国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

轉(zhuǎn)錄組測(cè)序篩選牛卵泡發(fā)育偏差和優(yōu)勢(shì)卵泡選擇相關(guān)基因

2024-12-18 00:00:00周宏泰閆俊蓉李鵬飛
畜牧獸醫(yī)學(xué)報(bào) 2024年11期
關(guān)鍵詞:轉(zhuǎn)錄組基因

摘 要: 旨在篩選牛卵泡發(fā)育偏差和優(yōu)勢(shì)卵泡(dominant follicle, DF)選擇相關(guān)基因。本研究選取6頭10月齡健康海福特青年母牛,同期發(fā)情后平均分為兩組,第一組采集第一個(gè)卵泡發(fā)育波出現(xiàn)偏差前第一大卵泡(the largest follicle at predeviation, PDF1)和第二大卵泡(the second largest follicle at predeviation, PDF2),第二組采集第一個(gè)卵泡發(fā)育波出現(xiàn)偏差后第一大卵泡(the largest follicle at onset of deviation, ODF1)和第二大卵泡(the second largest follicle at onset of deviation, ODF2),提取卵泡顆粒細(xì)胞(granule cells, GCs)RNA進(jìn)行轉(zhuǎn)錄組測(cè)序,測(cè)序結(jié)果對(duì)照參考基因組,PDF1-VS-PDF2組篩選影響卵泡發(fā)育偏差的差異表達(dá)基因(differentially expressed genes, DEGs),ODF1-VS-ODF2組、ODF1-VS-PDF1組和ODF1-VS-PDF2組篩選影響優(yōu)勢(shì)卵泡選擇的DEGs并進(jìn)行GO和KEGG富集分析、PPI分析篩選關(guān)鍵基因,通過RT-qPCR和Western blotting驗(yàn)證篩選基因的準(zhǔn)確性。結(jié)果顯示,PDF1-VS-PDF2組發(fā)現(xiàn)220個(gè)DEGs,179個(gè)上調(diào),41個(gè)下調(diào),GO和KEGG分析顯示PI3K-Akt信號(hào)通路、TGF-β信號(hào)通路與卵泡發(fā)育相關(guān),PPI分析顯示MYC、BRCA1、EZH2、ARID1A、SMARCA4為中樞基因;ODF1-VS-ODF2組發(fā)現(xiàn)184個(gè)DEGs,93個(gè)上調(diào),91個(gè)下調(diào),GO和KEGG分析顯示PI3K-Akt信號(hào)通路、TGF-β信號(hào)通路、mTOR信號(hào)通路、TNF信號(hào)通路和Jak-STAT信號(hào)通路與卵泡發(fā)育相關(guān),PPI分析顯示POLR2A、FOS、HIF1A、KIT、SOCS3為中樞基因;ODF1-VS-PDF1組和ODF1-VS-PDF2組共發(fā)現(xiàn)837個(gè)DEGs,360個(gè)上調(diào),477個(gè)下調(diào),GO和KEGG分析顯示mTOR信號(hào)通路、TNF信號(hào)通路、TGF-β信號(hào)通路、PI3K-Akt信號(hào)通路和孕激素(progestin, P4)介導(dǎo)的卵母細(xì)胞成熟通路與卵泡發(fā)育相關(guān),PPI分析顯示HIF1A、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1、CUL7為中樞基因。RT-qPCR結(jié)果表明BRCA1、ARID1A、EZH2在PDF1表達(dá)量高于PDF2,POLR2A在ODF1表達(dá)量高于ODF2。Western blotting結(jié)果表明BRCA1和EZH2在PDF1表達(dá)量高于PDF2。本研究篩選出MYC、BRCA1、EZH2、ARID1A、SMARCA4可能在牛卵泡發(fā)育偏差發(fā)揮作用,POLR2A、FOS、HIF1A、KIT、SOCS3、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1和CUL7可能在牛DF選擇過程發(fā)揮作用,試驗(yàn)證實(shí)篩選的基因翻譯為蛋白質(zhì)發(fā)揮作用。研究結(jié)果為探索牛卵泡發(fā)育偏差和優(yōu)勢(shì)卵泡選擇基因調(diào)控理論奠定基礎(chǔ)。

關(guān)鍵詞: 牛;轉(zhuǎn)錄組;卵泡發(fā)育;基因

中圖分類號(hào):S823.2

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)11-5059-13

收稿日期:2024-05-13

基金項(xiàng)目:國家自然科學(xué)基金面上項(xiàng)目(31873002);山西省應(yīng)用基礎(chǔ)研究計(jì)劃面上項(xiàng)目(20210302123380;202303021221094);山西農(nóng)業(yè)大學(xué)橫向科技項(xiàng)目(2023QT139;2022HX010)

作者簡(jiǎn)介:周宏泰(1999-),男,山西夏縣人,碩士生,主要從事動(dòng)物生殖生理方面的研究,E-mail:2733672048@qq.com

*通信作者:李鵬飛,主要從事動(dòng)物生殖生理方面的研究,E-mail:adamlpf@126.com

Transcriptome Sequencing was Used to Screen Genes Related to Follicular Development Bias

and Dominant Follicle Selection in Cattle

ZHOU" Hongtai, YAN" Junrong, LI" Pengfei*

(College of Life Science, Shanxi Agricultural University, Taigu 030801," China)

Abstract:" The study aimed to screen genes related to the deviation of follicular development and dominant follicle selection in cattle. In this study, 6 healthy 10-month-old Hayford young cows were divided into two groups on average after synchronization. The first group collected the first and second largest follicles before the deviation of the first follicle development wave. The second group collected the first and second largest follicles after the deviation of the first follicle development wave. RNA of follicular granulosa cells was extracted for transcriptome sequencing, and the sequencing results were compared with the reference genome. The PDF1-VS-PDF2 group was screened for differentially expressed genes affecting follicular development. ODF1-VS-ODF2 group, ODF1-VS-PDF1 group and ODF1-VS-PDF2 group screened DEGs that affected dominant follicle selection, and performed GO and KEGG enrichment analysis and PPI analysis to screen key genes. The accuracy of the screened genes was verified by RT-qPCR and Western blotting. The results showed that 220 DEGs were found in the PDF1-VS-PDF2 group, 179 of which were up-regulated and 41 were down-regulated. GO and KEGG analysis showed that PI3K-Akt signaling pathway and TGF-β signaling pathway were related to follicular development. PPI analysis showed that MYC, BRCA1, EZH2, ARID1A and SMARCA4 were hub genes. A total of 184 DEGs were found in ODF1-VS-ODF2 group, 93 were up-regulated and 91 were down-regulated. GO and KEGG analysis showed that TGF-β signaling pathway, PI3K-Akt signaling pathway, Wnt signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway, TNF signaling pathway, mTOR signaling pathway and cell adhesion molecules were related to follicular development. PPI analysis showed that POLR2A, FOS, HIF1A, KIT and SOCS3 were hub genes. A total of 837 DEGs were found in ODF1-VS-PDF1 group and ODF1-VS-PDF2 group, of which 360 were up-regulated and 477 were down-regulated. GO and KEGG analysis showed that mTOR signaling pathway, TNF signaling pathway, TGF-β signaling pathway, PI3K-Akt signaling pathway, ECM-receptor interaction pathway, progestin (P4)-mediated oocyte maturation, MAPK signaling pathway were related to follicular development. PPI analysis showed that HIF1A, RPS9, COL1A2, PIK3R1, COL4A1, ITSN1, GNB1, RPL3, ESPL1, CUL7 were the hub genes. RT-qPCR results showed that the expression of BRCA1, ARID1A and EZH2 in PDF1 was higher than that in PDF2, and the expression of POLR2A in ODF1 was higher than that in ODF2. Western blotting results showed that the expression of BRCA1 and EZH2 in PDF1 was higher than that in PDF2. In this study, MYC, BRCA1, EZH2, ARID1A and SMARCA4 may play a role in the deviation of bovine follicle development. POLR2A, FOS, HIF1A, KIT, SOCS3, RPS9, COL1A2, PIK3R1, COL4A1, ITSN1, GNB1, RPL3, ESPL1 and CUL7 may play a role in the selection process of bovine DF. The results of this study laid a foundation for exploring the theory of regulation of bovine follicle development deviation and dominant follicle selection gene.

Key words: bovine; transcriptome; follicular development; genes

*Corresponding author: LI Pengfei, E-mail:adamlpf@126.com

牛是單胎動(dòng)物,在每個(gè)發(fā)情周期只有一個(gè)卵泡可以發(fā)育成熟,并完成最終的排卵和受精,所以牛發(fā)情周期內(nèi)卵巢的排卵數(shù)量和質(zhì)量與其繁殖性能直接相關(guān)。研究調(diào)節(jié)卵泡發(fā)育的分子機(jī)制對(duì)理解其控制周期、決定卵母細(xì)胞能力和調(diào)節(jié)排卵的功能機(jī)制至關(guān)重要。在卵泡發(fā)育過程中,基因轉(zhuǎn)錄和蛋白表達(dá)等一系列生物過程是調(diào)控卵泡募集、選擇及卵泡細(xì)胞凋亡的關(guān)鍵因素。Gasperin等[1]研究發(fā)現(xiàn),BMPR-1B和BMPR-2在卵泡偏差之前和預(yù)期偏差的第二大卵泡中更多的表達(dá),證明它們?cè)诼雅莘只皖惞檀忌芍械囊种谱饔?,BMPR-1B在閉鎖卵泡中上調(diào),可能在卵泡退化中發(fā)揮作用。Ortega等[2]研究發(fā)現(xiàn),在牛DF中血管內(nèi)皮生長(zhǎng)因子受體VEGFR1和VEGFR2 mRNA表達(dá)量高于SF,可能與卵泡健康發(fā)育有關(guān)。Ervin等[3]研究發(fā)現(xiàn),EDN1顯著抑制GCs雌二醇(estradiol, E2)的產(chǎn)生,影響牛卵巢排卵。

本研究通過對(duì)牛不同生理狀態(tài)下卵泡轉(zhuǎn)錄組高通量測(cè)序并分析,結(jié)合生物信息學(xué)手段,在調(diào)控牛卵泡偏差和DF選擇兩個(gè)層面對(duì)卵泡發(fā)育相關(guān)基因進(jìn)行規(guī)模化篩選,并檢測(cè)基因和蛋白的表達(dá)情況,以提高篩選的準(zhǔn)確率。研究結(jié)果對(duì)全面分析牛卵泡發(fā)育關(guān)鍵調(diào)控因子具有重要意義,為闡明牛卵泡發(fā)育調(diào)控機(jī)理奠定基礎(chǔ)。

1 材料與方法

1.1 試驗(yàn)主要試劑

Solexa測(cè)序芯片、TruSeq RNA Sample PrepKit、QiaQuick PCR kit、TruSeq SBS kit、裂解緩沖液(Illumina, 美國),PrimeScript RT reagent Kit With gDNA Eraser、dNTP、DNA Marker DL2000、SYBR Premix Ex TaqTM Ⅱ(TaKaRa, 大連),Trizol、DEPC(Invitrogen公司, 美國),固相RNase清除劑(Andybio公司, 美國)。

1.2 試驗(yàn)樣品采集

選取6頭10月齡健康海福特青年母牛,注射前列腺素F2α同期發(fā)情,平均分為兩組,每天用B超儀檢測(cè)并記錄卵泡生長(zhǎng)情況。第一組在第一卵泡波的偏差期啟動(dòng)時(shí),此時(shí)PDF1約為8.5 mm,摘除卵巢并用眼科剪剪下出現(xiàn)偏差前的最大卵泡PDF1和第二大卵泡PDF2,第二組在第一卵泡波的偏差期啟動(dòng)后摘除卵巢并用眼科剪剪下出現(xiàn)偏差后的最大卵泡ODF1和第二大卵泡ODF2,此時(shí)ODF1約為12.0 mm,放入滅菌的DPBS中準(zhǔn)備分離GCs。

1.3 總RNA提取

分離的卵泡用DPBS清洗3次,放在盛有培養(yǎng)液的表面皿上,用針頭戳破卵泡使卵泡液流出,用細(xì)胞刮刀輕刮卵泡內(nèi)壁收取GCs,DPBS清洗數(shù)次,懸液置于無菌EP管,2 000 r·min-1離心10 min,棄上清并加入1 mL RNAiso Plus,提取總RNA。

1.4 RNA文庫構(gòu)建并測(cè)序

取總RNA樣品各6 μL,Oligo(dT)磁珠富集后,加裂解緩沖液使其裂解為200 bp左右的片段;以此為模板,加入隨機(jī)引物六聚體合成cDNA第一鏈;再加入一系列緩沖液、RNase H和dNTPs,經(jīng)聚合酶Ⅰ合成cDNA第二鏈;經(jīng)QiaQuick PCR kit 純化,EB緩沖液洗脫,末端修復(fù),加Poly A尾巴,加5′和3′接頭;瓊脂糖凝膠電泳回收目的片段,PCR擴(kuò)增,完成整個(gè)cDNA文庫構(gòu)建;Illumina HiSeq2000測(cè)序平臺(tái)進(jìn)行測(cè)序。

1.5 轉(zhuǎn)錄本篩選牛卵泡差異表達(dá)基因和生物信息學(xué)分析

從Illumina平臺(tái)對(duì)測(cè)序得到的4個(gè)轉(zhuǎn)錄本中未比對(duì)到參考基因組的序列,設(shè)定條件RPKM相差2倍以上為差異序列,通過BLAST軟件對(duì)差異序列進(jìn)行注釋得到DEGs。Gene Ontology數(shù)據(jù)庫(http://geneontology.org/)進(jìn)行GO富集分析。KOBAS-intelligence數(shù)據(jù)庫(http://kobas.cbi.pku.edu.cn/)進(jìn)行KEGG信號(hào)通路分析。STRING數(shù)據(jù)庫的蛋白互作網(wǎng)絡(luò)(Protein-Protein Interaction Networks,PPI)揭示DEGs之間的關(guān)系,下載網(wǎng)絡(luò)關(guān)系文件。根據(jù)Cytoscape工具及其CytoHubba插件Degree拓?fù)浞治龇椒ù_定中樞基因。

1.6 RT-qPCR檢測(cè)基因表達(dá)

總RNA反轉(zhuǎn)錄,反應(yīng)條件:7℃ 15 min,85℃ 5 s,-20℃保存。參考NCBI上的Bos taurus(Calve)的卵泡發(fā)育相關(guān)基因序列,設(shè)計(jì)候選基因引物(表1),利用Primer 3.0軟件設(shè)計(jì)合成引物;由上海生工生物工程股份有限公司合成。β-actin為內(nèi)參基因。

1.7 Western blotting檢測(cè)蛋白表達(dá)

總蛋白根據(jù)BCA試劑盒(全式金)說明書進(jìn)行蛋白濃度測(cè)定后進(jìn)行蛋白變性,蛋白變性條件為100℃,5 min。SDS-PAGE電泳:蛋白上樣量10 μL(40 μg),80 V 30 min,120 V 90 min;轉(zhuǎn)膜:200 mA 100 min;封閉:5%脫脂奶粉封閉1 h;孵育一抗,4℃過夜;TBST洗3次孵育二抗,室溫1 h;TBST洗3次,使用ELC顯影液孵育,顯影拍照,使用ImageJ軟件對(duì)條帶進(jìn)行灰度分析。β-actin為內(nèi)參蛋白。

1.8 數(shù)據(jù)處理與分析

本研究中數(shù)據(jù)分析均采用2-ΔΔCt的方法。各基因表達(dá)量經(jīng)內(nèi)參基因β-actin表達(dá)量校正,試驗(yàn)數(shù)據(jù)運(yùn)用SPSS 20.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)分析,樣本間利用t檢驗(yàn)法分析差異顯著性,最后利用GraphPad prism9.0軟件繪圖。

2 結(jié) 果

2.1 PDF1-VS-PDF2組差異表達(dá)基因篩選及分析

2.1.1 差異表達(dá)基因篩選

從Illumina平臺(tái)對(duì)PDF1和PDF2測(cè)序得到的兩個(gè)轉(zhuǎn)錄本中篩選卵泡發(fā)育DEGs。設(shè)定PDF1-RPKM/PDF2-RPKM≥2或者PDF2-RPKM/PDF1-RPKM≤2過濾,目標(biāo)序列通過BLAST比對(duì)參考基因組,在PDF1-VS-PDF2組共發(fā)現(xiàn)220個(gè)DEGs,其中179個(gè)上調(diào),41個(gè)下調(diào)。

2.1.2 差異表達(dá)基因GO和KEGG分析

PDF1-VS-PDF2組220個(gè)DEGs的GO和KEGG分析結(jié)果見圖1和圖2(Plt;0.05)。DEGs明顯富集在代謝有關(guān)途徑中,包括脂質(zhì)代謝、蛋白質(zhì)代謝途徑和氮化合物代謝過程途徑。對(duì)已注釋的功能分類條目進(jìn)一步篩選,獲得許多可能參與卵泡發(fā)育的通路,如調(diào)控代謝、增殖、細(xì)胞存活、生長(zhǎng)和血管生成的PI3K-Akt信號(hào)通路,調(diào)控細(xì)胞增殖、分化、細(xì)胞間相互作用和免疫調(diào)節(jié)的TGF-β信號(hào)通路,調(diào)節(jié)細(xì)胞周期的細(xì)胞周期通路。

2.1.3 差異表達(dá)基因蛋白互作網(wǎng)絡(luò)

DEGs的PPI網(wǎng)絡(luò)(圖3)揭示了蛋白之間的相互作用,網(wǎng)絡(luò)有129個(gè)節(jié)點(diǎn)和203個(gè)相互作用(Plt;0.05)。CytoHubba檢測(cè)MYC、BRCA1、EZH2、ARID1A、SMARCA4是網(wǎng)絡(luò)中的5個(gè)中樞基因。進(jìn)一步分析這些中樞基因發(fā)現(xiàn),在脂質(zhì)代謝和蛋白質(zhì)代謝中"" 起重要作用的MYC和BRCA1在PDF1表達(dá)顯著上調(diào),而SMARCA4則在PDF2表達(dá)顯著上調(diào),BRCA1在氮化合物代謝途徑和PI3K-Akt信號(hào)通路發(fā)揮重要作用。

2.2 ODF1-VS-ODF2組差異表達(dá)基因篩選及分析

2.2.1 差異表達(dá)基因篩選

從Illumina平臺(tái)對(duì)ODF1和ODF2組測(cè)序得到的兩個(gè)轉(zhuǎn)錄本中篩選卵泡發(fā)育DEGs。設(shè)定ODF1-RPKM/ODF2-RPKM≥2或者ODF2-RPKM/ODF1-RPKM≥2過濾,目標(biāo)序列通過BLAST比對(duì)參考基因組,在ODF1-VS-ODF2組共發(fā)現(xiàn)184個(gè)DEGs,其中93個(gè)上調(diào),91個(gè)下調(diào)。

2.2.2 差異表達(dá)基因GO和KEGG分析

ODF1-VS-ODF2組184個(gè)DEGs的GO和KEGG分析結(jié)果見圖4和圖5(Plt;0.05)。DEGs明顯富集在脂質(zhì)、蛋白質(zhì)、氮化合物代謝通路和RNA代謝通路。對(duì)已注釋的功能分類條目進(jìn)一步篩選,發(fā)現(xiàn)DEGs富集在參與細(xì)胞增殖、分化、凋亡以及免疫調(diào)節(jié)的PI3K-Akt信號(hào)通路、TGF-β信號(hào)通路、mTOR信號(hào)通路、TNF信號(hào)通路和Jak-STAT信號(hào)通路,可能與卵泡發(fā)育相關(guān)。

2.2.3 差異表達(dá)基因蛋白互作網(wǎng)絡(luò)

DEGs的PPI網(wǎng)絡(luò)(圖6)揭示了蛋白之間的相互作用,網(wǎng)絡(luò)有80個(gè)節(jié)點(diǎn)和102個(gè)相互作用(Plt;0.05)。CytoHubba檢測(cè)POLR2A、FOS、HIF1A、KIT、SOCS3是網(wǎng)絡(luò)中的5個(gè)中樞基因。進(jìn)一步分析這些中樞基因發(fā)現(xiàn),RNA代謝通路中的重要基因KIT和SOCS3在ODF1上調(diào),F(xiàn)OS和HIF1A在ODF2上調(diào)。SOCS3、KIT和FOS在TNF和Jak-STAT等調(diào)控細(xì)胞增殖和發(fā)育的通路中也發(fā)揮重要作用。

2.3 ODF1-VS-PDF1組、ODF1-VS-PDF2組差異表達(dá)基因篩選及分析

2.3.1 差異表達(dá)基因篩選

從Illumina平臺(tái)對(duì)測(cè)序得到的轉(zhuǎn)錄本中篩選卵泡發(fā)育DEGs。設(shè)定ODF1-RPKM/PDF1-RPKM≥2或PDF1-RPKM/ODF1-RPKM≥2;ODF1-RPKM/PDF2-RPKM≥2或PDF2-RPKM/ODF1-RPKM≥2過濾,目標(biāo)序列通過BLAST比對(duì)參考基因組,在ODF1-VS-PDF1組共發(fā)現(xiàn)492個(gè)DEGs,其中193個(gè)上調(diào),299個(gè)下調(diào);ODF1-VS-PDF2組共發(fā)現(xiàn)345個(gè)DEGs,其中167個(gè)上調(diào),178個(gè)下調(diào)。

2.3.2 差異表達(dá)基因GO和KEGG分析

ODF1-VS-PDF1組和ODF1-VS-PDF2組共837個(gè)DEGs的GO和KEGG分析結(jié)果見圖7和圖8(Plt;0.05)。DEGs富集在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞通訊途徑、細(xì)胞生長(zhǎng)因子刺激調(diào)節(jié)途徑。對(duì)已注釋的功能分類條目進(jìn)一步篩選,獲得一些可能參與卵泡發(fā)育的通路,如mTOR信號(hào)通路、TNF信號(hào)通路、TGF-β信號(hào)通路、PI3K-Akt信號(hào)通路和P4介導(dǎo)的卵母細(xì)胞成熟通路。

2.3.3 差異表達(dá)基因蛋白互作網(wǎng)絡(luò)

DEGs的PPI網(wǎng)絡(luò)(圖9)揭示了蛋白之間的相互作用,網(wǎng)絡(luò)有414個(gè)節(jié)點(diǎn)和805個(gè)相互作用(Plt;0.05)。CytoHubba檢測(cè)HIF1A、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1、CUL7是網(wǎng)絡(luò)中的10個(gè)中樞基因。進(jìn)一步分析參與這些途徑的中樞基因,發(fā)現(xiàn)HIF1A、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、ESPL1和CUL7在ODF1表達(dá)上調(diào),RPL3在PDF1表達(dá)上調(diào),HIF1A和RPS9在PDF2表達(dá)上調(diào)。

2.4 RT-qPCR檢測(cè)基因表達(dá)

從MYC、BRCA1、EZH2、ARID1A、SMARCA4、POLR2A、FOS、HIF1A、KIT、SOCS3、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1、CUL7中隨機(jī)挑選BRCA1、ARID1A、POLR2A和EZH2進(jìn)行RT-qPCR驗(yàn)證。分析結(jié)果如圖10所示,BRCA1、ARID1A和EZH2在PDF1中表達(dá)量極顯著高于PDF2(Plt;0.0001),POLR2A在ODF1中表達(dá)量極顯著高于ODF2(Plt;0.0001),與高通量測(cè)序結(jié)果相一致。

2.5 Western blotting檢測(cè)蛋白表達(dá)

BRCA1和EZH2蛋白在PDF1和PDF2的GCs中蛋白表達(dá)檢測(cè)結(jié)果見圖11,BRCA1和EZH2在PDF1的表達(dá)量極顯著高于PDF2(Plt;0.01)。

3 討 論

3.1 Illumina測(cè)序結(jié)果驗(yàn)證

轉(zhuǎn)錄組是組織或細(xì)胞所能轉(zhuǎn)錄出來的所有RNA的總和。轉(zhuǎn)錄組中包含了時(shí)間和空間的限定,即同一細(xì)胞在不同的生長(zhǎng)時(shí)期及生長(zhǎng)環(huán)境下基因表達(dá)情況不完全相同,是研究生物分子機(jī)理的一種高效方法。Illumina測(cè)序平臺(tái)能實(shí)現(xiàn)高通量高準(zhǔn)確性的轉(zhuǎn)錄組序列分析,在基因挖掘、表達(dá)靈敏度方面優(yōu)勢(shì)明顯。Hu等[4]利用轉(zhuǎn)錄組測(cè)序和分析發(fā)現(xiàn),OOSP2通過翻譯調(diào)控誘導(dǎo)特異性信號(hào)通路,在人卵母細(xì)胞成熟過程中發(fā)揮作用。Liao等[5]利用轉(zhuǎn)錄組測(cè)序和分析發(fā)現(xiàn),高雄激素影響類固醇激素合成和脂質(zhì)代謝從而抑制卵泡發(fā)育和排卵。本研究中,轉(zhuǎn)錄組數(shù)據(jù)由Illumina平臺(tái)測(cè)序,經(jīng)質(zhì)控后所得Clean reads應(yīng)用于基因表達(dá)的定量分析。從DEGs中隨機(jī)挑選BRCA1,ARID1A、POLR2A和EZH2檢測(cè)基因表達(dá)情況。結(jié)果顯示,BRCA1、ARID1A和EZH2在PDF1表達(dá)量高于PDF2,POLR2A在ODF1表達(dá)量高于ODF2,與高通量測(cè)序結(jié)果相一致。這一結(jié)果證明,經(jīng)過Illumina測(cè)序的數(shù)據(jù)具有良好的可靠性,可根據(jù)測(cè)序數(shù)據(jù)進(jìn)一步分析。

3.2 影響卵泡發(fā)育的細(xì)胞功能和通路

卵泡發(fā)育由促性腺激素、類固醇和生長(zhǎng)因子協(xié)調(diào),這些激素和生長(zhǎng)因子激活多種信號(hào)通路。在哺乳動(dòng)物中,已經(jīng)證明有多條通路與卵泡發(fā)育相關(guān)。TGF-β信號(hào)通路在卵泡生成和黃體生成中起著至關(guān)重要的作用,F(xiàn)OXG1是該通路的抑制因子,在卵泡發(fā)生過程中調(diào)節(jié)雌激素合成[6-8]。PI3K-Akt信號(hào)通路調(diào)節(jié)卵泡發(fā)育,在卵泡發(fā)育過程中,F(xiàn)SH特異性激活PI3K/Akt通路及其靶蛋白,促進(jìn)卵泡生長(zhǎng)和成熟[9-11]。WNT-β-catenin信號(hào)通路是一種在胚胎發(fā)生和成人組織穩(wěn)態(tài)中調(diào)節(jié)細(xì)胞增殖、分化、干細(xì)胞更新、運(yùn)動(dòng)和凋亡的細(xì)胞間通訊系統(tǒng)。研究表明,WNT信號(hào)通路可通過增強(qiáng)FSH作用的方式在DF的選擇中發(fā)揮潛在作用[12]。血管生成因子在包括卵泡生長(zhǎng)和排卵在內(nèi)的卵巢卵泡發(fā)育過程中是必不可少的,血管的正確發(fā)育有助于竇前和竇狀卵泡發(fā)育、優(yōu)勢(shì)卵泡選擇、卵泡閉鎖和排卵[13-14]。NOTCH和骨形態(tài)發(fā)生蛋白/SMAD信號(hào)通路在哺乳動(dòng)物卵巢發(fā)育中起關(guān)鍵調(diào)控作用,NOTCH2上調(diào)牛卵泡GCs中BMP/SAMD信號(hào)通路的關(guān)鍵基因,而BMP4抑制其下游信號(hào)因子和NOTCH信號(hào)通路的靶基因,兩條通路通過調(diào)控GCs共同參與調(diào)控牛卵泡發(fā)育[15-16]。mTOR信號(hào)通路通過調(diào)節(jié)增殖、細(xì)胞分化和類固醇激素生物合成等生物過程,對(duì)卵泡發(fā)育和卵母細(xì)胞成熟具有重要意義[17-18]。本研究中,DEGs在PI3K-Akt、mTOR、WNT-β-catenin、血管生成、NOTCH和骨形態(tài)發(fā)生蛋白/SMAD等信號(hào)通路的富集說明其通過不同途徑參與卵泡發(fā)育。PPI由蛋白通過彼此之間的相互作用構(gòu)成,來參與生物信號(hào)傳遞、基因表達(dá)調(diào)節(jié)、能量和物質(zhì)代謝及細(xì)胞周期調(diào)控等生命過程的各個(gè)環(huán)節(jié)。在復(fù)雜的差異蛋白互作網(wǎng)絡(luò)中獲取關(guān)鍵蛋白和子網(wǎng)絡(luò)對(duì)于尋找生命活動(dòng)的機(jī)制十分重要。Sun等[19]通過PPI發(fā)現(xiàn)COL4A2、COL1A2、COL4A1、COL5A2、COL12A1、ELN、ALB和MMP10是雞卵泡發(fā)育的關(guān)鍵候選基因。Shen等[20]通過PPI和單因素COX回歸分析確定了8個(gè)影響骨肉瘤發(fā)生的關(guān)鍵基因。本研究根據(jù)卵泡發(fā)育相關(guān)信號(hào)通路和PPI確定DEGs中發(fā)揮關(guān)鍵作用的基因作為目的基因進(jìn)一步研究。

3.3 影響卵泡發(fā)育偏差的基因

牛卵泡發(fā)育過程中,卵泡發(fā)育出現(xiàn)偏差被認(rèn)為是卵泡發(fā)育的重要生理階段和轉(zhuǎn)折點(diǎn),不是所有募集到的卵泡都能發(fā)育到排卵階段,一般只有一個(gè)卵泡會(huì)變成DF繼續(xù)發(fā)育,未被選擇的卵泡都將發(fā)生閉鎖。卵泡發(fā)育偏差過程涉及卵泡內(nèi)游離胰島素樣生長(zhǎng)因子水平增加和GCs中黃體生成素(luteinizing hormone, LH)受體及E2水平增加,且偏差過程代表了整個(gè)卵泡選擇機(jī)制[9]。PDF1和PDF2處于卵泡發(fā)育偏差期,本研究從PPI確定5個(gè)關(guān)鍵基因MYC、BRCA1、EZH2、ARID1A、SMARCA4涉及卵泡發(fā)育偏差形成。研究發(fā)現(xiàn),MYC在卵泡發(fā)育到排卵前階段受到促性腺激素的調(diào)節(jié)[21-22],在牛閉鎖卵泡中MYC表達(dá)量相對(duì)于健康卵泡下調(diào)[23]。MYC參與Notch信號(hào)通路調(diào)控,Notch信號(hào)通路調(diào)控GCs增殖和E2水平[24]。BRCA1參與DNA損傷應(yīng)答、轉(zhuǎn)錄調(diào)控、細(xì)胞生長(zhǎng)和凋亡等生物學(xué)通路,研究表明BRCA1與小鼠GCs細(xì)胞周期密切相關(guān)[25],純合BRCA1突變小鼠GCs中E2生物合成增加[26]。Huo等[27]研究證明,EZH2是GCs活力的關(guān)鍵調(diào)節(jié)因子,miR-26a通過EZH2調(diào)控小鼠卵巢中GCs的凋亡。miR-26a調(diào)控多種細(xì)胞事件,包括細(xì)胞分裂、凋亡信號(hào)傳導(dǎo)以及細(xì)胞分化、遷移和自噬。ARID1A在多囊卵巢綜合征動(dòng)物GCs表達(dá)下調(diào),研究表明過表達(dá)ARID1A通過PI3K-Akt通路促進(jìn)GCs凋亡[28]。在哺乳動(dòng)物中,PI3K-Akt信號(hào)通路調(diào)節(jié)卵泡發(fā)育,F(xiàn)SH通過特異性激活PI3K-Akt通路及其靶蛋白促進(jìn)卵泡生長(zhǎng)和成熟[29]。Lisboa等[30]研究發(fā)現(xiàn),SMARCA4表達(dá)蛋白BRG1在卵泡生長(zhǎng)中起調(diào)節(jié)作用,調(diào)節(jié)GCs和卵泡膜細(xì)胞的增殖及卵母細(xì)胞的生長(zhǎng)和成熟。上述結(jié)果表明,MYC、BRCA1、EZH2、ARID1A、SMARCA4可能在卵泡發(fā)育偏差發(fā)揮作用。

3.4 影響優(yōu)勢(shì)卵泡選擇的基因

在牛卵泡波中,DF的選擇表現(xiàn)為最大卵泡的直徑偏差或持續(xù)生長(zhǎng)速度以及在最大卵泡達(dá)到約8.5 mm時(shí)第二大卵泡的生長(zhǎng)速度下降[4]。卵泡偏差后的DF選擇和生長(zhǎng)是由LH作用引起的,激素濃度的變化和個(gè)體不同數(shù)量的卵泡受體是選擇優(yōu)勢(shì)卵泡的一個(gè)原因[31]。局部產(chǎn)生的生長(zhǎng)因子與促性腺激素協(xié)同作用對(duì)卵泡選擇有顯著影響,環(huán)境因素也能通過調(diào)節(jié)卵泡對(duì)促性腺激素的敏感性從而影響DF的選擇[32]。本研究在ODF1和ODF2間確定的5個(gè)關(guān)鍵基因POLR2A、FOS、HIF1A、KIT、SOCS3,在ODF1和PDF1及PDF2間確定的10個(gè)關(guān)鍵基因HIF1A、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1、CUL7在DF選擇發(fā)揮作用。FOS與卵巢血管生成相關(guān),血管生成為卵泡發(fā)育提供營養(yǎng)和其他物質(zhì),促進(jìn)卵泡發(fā)育[33]。研究表明,F(xiàn)OS表達(dá)對(duì)小鼠排卵和黃體生成至關(guān)重要,對(duì)人GCs中排卵有關(guān)關(guān)鍵基因的表達(dá)上調(diào)有關(guān)[34]。HIF1A在LH峰和排卵之間急性調(diào)節(jié)表達(dá),調(diào)節(jié)最終卵泡成熟、排卵和早期黃體血管生成[35]。KIT參與PI3K-Akt信號(hào)通路,在牛排卵卵泡中,KIT表達(dá)量高于優(yōu)勢(shì)卵泡,表明KIT是促進(jìn)排卵和黃體化過程的調(diào)控基因[36]。SOCS3是JAK-STAT通路的關(guān)鍵成員,研究表明FSH在GCs中激活JAK3以磷酸化靶蛋白,控制GCs增殖和類固醇生成活性[37]。PIK3R1是PI3K的調(diào)控亞基,研究表明PIK3R1與mTOR信號(hào)級(jí)聯(lián)相關(guān)[38],而mTOR是PI3K-Akt信號(hào)通路的下游通路,miR-29-3p通過PI3K-Akt/mTOR信號(hào)通路靶向PTEN抑制GCs自噬和凋亡,調(diào)控卵泡發(fā)育[39]。ITSN1在小鼠成熟卵泡中表達(dá),結(jié)合細(xì)胞外基質(zhì)介導(dǎo)細(xì)胞遷移、增殖或凋亡[40]。上述結(jié)果表明,POLR2A、FOS、HIF1A、KIT、SOCS3、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1、CUL7可能在牛DF選擇過程中發(fā)揮作用。

3.5 DEGs的蛋白表達(dá)

細(xì)胞中除了直接轉(zhuǎn)錄為RNA發(fā)揮作用的基因外,大部分基因要翻譯成蛋白質(zhì)才能發(fā)揮其生物作用。本研究篩選的DEGs具有促進(jìn)GCs增殖和類固醇激素分泌以及各種代謝等功能,發(fā)揮這些功能需要建立在DEGs蛋白質(zhì)表達(dá)的前提下。本研究隨機(jī)選取BRCA1和EZH2進(jìn)行蛋白表達(dá)量檢測(cè),Western blotting結(jié)果顯示BRCA1和EZH2在PDF1表達(dá)量高于PDF2,表明DEGs蛋白質(zhì)在卵泡中差異表達(dá)。這個(gè)結(jié)果表明DEGs經(jīng)過轉(zhuǎn)錄翻譯為蛋白質(zhì)發(fā)揮特定的生物學(xué)功能,在卵泡發(fā)育中發(fā)揮作用。

4 結(jié) 論

本研究篩選出MYC、BRCA1、EZH2、ARID1A、SMARCA4可能在牛卵泡發(fā)育偏差發(fā)揮關(guān)鍵作用;POLR2A、FOS、HIF1A、KIT、SOCS3、RPS9、COL1A2、PIK3R1、COL4A1、ITSN1、GNB1、RPL3、ESPL1、CUL7可能在牛DF選擇過程發(fā)揮關(guān)鍵作用,Western blotting證實(shí)篩選的基因轉(zhuǎn)錄翻譯為蛋白質(zhì)發(fā)揮功能。研究結(jié)果豐富了卵泡發(fā)育偏差和DF選擇的基因調(diào)控理論,為進(jìn)一步探究卵泡發(fā)育分子調(diào)控機(jī)理奠定基礎(chǔ)。

參考文獻(xiàn)(References):

[1] GASPERIN B G,F(xiàn)ERREIRA R,ROVANI M T,et al.Expression of receptors for BMP15 is differentially regulated in dominant and subordinate follicles during follicle deviation in cattle[J].Anim Reprod Sci,2014,144(3-4):72-78.

[2] ORTEGA SERRANO P V,GUZMN A,HERNNDEZ-CORONADO C G,et al.Reduction in the mRNA expression of sVEGFR1 and sVEGFR2 is associated with the selection of dominant follicle in cows[J].Reprod Domest Anim,2016,51(6):985-991.

[3] ERVIN J M,SCHTZ L F,SPICER L J.Current status of the role of endothelins in regulating ovarian follicular function:a review[J].Anim Reprod Sci,2017,186:1-10.

[4] HU W Q,ZENG H T,SHI Y N,et al.Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation[J].Nat Commun,2022,13(1):5114.

[5] LIAO B Y,QI X Y,YUN C Y,et al.Effects of androgen excess-related metabolic disturbances on granulosa cell function and follicular development[J].Front Endocrinol (Lausanne),2022,13:815968.

[6] YAN X Y,HOU L L,ZHANG C.FOXG1 is involved in mouse ovarian functions and embryogenesis[J].J Steroid Biochem Mol Biol,2023,233:106372.

[7] CADENAS J,POULSEN L C,NIKIFOROV D,et al.Regulation of human oocyte maturation in vivo during the final maturation of follicles[J].Hum Reprod,2023,38(4):686-700.

[8] HE Q K,LI Y P,XU Z R,et al.3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality in mice[J].Environ Pollut,2023,316(Pt 2):120662.

[9] GINTHER O J.The theory of follicle selection in cattle[J].Domest Anim Endocrinol,2016,57:85-99.

[10] JIA Y H,LIU Y F,WANG P,et al.NTRK2 promotes sheep granulosa cells proliferation and reproductive hormone secretion and activates the PI3K/AKT pathway[J].Animals (Basel),2024,14(10):1465.

[11] ZHOU Y,ZHANG S H,JIA Y R,et al.Regulation and role of adiponectin secretion in rat ovarian granulosa cells[J].Int J Mol Sci,2024,25(10):5155.

[12] GUPTA P S P,F(xiàn)OLGER J K,RAJPUT S K,et al.Regulation and regulatory role of WNT signaling in potentiating FSH action during bovine dominant follicle selection[J].PLoS One,2014,9(6):e100201.

[13] GUZMN A,HUGHES C H K,MURPHY B D.Orphan nuclear receptors in angiogenesis and follicular development[J]. Reproduction,2021,162(3):R35-R54.

[14] FU Y,ZHANG M J,SUI B D,et al.Mesenchymal stem cell-derived apoptotic vesicles ameliorate impaired ovarian folliculogenesis in polycystic ovary syndrome and ovarian aging by targeting WNT signaling[J]. Theranostics, 2024, 14(8):3385-3403.

[15] LI Y T,JING J J,DANG W Q,et al.Cross-talk between NOTCH2 and BMP4/SMAD signaling pathways in bovine follicular granulosa cells[J].Theriogenology,2022,187:74-81.

[16] LIU J,GUO C H,F(xiàn)U J J,et al.Identification and functional analysis of circRNAs during goat follicular development[J].Int J Mol Sci,2024,25(14):7548.

[17] LIU W J,DU C,NAN L K,et al.Influence of estrus on dairy cow milk exosomal miRNAs and their role in hormone secretion by granulosa cells[J].Int J Mol Sci,2023,24(11):9608.

[18] CAI J W,LI Y P,ZHAO B H,et al.N-acetylcysteine alleviates d-galactose-induced injury of ovarian granulosa cells in female rabbits by regulating the PI3K/Akt/mTOR signaling pathway[J].Antioxidants (Basel),2024,13(4):384.

[19] SUN T T,XIAO C,YANG Z L,et al.Grade follicles transcriptional profiling analysis in different laying stages in chicken[J].BMC Genomics,2022,23(1):492.

[20] SHEN Z L,CHEN Z Y,JI Y,et al.TREM2 as a prognostic biomarker for osteosarcoma microenvironment remodeling[J].J Oncol,2023,2023:3677789.

[21] CANTANHDE L F,MOURA M T,OLIVEIRA-SILVA R L,et al.MYC integrates FSH signalling networks in cumulus cells ""during bovine oocyte maturation[J].Acta Vet Hung,2022,doi:10.1556/004.2022.00007.

[22] PIONTKEWITZ Y,SUNDFELDT K,HEDIN L.The expression of c-myc during follicular growth and luteal formation in the rat ovary in vivo[J].J Endocrinol,1997,152(3):395-406.

[23] HATZIRODOS N,HUMMITZSCH K,IRVING-RODGERS H F,et al.Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia[J].BMC Genomics,2014,15:40.

[24] LI L Y,SHI X J,SHI Y,et al.The signaling pathways involved in ovarian follicle development[J].Front Physiol,2021,12:730196.

[25] PHILLIPS K W,GOLDSWORTHY S M,BENNETT L M,et al.Brca1 is expressed independently of hormonal stimulation in the mouse ovary[J].Lab Invest,1997,76(3):419-425.

[26] YEN H Y,GABET Y,LIU Y,et al.Alterations in Brca1 expression in mouse ovarian granulosa cells have short-term and long-term consequences on estrogen-responsive organs[J].Lab Invest,2012,92(6):802-811.

[27] HUO S W,QI H R,SI Y X,et al.MicroRNA 26a targets Ezh2 to regulate apoptosis in mouse ovarian granulosa cells[J].Syst Biol Reprod Med,2021,67(3):221-229.

[28] JI X L,LIU X,WANG Z,et al.Expression of ARID1A in polycystic ovary syndrome and its effect on the proliferation and apoptosis of ovarian granulosa cells[J].Ann Endocrinol (Paris),2020,81(6):521-529.

[29] HUNZICKER-DUNN M E,LOPEZ-BILADEAU B,LAW N C,et al.PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells[J].Proc Natl Acad Sci U S A,2012,109(44):E2979-E2988.

[30] LISBOA L A,BORDIGNON V,SENEDA M M.Immunolocalization of BRG1-SWI/SNF protein during folliculogenesis in the porcine ovary[J].Zygote,2012,20(3):243-248.

[31] GONG J G,CAMPBELL B K,WEBB R.Defining the gonadotrophin requirement for the selection of a single dominant follicle in cattle[J].Reprod Fertil Dev,2020,32(3):322-334.

[32] WEBB R,GARNSWORTHY P C,GONG J G,et al.Control of follicular growth:local interactions and nutritional influences[J].J Anim Sci,2004,82 E-Suppl:E63-E74.

[33] DIAS F C F,KHAN M I R,SIRARD M A,et al.Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle[J].Reproduction,2013,146(2):181-191.

[34] CHOI Y,ROSEWELL K L,BRNNSTRM M,et al.FOS,a critical downstream mediator of PGR and EGF signaling necessary for ovulatory prostaglandins in the human ovary[J].J Clin Endocrinol Metab,2018,103(11):4241-4252.

[35] BERISHA B,SCHAMS D,SINOWATZ F,et al.Hypoxia-inducible factor-1alpha and nitric oxide synthases in bovine follicles close to ovulation and early luteal angiogenesis[J].Reprod Domest Anim,2020,55(11):1573-1584.

[36] LUSSIER J G,DIOUF M N,LVESQUE V,et al.Gene expression profiling of upregulated mRNAs in granulosa cells of bovine ovulatory follicles following stimulation with hCG[J].Reprod Biol Endocrinol,2017,15(1):88.

[37] ZAREIFARD A,BEAUDRY F,NDIAYE K.Janus Kinase 3 phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone (FSH) in bovine granulosa cells[J].BMC Mol Cell Biol,2023,24(1):21.

[38] HAO E Y,LIU X L,CHANG L Y,et al.Melatonin alleviates endoplasmic reticulum stress to improve ovarian function by regulating the mTOR pathway in aged laying hens[J].Poult Sci,2024,103(6):103703.

[39] HU C F,ZHAO X Y,CUI C,et al.miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J].Theriogenology,2024,214:173-181.

[40] CAMPBELL I D,HUMPHRIES M J.Integrin structure,activation,and interactions[J].Cold Spring Harb Perspect Biol,2011, 3(3): a004994.

(編輯 郭云雁)

猜你喜歡
轉(zhuǎn)錄組基因
Frog whisperer
紅的基因 綠的本色
中華詩詞(2020年8期)2020-02-06 09:26:54
修改基因吉兇未卜
奧秘(2019年8期)2019-08-28 01:47:05
創(chuàng)新基因讓招行贏在未來
商周刊(2017年7期)2017-08-22 03:36:21
多穗柯轉(zhuǎn)錄組分析及黃酮類化合物合成相關(guān)基因的挖掘
基于轉(zhuǎn)錄組測(cè)序的山茱萸次生代謝生物合成相關(guān)基因的挖掘
金釵石斛轉(zhuǎn)錄組SSR位點(diǎn)信息分析
人參屬藥用植物轉(zhuǎn)錄組研究進(jìn)展
基因
大豆轉(zhuǎn)錄組測(cè)序研究進(jìn)展綜述
普洱| 霍邱县| 禄丰县| 化隆| 成安县| 南投县| 攀枝花市| 蛟河市| 通化市| 砚山县| 电白县| 永年县| 修武县| 古浪县| 宜君县| 昌邑市| 巴南区| 满洲里市| 鄢陵县| 青阳县| 浦东新区| 义马市| 商都县| 合作市| 邹城市| 华蓥市| 淮北市| 凤阳县| 怀安县| 桦川县| 罗城| 曲阜市| 关岭| 营口市| 文山县| 教育| 云霄县| 本溪| 克东县| 福清市| 长垣县|