相流模型開(kāi)展數(shù)值模擬計(jì)算,獲得圓弧擴(kuò)散型正向進(jìn)水前池的泥沙體積濃度分布特征,揭示圓弧擴(kuò)散型邊墻收縮程度對(duì)前池內(nèi)水沙運(yùn)動(dòng)特性的影響.結(jié)果表明:沿垂直水流方向,圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙體積濃度分布中間低、兩側(cè)高;沿水深方向,前池內(nèi)泥沙體積濃度分布由表層至底層逐漸升高.相較直線擴(kuò)散型正向進(jìn)水前池,圓心角為44°的圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)高含沙區(qū)面積降低41.77%,泥沙淤積減少43.60%.研究成果可為同類型泵站前池優(yōu)化設(shè)計(jì)提供指導(dǎo)與參考,有效促進(jìn)泵站工程提質(zhì)增效.
關(guān)鍵詞: 泵站;擴(kuò)散角;正向進(jìn)水前池;流場(chǎng)結(jié)構(gòu);泥沙體積濃度;數(shù)值模擬
中圖分類號(hào): TV671;S277.9文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1674-8530(2024)11-1135-07
DOI:10.3969/j.issn.1674-8530.23.0227
樊新建,李龍基,陸亞楠,等.泵站圓弧擴(kuò)散型正向進(jìn)水前池泥沙體積濃度分布特征[J].排灌機(jī)械工程學(xué)報(bào),2024,42(11):1135-1141.
FAN Xinjian, LI Longji, LU Yanan,et al. Distribution characteristics of sediment volume concentration in forebay of circular diffusion type of pumping station[J].Journal of drainage and irrigation machinery engineering(JDIME),2024,42(11):1135-1141.(in Chinese)
Distribution characteristics of sediment volume concentration in
forebay of circular diffusion type of pumping station
FAN Xinjian1*, LI Longji1, LU Yanan1, WANG Hui1, JIA Guangyu2, SUN Jianghe3
(1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Gansu Jingtaichuan Electric Power Irrigation Water Resource Utilization Center, Jingtai, Gansu 730400, China; 3. Water Resources and Hydropower Survey and Design Research Institute Co., Ltd., Lanzhou, Gansu 730099, China)
Abstract: The forward intake forebay of the pumping station,utilizing a multisediment sand river as its water source, encounters issues including sediment deposition, reduced operational effciency of the pumping station, etc. This study focus on the forward intake forebay of a pumping station in the Jingtai Chuan electric power lifting and irrigation project in Gansu Province as the object of investigation. The body structure of the circular diffusion type forward intake forebay was designed and numerical simulation utilizing Fluent software based on the realizable k-ε model and the mixture multiphase flow model was carried out to obtain the distribution characteristics of sediment concentration. The distribution characteristics of sediment concentration in the circular diffusion forward intake forebay were analyzed to reveal the influence of the degree of contraction of the circular diffusion side wall on the movement characteristics of water and sand in the forebay. The results show that, in the vertical flow direction, the sediment volume concentration distribution in the forebay of the circular diffusion type exhibits a lower concentration in the middle and high concentration on both sides. In the water depth direction, the distribution of sediment volume concentration in the forebay gradually increases from the surface to the bottom. In comparison to the linear diffusion type forward intake forebay, the area of high sand content in the circular diffusion type forward intake forebay with a center angle of 44° is reduced by 41.77%, and the sediment siltation is reduced by 43.60%. These findings offer valuable insights and guidance for the optimization design of the forebay of the same type of pumping stations, thereby contributing to enhancements in the engineering quality and operational efficiency of pumping station infrastructure.
Key words: pumping station;diffusion angle;forward water inlet forebay;flow field structure;sediment volume concentration;numerical simulation
前池是泵站引水渠和進(jìn)水池的銜接部分,有引導(dǎo)水流平順進(jìn)入進(jìn)水池、為水泵取水提供良好進(jìn)水條件的作用[1-2].按引水方向不同,前池主要分為正向進(jìn)水前池和側(cè)向進(jìn)水前池2種形式,正向進(jìn)水前池因結(jié)構(gòu)簡(jiǎn)單、便于施工,得以廣泛應(yīng)用.對(duì)于以多泥沙河流為水源的泵站,若正向進(jìn)水前池體型結(jié)構(gòu)不佳,易使前池內(nèi)水流流速分布不均,泥沙在前池水流低流速區(qū)沉降,擠占過(guò)流空間,造成取水困難,影響泵站運(yùn)行[3-5].
目前國(guó)內(nèi)外學(xué)者對(duì)泵站前池已開(kāi)展了相關(guān)研究.周龍才等[6]應(yīng)用數(shù)學(xué)模型分析泵站正向進(jìn)水前池?cái)U(kuò)散角對(duì)前池流態(tài)的影響,結(jié)果表明前池?cái)U(kuò)散角較大,兩側(cè)易產(chǎn)生較大回流區(qū).樊新建等[7]開(kāi)展不同擴(kuò)散角正向進(jìn)水前池的數(shù)值模擬,結(jié)果表明擴(kuò)散角為25°~30°時(shí),水流沿程擴(kuò)散充分,前池泥沙淤積減少.XU等[8]基于Fluent對(duì)前池流態(tài)進(jìn)行數(shù)值模擬,結(jié)果表明前池?cái)U(kuò)散角在20°~40°增大,則前池流態(tài)紊亂,回流區(qū)增多.徐存東等[9]利用Fluent軟件基于標(biāo)準(zhǔn)k-ε湍流模型對(duì)前池流態(tài)進(jìn)行了模擬分析,提出增設(shè)導(dǎo)流墩與壓水板的整流措施,在改善前池泥沙淤積問(wèn)題的同時(shí)保障了水泵進(jìn)水.夏臣智等[10]采用CFD軟件對(duì)加倒“T”形底坎的前池進(jìn)行數(shù)值模擬,發(fā)現(xiàn)底坎有提升前池機(jī)組行近流速、減少前池泥沙淤積的作用.ANUAR等[11]研究了泥沙粒徑和流量對(duì)泵站前池內(nèi)泥沙淤積的影響,結(jié)果表明增加水流流量或減小泥沙粒徑均會(huì)減少泥沙沉降.
文中以甘肅省景泰川電力提灌工程(簡(jiǎn)稱“景電工程”)中泥沙淤積問(wèn)題嚴(yán)重的二期七泵站直線擴(kuò)散型正向進(jìn)水前池為研究對(duì)象,依據(jù)其前池邊壁處圓弧型泥沙淤積形態(tài),設(shè)計(jì)圓弧擴(kuò)散型正向進(jìn)水前池體型結(jié)構(gòu),剖析圓弧擴(kuò)散型正向進(jìn)水前池水力特性和泥沙體積濃度分布特征,為泵站前池的設(shè)計(jì)與更新改造提供參考.
1研究對(duì)象
景電工程位于甘肅省中部、河西走廊東端,灌區(qū)東臨黃河、北接騰格里沙漠;工程共修建泵站43座,提水設(shè)計(jì)流量為28.56 m3/s,加大流量為39.29 m3/s,總裝機(jī)為270 MW,最高揚(yáng)程為713 m,灌區(qū)面積近1 500 km2,是跨省區(qū)、高揚(yáng)程、多梯級(jí)、大流量的大Ⅱ型梯級(jí)引黃灌溉工程[12].
景電工程部分泵站受限于直線擴(kuò)散型正向進(jìn)水前池體型結(jié)構(gòu)帶來(lái)的不良水流流態(tài)問(wèn)題,加之工程自黃河取水,導(dǎo)致前池內(nèi)泥沙淤積嚴(yán)重,機(jī)組功耗增加,泵站提水效率明顯下降,工程亟需改造完善以滿足實(shí)際供水需求.
原型泵站共布置8臺(tái)機(jī)組,泵站設(shè)計(jì)流量為28.0 m3/s,泵站設(shè)計(jì)水位為1 591.83 m.泵站前池底板高程為1 589.12 m;前池長(zhǎng)度L為24.4 m,前池起始端寬度B為11.7 m,末端寬度BL為32.8 m,前池面積S0為542.9 m2,前池邊墻擴(kuò)散角α為46°,前池尾部斜坡段坡度i為1∶3;進(jìn)水池長(zhǎng)度LM為12.0 m,進(jìn)水池末端寬度BM為72.8 m,機(jī)組吸水管管徑為1.4 m.
2數(shù)值模擬
2.1模擬方案
圓弧擴(kuò)散型正向進(jìn)水前池結(jié)構(gòu)如圖1所示.前池邊墻由2段圓弧組成,首段圓弧與前池進(jìn)水渠平順連接,第2段圓弧連接首段圓弧和進(jìn)水池邊墻,首段圓弧半徑為R1,圓心角為θ.模擬機(jī)組運(yùn)行工況為2—7號(hào)機(jī)組運(yùn)行,1號(hào)、8號(hào)機(jī)組關(guān)閉.
前池進(jìn)口端寬度為B、長(zhǎng)度為L(zhǎng).以前池進(jìn)口斷面底板中點(diǎn)為原點(diǎn)O,定義垂直水流方向?yàn)閄方向,順?biāo)鞣较驗(yàn)閅方向,沿水深方向?yàn)閆方向;X,Y,Z代表觀測(cè)斷面距原點(diǎn)的距離.P1—P8為吸水管管道,面與面的交線為觀測(cè)直線,表述為l+斷面名稱.觀測(cè)斷面如圖2所示,觀測(cè)斷面相關(guān)參數(shù)見(jiàn)表1.
文中設(shè)置5種圓弧擴(kuò)散型正向進(jìn)水前池體型(體型2—體型6),體型1為直線擴(kuò)散型(擴(kuò)散角α為46°)原型前池,前池圓心角θ與首段圓弧半徑R1不同,其他結(jié)構(gòu)與布置方式不變,前池與進(jìn)水池體積為V. 5種體型正向進(jìn)水前池體型參數(shù)如表2所示.
計(jì)算介質(zhì)含水、沙2種,水的密度ρ為998.2 kg/m3,沙的密度為2 500 kg/m3,泥沙粒徑為25 μm,年平均含沙量取30 kg/m3,前池內(nèi)泥沙體積濃度為C(百分?jǐn)?shù)),泥沙平均體積濃度C0為1.2%.參考實(shí)測(cè)泥沙淤積情況,定義前池內(nèi)含沙量大于31.9 kg/m3,即C/C0大于1.06的區(qū)域?yàn)楦吆硡^(qū),區(qū)域內(nèi)泥沙易淤積.設(shè)置的瞬態(tài)時(shí)間步長(zhǎng)為0.1 s.
2.2模擬方法
采用Fluent軟件對(duì)前池內(nèi)水沙運(yùn)動(dòng)進(jìn)行數(shù)值模擬計(jì)算,湍流模型選取Realizable k-ε模型,多相流模型選擇混合物(Mixture)模型[13].采用二階迎風(fēng)格式對(duì)控制方程進(jìn)行離散;選取SIMPLEC算法進(jìn)行流場(chǎng)耦合,迭代殘差精度不低于1.0×10-4.
模擬入口邊界位于渠道進(jìn)口斷面,設(shè)置為velocity-inlet(速度入口).引渠段、前池、進(jìn)水流道邊壁和底部為壁面邊界,設(shè)置為wall,粗糙度設(shè)置為0.1 mm.自由液面采用剛蓋假定法處理,設(shè)置為symmetry.出口邊界位于吸水管出口處,設(shè)置為outflow[14].
2.3網(wǎng)格劃分
前池模型采用ANSYS Mesh軟件對(duì)所建立的三維模型進(jìn)行非結(jié)構(gòu)化網(wǎng)格劃分[15].網(wǎng)格單元質(zhì)量均達(dá)到0.3以上,計(jì)算域內(nèi)網(wǎng)格數(shù)量為350萬(wàn).原型泵站前池網(wǎng)格劃分結(jié)果如圖3所示.
2.4模擬驗(yàn)證
圖4為原型前池泥沙淤積模擬值與實(shí)際值對(duì)比.圖4a為前池泥沙淤積實(shí)測(cè)結(jié)果,泥沙淤積于前池兩側(cè)邊壁及附近區(qū)域,淤積高度可達(dá)3.0 m,泥沙體積約占前池體積的15.7%.圖4b為正向進(jìn)水前池含沙量S分布數(shù)值模擬結(jié)果.整體上數(shù)值模擬結(jié)果與實(shí)測(cè)泥沙淤積情況匹配,說(shuō)明數(shù)值模擬能較為準(zhǔn)確地反映泵站前池泥沙體積濃度分布特征.
3模擬結(jié)果分析
3.1流場(chǎng)結(jié)構(gòu)分布特征
圖5為不同體型前池Z5斷面流場(chǎng)結(jié)構(gòu)分布.由圖可見(jiàn),不同體型前池流場(chǎng)結(jié)構(gòu)分布基本一致;前池中央為主流區(qū),兩側(cè)為分布對(duì)稱的回流區(qū).主流區(qū)水流流態(tài)穩(wěn)定、流速高,回流區(qū)內(nèi)水流流態(tài)紊亂、流速低.回流區(qū)內(nèi)產(chǎn)生旋渦,擠壓主流區(qū),制約水流擴(kuò)散,使前池內(nèi)水流流速分布不均.
原型前池主流區(qū)寬度為對(duì)應(yīng)斷面寬度的37.04%,回流區(qū)面積占進(jìn)水前池面積的28.89%,前池內(nèi)水流流態(tài)較差,易使泥沙沉降淤積.圓心角為60°,52°,44°,38°,33°的圓弧擴(kuò)散型正向進(jìn)水前池相較于直線擴(kuò)散型前池主流區(qū)寬度分別增加2.09%,4.63%,8.41%,15.34%和15.59%,而回流區(qū)面積分別減少1.68%,3.64%,10.66%,5.70%和2.87%.
可見(jiàn),圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)流場(chǎng)流態(tài)較好,圓心角為38°~44°的圓弧擴(kuò)散型正向進(jìn)水前池主流區(qū)寬度大,回流區(qū)面積小,入池水流擴(kuò)散效果較佳、流場(chǎng)結(jié)構(gòu)穩(wěn)定.
3.2泥沙體積濃度分布特征
3.2.1前池含沙量分布特征
若泵站前池體型結(jié)構(gòu)不佳,在前池達(dá)到?jīng)_淤平衡前,前池內(nèi)泥沙由于自身重力作用向下層輸移,導(dǎo)致前池中層至底層區(qū)間內(nèi)泥沙體積濃度高,泥沙處于飽和狀態(tài),最終在底層產(chǎn)生泥沙淤積,進(jìn)入前池內(nèi)的泥沙量會(huì)大于流出前池的泥沙量.前池達(dá)到?jīng)_淤平衡后,各體型前池內(nèi)泥沙進(jìn)入量和流出量相等,保持動(dòng)態(tài)平衡.各體型泵站前池底層泥沙體積濃度數(shù)值模擬結(jié)果顯示其所在區(qū)域形態(tài)、位置與實(shí)測(cè)泥沙淤積的平面形態(tài)、位置基本保持一致,證明泵站進(jìn)水前池底層泥沙體積濃度分布可反映前池內(nèi)泥沙淤積情況.
圖6為不同體型前池Z1斷面含沙量分布.
原型前池內(nèi)含沙量最高處可達(dá)36.0 kg/m3,含沙區(qū)面積最大,前池內(nèi)泥沙淤積嚴(yán)重;圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)含沙量明顯降低,最高含沙量出現(xiàn)在圓心角為33°的圓弧擴(kuò)散型正向進(jìn)水前池內(nèi),為34.6 kg/m3,含沙區(qū)面積較小.圓心角為60°,52°,44°,38°,33°的圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)高含沙區(qū)面積分別為自身前池面積的85.55%,72.27%,73.71%,71.88%和78.47%,分別為原型前池內(nèi)高含沙區(qū)面積的74.43%,60.71%,58.23%,53.91%和54.93%.隨著前池邊墻向內(nèi)收縮程度增加,前池內(nèi)高含沙區(qū)面積呈現(xiàn)先減小后增大的趨勢(shì),體型5(θ為38°)高含沙區(qū)面積最小.
可見(jiàn),圓弧擴(kuò)散型正向進(jìn)水前池體型結(jié)構(gòu)能夠有效改善前池泥沙淤積問(wèn)題.隨著圓弧邊墻向內(nèi)收縮,高含沙區(qū)面積逐漸減小,而邊墻收縮有一定范圍,若邊墻收縮程度過(guò)大,受較小體型結(jié)構(gòu)的限制,將制約前池內(nèi)的水流擴(kuò)散,加劇泥沙淤積.
3.2.2垂直水流方向泥沙體積濃度分布特征
在泵站實(shí)際運(yùn)行中,泥沙淤積在前池末端,不同體型前池末端泥沙淤積的差異更直觀.圖7為不同體型前池末端泥沙體積濃度沿X斷面分布.
如圖7所示,前池末端泥沙體積濃度較高,底層前池兩側(cè)的C/C0值大于1.06,出現(xiàn)高含沙區(qū);整體上泥沙體積濃度呈現(xiàn)對(duì)稱分布,X/B為-0.6~0.6時(shí)泥沙體積濃度較低且波動(dòng)較小,而前池兩側(cè)泥沙體積濃度均有不同程度的突增現(xiàn)象,越靠近前池底部泥沙體積濃度越高.前池末端由于水流擴(kuò)散、流速分布不均產(chǎn)生旋渦,回流區(qū)水流流速低,越靠近前池邊壁水流的攜沙能力越弱,泥沙體積濃度增大,易產(chǎn)生淤積.
由圖7還可知,體型2(θ為60°)—體型4(θ為44°)前池內(nèi)沿X斷面泥沙體積濃度分布特征相似,圓弧邊墻向內(nèi)收縮程度增加,泥沙體積濃度先減小后增大;體型5(θ為38°)前池內(nèi)泥沙體積濃度最低,為原型前池的0.9倍.而前池體型過(guò)小會(huì)制約水流擴(kuò)散,致使回流區(qū)擴(kuò)張,泥沙體積濃度增大;體型6(θ為33°)前池內(nèi)泥沙體積濃度有所回升.
可見(jiàn),圓弧擴(kuò)散型正向進(jìn)水前池體型結(jié)構(gòu)能夠降低前池回流區(qū)泥沙體積濃度;圓心角為38°~52°的圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙體積濃度較低.
3.2.3沿水深方向泥沙體積濃度分布特征
圖8為不同體型前池回流區(qū)內(nèi)泥沙體積濃度分布,前池回流區(qū)內(nèi)產(chǎn)生旋渦,致使泥沙聚集于回流區(qū),區(qū)域內(nèi)泥沙體積濃度較高,易出現(xiàn)泥沙淤積現(xiàn)象.前池回流區(qū)表層泥沙體積濃度變化明顯,不同體型前池表層與底層泥沙體積濃度差值分別為0.29C0,0.20C0,0.12C0,0.15C0,0.48C0和0.17C0,原型前池與體型5前池內(nèi)泥沙體積濃度沿水深方向分布特征相似,即前池表層與底層泥沙體積濃度差值較大,說(shuō)明泥沙沉積嚴(yán)重.
結(jié)果表明,圓心角為44°~60°時(shí),圓弧擴(kuò)散型正向進(jìn)水前池表層與底層泥沙體積濃度差值較小,泥沙淤積較少.
3.3前池泥沙淤積體積
對(duì)比不同體型前池內(nèi)泥沙淤積體積,直線擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙所占區(qū)域最大,泥沙淤積嚴(yán)重,而圓心角為60°,52°,44°,38°,33°的圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙所占體積分別較直線擴(kuò)散型正向進(jìn)水前池減少30.52%,35.16%,43.60%,35.82%和34.03%,圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙淤積顯著減少.
4結(jié)論
1) 圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu)呈對(duì)稱分布,前池中央形成主流區(qū),兩側(cè)形成回流區(qū).圓弧擴(kuò)散型正向進(jìn)水前池可使入池水流擴(kuò)散作用增強(qiáng),主流區(qū)面積增加,縮小了回流區(qū)尺度,前池水流流態(tài)改善,流場(chǎng)結(jié)構(gòu)穩(wěn)定性提高.
2) 圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)高含沙區(qū)域面積隨著圓弧邊墻向內(nèi)收縮程度增加而減小.圓心角為44°的圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)高含沙區(qū)面積為原型前池內(nèi)高含沙區(qū)面積的58.23%.
3) 沿垂直水流方向,圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙體積濃度分布中間低、兩側(cè)高.沿水深方向,泵站圓弧擴(kuò)散型正向進(jìn)水前池內(nèi)泥沙體積濃度分布由前池表層至池底逐漸升高.
4) 圓弧擴(kuò)散型正向進(jìn)水前池邊墻圓弧圓心角為44°時(shí),前池內(nèi)泥沙淤積體積較直線擴(kuò)散型減少43.60%,有效改善了多泥沙河流引水泵站正向進(jìn)水前池的泥沙淤積問(wèn)題.
參考文獻(xiàn)(References)
[1]李顏雁,郭鵬程,孫龍剛,等.立柱對(duì)大型泵站前池和進(jìn)水池流態(tài)影響的數(shù)值分析[J].排灌機(jī)械工程學(xué)報(bào),2021,39(9):929-936.
LI Yanyan, GUO Pengcheng, SUN Longgang, et al. Numerical analysis on influence of vertical column on flow pattern in forebay and intake of large pumping station[J]. Journal of drainage and irrigation machinery engineering, 2021,39(9):929-936.(in Chinese)
[2]劉志泉,成立,卜舸,等.泵站正向進(jìn)水前池“V”形導(dǎo)流墩整流數(shù)值模擬[J].中國(guó)農(nóng)村水利水電,2022(3):183-188.
LIU Zhiquan, CHENG Li, BU Ge, et al. Numerical simulation of VShaped diversion pier for improving the flow pattern in forward inlet forebay of the pumping station[J]. China rural water and hydrowater, 2022(3):183-188.(in Chinese)
[3]資丹,王本宏,王福軍,等.開(kāi)機(jī)組合對(duì)泵站進(jìn)水系統(tǒng)泥沙濃度分布的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2022,38(7):59-68.
ZI Dan, WANG Benhong, WANG Fujun, et al. Influences of startup pump units on the sediment concentration for the intake system of a pumping station[J]. Transactions of the CSAE, 2022,38(7):59-68.(in Chinese)
[4]徐存東,王榮榮,劉輝,等.多泥沙河流側(cè)向進(jìn)水泵站開(kāi)機(jī)組合對(duì)前池流態(tài)的影響研究[J].水利學(xué)報(bào),2020,51(1):92-101.
XU Cundong, WANG Rongrong, LIU Hui, et al. Research on the influence of startup combinations on the flow pattern in forebay of sideinlet pumping station on sandy river[J]. Journal of hydraulic engineering,2020,51(1):92-101.(in Chinese)
[5]王福軍,唐學(xué)林,陳鑫,等.泵站內(nèi)部流動(dòng)分析方法研究進(jìn)展[J].水利學(xué)報(bào),2018,49(1):47-61.
WANG Fujun, TANG Xuelin, CHEN Xin, et al. A review on flow analysis method for pumping stations[J]. Journal of hydraulic engineering,2018,49(1):47-61.(in Chinese)
[6]周龍才,劉士和,丘傳忻.泵站正向進(jìn)水前池流態(tài)的數(shù)值模擬[J].排灌機(jī)械,2004,22(1):23-27.
ZHOU Longcai, LIU Shihe, QIU Chuanxin. Numerical simulation of flow patten in the front inflow forebay of pumping station[J]. Drainage and irrigation machinery,2004,22(1):23-27.(in Chinese)
[7]樊新建,董春海,王之君,等.泵站正向進(jìn)水前池?cái)U(kuò)散角對(duì)池內(nèi)流場(chǎng)結(jié)構(gòu)的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2023,39(1):92-99.
FAN Xinjian, DONG Chunhai, WANG Zhijun, et al. Influence of diffusion angle on flow field structure in forward intake forebay of pumping station[J]. Transactions of the CSAE,2023,39(1):92-99. (in Chinese)
[8]XU C, ZHANG H, ZHANG X, et al. Numerical simulation of the impact of unit commitment optimization and divergence angle on the flow pattern of forebay[J]. International journal of heat and technology,2015,33(2):91-96.
[9]徐存東,劉璐瑤,王國(guó)霞,等.泵站直邊正向前池流態(tài)模擬與泥沙淤積預(yù)防措施[J].河海大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,45(5):398-405.
XU Cundong, LIU Luyao, WANG Guoxia, et al. Flow simulation of front inflows in the straightedge forebay of pumping station and preventive measures of sediment deposition[J]. Journal of Hohai University (natural sciences),2017,45(5):398-405.(in Chinese)
[10]夏臣智,成立,焦偉軒,等.泵站前池倒T形底坎整流措施數(shù)值模擬[J].南水北調(diào)與水利科技,2018,16(2):146-150.
XIA C, CHENG L, JIAO W, et al. Numerical simulation on rectification measure of inverted Tshaped sill at forebay of pump station[J]. Southtonorth water transfers and water science amp; technology,2018,16(2):146-150.(in Chinese)
[11]ANUAR N, TALIB S, RADZALY N, et al. The effect of sedimentation to the pump sump system by using computational fluid dynamics (CFD) model[J]. Journal of advanced research in fluid mechanics and thermal sciences, 2020,68(1): 86-97.
[12]閆立泰.甘肅省景電灌區(qū)現(xiàn)代化建設(shè)實(shí)踐[J].中國(guó)水利,2021(17):52-54.
YAN Litai. Practice of modernization construction of the Jingdian Irrigation District in Gansu Province[J]. China water resources,2021(17):52-54.(in Chinese)
[13]CHIPONGO K, KHIADANI M, SOOKHAK LARI K. Comparison and verification of turbulence Reynolds-averaged Navier-Stokes closures to model spatially varied flows[J]. Scientific reports, 2020,10(1):19059.
[14]羅燦,雷帥浩,袁堯,等.小型閘站式側(cè)向泵站進(jìn)水流態(tài)數(shù)值模擬研究[J].排灌機(jī)械工程學(xué)報(bào),2021,39(8):797-803.
LUO Can, LEI Shuaihao, YUAN Yao, et al. Numerical simulation research on inlet flow pattern of small sluice station lateral pumping station[J]. Journal of drainage and irrigation machinery engineering,2021,39(8):797-803.(in Chinese)
[15]吳修廣,沈永明,鄭永紅,等.非正交曲線坐標(biāo)下二維水流計(jì)算的SIMPLEC算法[J].水利學(xué)報(bào),2003,34(2):25-30.
WU Xiuguang, SHEN Yongming, ZHENG Yonghong, et al. 2D flow SIMPLEC algorithm in nonorthogonal curvilinear coordinates[J]. Journal of hydraulic engineering,2003,34(2):25-30.(in Chinese)
(責(zé)任編輯張文濤)
收稿日期: 2023-11-08; 修回日期: 2024-01-10; 網(wǎng)絡(luò)出版時(shí)間: 2024-11-08
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20241108.0943.006
基金項(xiàng)目: 國(guó)家自然科學(xué)基金資助項(xiàng)目(513798128);甘肅省自然科學(xué)基金資助項(xiàng)目(21JR7RA238);甘肅省科技計(jì)劃項(xiàng)目(甘科計(jì)〔2021〕18號(hào));甘肅省水利科學(xué)試驗(yàn)研究及技術(shù)推廣項(xiàng)目(23GSLK038)
第一作者簡(jiǎn)介: 樊新建(1979—),男,江西九江人,副教授,博士(通信作者,fanxj008@163.com),主要從事水力學(xué)及河流動(dòng)力學(xué)研究.
第二作者簡(jiǎn)介: 李龍基(1999—),男,山東棗莊人,碩士研究生(17863716127@163.com),主要從事工程水力學(xué)研究.