国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

噻唑烷二酮通過脂聯素介導的 AMPK 信號通路抑制雞的生長

2024-12-18 00:00:00唐瑤王濤薛夢晴張文芋石美王鮮忠張姣姣
畜牧獸醫(yī)學報 2024年11期
關鍵詞:脂聯素

摘 要: 噻唑烷二酮(thiazolidinedione,TZD)是一種治療胰島素抵抗的口服糖尿病藥物,濫用或不當使用TZD對動物和人類的健康具有不良影響。本研究探討了TZD對健康雛雞生長和代謝的影響以及這一過程的潛在機制。80只6日齡雛雞分為對照組(雌雄各20只)、試驗組(雌雄各20只),對照組的雞不灌服TZD,試驗組的雞連續(xù)14 d每日灌服25 mg·(kg·d)-1TZD,檢測雛雞的生長情況;利用生化試劑盒檢測腺嘌呤核苷三磷酸(ATP)和脂聯素水平、生長代謝相關激素濃度、線粒體功能;通過RT-PCR和蛋白質印跡法檢測調節(jié)細胞代謝和增殖相關基因的mRNA和蛋白質水平。結果發(fā)現,TZD顯著降低了雛雞的平均日增重以及血清ATP、胰島素(insulin,INS)、生長激素(growth hormone, GH)和胰島素樣生長因子1(insulin-like growth factor 1, IGF1)的水平(Plt;0.05),而提高了脂聯素和胰島素樣生長因子結合蛋白2(IGFBP2)的水平(Plt;0.05)。TZD還降低了雛雞肝、腎和肌肉的ATP水平及線粒體酶活性(Plt;0.05)。此外,TZD的攝入使雛雞脂聯素及其受體、AMP活化蛋白激酶α2(AMPKα2)、p21和p27的mRNA及蛋白表達增強(Plt;0.05),而INS及其受體、IGF1及其受體、磷脂酰肌醇-3-激酶(PI3K)、AKT、哺乳動物雷帕霉素靶蛋白(mTOR)、細胞周期蛋白依賴性激酶2(CDK2)和細胞周期蛋白E1(cyclin E1)的mRNA和蛋白表達受到抑制(Plt;0.05)。TZD通過脂聯素介導的AMPK信號通路降低了雛雞生長代謝相關激素水平和線粒體功能,該信號通路抑制其下游PI3K/AKT/mTOR,進一步導致p21/p27表達增加以及CDK2/Cyclin E1表達降低,從而抑制雛雞生長和代謝組織中的細胞增殖。綜上表明,TZD通過調節(jié)脂聯素介導的AMPK信號通路對雞的生長產生不利影響,這為臨床實踐與畜禽生產中避免濫用或不當使用TZD提供了一定的理論依據。

關鍵詞: 噻唑烷二酮;生長代謝;脂聯素;AMPK

中圖分類號: S859.793

文獻標志碼:A

文章編號:0366-6964(2024)11-5247-12

收稿日期:2024-01-11

基金項目:國家自然科學基金面上項目 (32273071);重慶市自然科學基金面上項目(CSTB2024NSCQ-MSX0231);重慶市教委科學技術研究計劃青年項目(KJQN202200213);中央高校基本科研業(yè)務費專項資金(SWU-XDJH202307;SWU-KT22017)

作者簡介:唐 瑤(1997-),女,土家族,重慶人,碩士生,主要從事動物生長發(fā)育與生殖調控研究,E-mail: 1264142767@qq.com

*通信作者:張姣姣,主要從事動物生殖生理與生物技術研究,E-mail zhangjjff@126.com

Thiazolidinedione Inhibits Chicken Growth via Adiponectin-mediated AMPK Signaling

Pathway

TANG" Yao, WANG" Tao, XUE" Mengqing, ZHANG" Wenyu, SHI" Mei, WANG" Xianzhong, ZHANG" Jiaojiao*

(College of Veterinary Medicine, Southwest University, Chongqing 400715," China)

Abstract:" Thiazolidinedione (TZD) is an oral anti-diabetic drug for the treatment of insulin resistance. Abuse or improper use of TZD has adverse effects on animal and human health. This study explores effects of TZD on the growth and metabolism of chicks and underlying mechanisms of this process. Eighty chicks at the age of 6-day-old were divided into a control group (20 females, 20 males) and an experimental group (20 females, 20 males). Chicks in the control group were administered without TZD, chicks in the experimental group were daily administrated with 25 mg·(kg·d)-1 TZD by gavage for 14 days, and the growth of chicks was measured. The biochemical kits were used to detect the levels of adenosine triphosphate (ATP) and adiponectin, the concentrations of growth and metabolism-related hormones, and the function of mitochondria. The mRNA and protein expressions of genes which are associated with cell metabolism and proliferation were detected by RT-PCR and western blotting. Results showed that TZD treatment significantly decreased the average daily gain of chicks (Plt;0.05). Serum ATP, insulin (INS), growth hormone (GH), and insulin-like growth factor 1 (IGF1) levels were reduced in TZD-treated group (Plt;0.05), while adiponectin and insulin-like growth factor binding protein 2 levels was improved (Plt;0.05). TZD also decreased ATP levels and mitochondrial enzyme activities in the liver, kidney and muscle of chicks. Moreover, mRNA and protein expressions of adiponectin and its receptors, AMP-activated protein kinase α2 (AMPKα2), p21 and p27 were enhanced in TZD-treated chicks (Plt;0.05), whereas mRNA and protein expressions of INS and its receptor, IGF1 and its receptor, phosphatidylinositol-3-kinase (PI3K), AKT, mammalian target of rapamycin (mTOR), Cyclin-dependent kinase 2 (CDK2) and Cyclin E1 were inhibited (Plt;0.05). The growth metabolism-related hormones and mitochondrial function in TZD-treated chicks were down-regulated by the adiponectin-mediated AMPK signaling pathway, which inhibited its downstream PI3K/AKT/mTOR, and further led to increased expressions of p21/p27 and decreased expressions of CDK2/Cyclin E1, this inhibiting the cell proliferation in growth and metabolic tissues of chicks. Our findings suggest that TZD has an adverse effect on chicken growth through regulating the adiponectin-mediated AMPK signaling pathway, this provides a certain theoretical basis for avoiding the abuse or improper use of TZD in clinical practice and animal production.

Key words: thiazolidinedione; growth metabolism; adiponectin; AMPK

*Corresponding author:" ZHANG Jiaojiao, E-mail: zhangjjff@126.com

雞具有高血糖和相對胰島素抵抗的獨特特征,可作為研究人類肥胖和糖尿病的可行模型[1-2]。噻唑烷二酮類(TZD)藥物,如曲格列酮、羅格列酮和吡格列酮,可提高胰島素敏感性,是治療2型(非胰島素依賴型)糖尿病和其他胰島素抵抗狀態(tài)的常用藥物之一[3]。TZD是美國糖尿病協(xié)會和歐洲糖尿病研究協(xié)會推薦和使用最多的口服糖尿病藥物之一,在治療2型糖尿病中起著重要作用[4]。盡管TZD廣泛應用于糖尿病治療,但其存在一些不良副作用,包括體重增加、體液潴留、骨質流失、充血性心力衰竭,以及可能增加心肌梗塞和膀胱癌的風險[5]。因此,有必要更好地了解TZD治療2型糖尿病的主要機制及其副作用,以便開發(fā)更安全、更有效的TZD應用療法。此外,研究發(fā)現在雞飼料中添加TZD可以提高種公雞的精液品質和生育潛力以及黃羽雞大腿肌肉的抗氧化能力[6-7]。因此,研究TZD對健康動物的影響有利于臨床生產實際中避免TZD的濫用或不當使用。

連續(xù)14 d以25 mg·(kg·d)-1劑量的TZD灌胃小鼠,可以提高小鼠內源性血清脂聯素的水平[8],脂聯素是一種主要由脂肪細胞產生的蛋白質激素,通過與其受體——脂聯素受體1(adiponectin receptor 1, AdipoR1)和脂聯素受體2(adiponectin receptor 2, AdipoR2)的結合來介導胰島素敏感化,從而激活AMP激活催化亞基α(AMP-activated protein kinase α2, AMPKα)、過氧化物酶體增殖物激活受體α(peroxisome proliferator activated receptor alpha, PPARα)和其他信號通路[9]。脂聯素通過激活AMPK促進葡萄糖利用,改善全身能量平衡,表現為增加骨骼肌葡萄糖攝取和脂肪酸氧化,減少肝葡萄糖生成[10-11]。此外,脂聯素通過激活PPARα發(fā)揮胰島素敏感作用,促進脂肪酸燃燒和能量消耗,降低肝和骨骼肌組織中甘油三酯含量,改善機體對胰島素的敏感性[12]。研究表明,內臟肥胖、胰島素抵抗和心血管疾病與脂聯素水平降低有關,TZD治療的患者其脂聯素水平顯著升高[13]。

胰島素樣生長因子1(insulin-like growth factor 1, IGF1)主要由肝在生長激素(growth hormone," GH)的刺激下產生[14],反過來,IGF1可以介導GH的許多作用,如合成代謝功能和促進生長、有絲分裂和胰島素樣代謝活動,以及對GH產生負調控作用[15]。脂聯素通過調節(jié)胰島素樣生長因子(insulin-like growth factor, IGF)活性和胰島素受體(insulin receptor, INSR)/胰島素樣生長因子1受體(insulin like growth factor 1 receptor, IGF1R)的表達來增強胰島素敏感性[16]。研究表明,INS、GH、IGF1和脂聯素的信號傳導是相互關聯的分子通路,從而將肥胖與代謝疾病風險聯系起來[17];當全身性生長激素不敏感時,血清脂聯素水平較高,而IGF和IGF結合蛋白3(insulin like growth factor binding protein 3, IGFBP3)水平較低[18]。但是動物攝入TZD后脂聯素與各種生長相關激素之間的相互作用仍需進一步闡明。

TZD會誘導線粒體通透性轉換 (mitochondrial permeability transition, MPT),從而導致線粒體功能障礙,這是TZD引起肝毒性的可能原因之一[19]。幾乎所有線粒體損傷都會誘導AMPK激活[20]。激活的AMPK可上調p21和p27,導致細胞周期停滯[21]。AMPK還能通過影響參與這些過程的幾種酶的基因表達和蛋白水平,增加葡萄糖攝取、脂肪酸氧化和線粒體生物生成[22]。TZD可誘導細胞周期停滯在G1期[23],對細胞增殖和細胞凋亡具有抑制作用[24]。脂聯素可以通過AMPK和PPARα調節(jié)脂質代謝[16]。TZD誘導的PPAR激活決定了其對生長因子釋放、細胞因子產生、細胞增殖和遷移、細胞外基質重塑以及細胞周期進程和分化控制的調節(jié)作用[25]。盡管雞的能量代謝調節(jié)機制已被廣泛研究[26],但是TZD如何影響雞的生長和能量代謝仍然不清楚。因此,本研究以雞為動物模型,旨在研究TZD是否通過脂聯素介導的AMPK信號通路調節(jié)雞的生長和代謝。

1 材料與方法

1.1 雛雞飼養(yǎng)、藥物處理和體重檢測

本研究嚴格按照西南大學實驗動物倫理審查委員會(批準號:IACUC-20220225-02)的要求進行。精液取自西南大學養(yǎng)雞場飼養(yǎng)的公雞(商業(yè)肉雞),對母雞(海蘭褐蛋雞)進行人工授精,每周進行兩次。受精蛋在37.5 ℃、相對濕度45%~65%的條件下孵化,每2 h旋轉90 ℃。80只雛雞分為對照組、試驗組(雌雄各半),在相同的環(huán)境條件下,雛雞均為單籠飼養(yǎng),自由飲食。雛雞飼喂的飼料為商品飼料(含粗蛋白18.00%、粗脂肪2.50%、粗纖維7.00%、賴氨酸0.85%、蛋氨酸0.25%、鈣1.00%、磷0.70%、鹽0.50%)。TZD購自Sigma-Aldrich公司。試驗組中6日齡雛雞連續(xù)14 d灌服TZD [25 mg·(kg·d)-1,TZD溶解于2 mL水中][8,24],對照組中的雛雞不灌服TZD。在第0(孵出后第1天)—20天每日測量雞的體重,記錄每日采食量,計算各組平均日采食量(ADFI)、平均日增量(ADG)和飼料/增重比(F/G),試驗期間沒有雛雞死亡。

1.2 血清ATP和激素分析

第20天通過翅下靜脈采集雛雞(每組雌雄各20只)的血清,然后在 1 000×g離心20 min。按照Invitrogen(Thermo Scientific公司)的試劑盒說明書測定血清ATP濃度,使用光度計(Titertek Berthold公司)檢測ATP的相對光單位值。按照雞脂聯素ELISA試劑盒(LifeSpan BioSciences公司)、雞INS ELISA試劑盒(CUSABIO公司)、雞GH ELISA試劑盒(LifeSpan BioSciences公司)、雞IGF1 ELISA試劑盒(CUSABIO公司)和雞IGFBP2 ELISA試劑盒(MyBioSource公司)的說明書分別檢測雌雞和雄雞血清中脂聯素、INS、GH、IGF1和IGFBP2的激素水平,使用GloMax Discover Multimode Detection System(Promega公司)測定光密度,標準曲線使用Curve Expert 1.3繪制。

1.3 組織ATP和線粒體呼吸酶分析

20日齡雛雞在安樂死后(每組雌雄各10只)收集肝、腎和骨骼肌組織,置于預冷的PBS(0.05 mol·L-1,pH 7.4)中進行組織勻漿,12 000×g離心10 min后收集上清液,利用bicinchoninic acid 蛋白分析試劑盒(Sigma-Aldrich公司)測量蛋白質濃度,并調平每個樣品。按照Invitrogen試劑盒說明書檢測組織勻漿上清液中ATP濃度。根據Qproteome線粒體分離試劑盒(QIAGEN公司)說明書分離和純化肝、腎和骨骼肌的線粒體。煙酰胺腺嘌呤二核苷酸氫(NADH)、細胞色素C氧化酶和ATP合酶濃度的檢測參考文獻[27]的方法。

1.4 RT-PCR和蛋白質印跡分析

利用TRIzol Reagent(Invitrogen公司)提取20日齡雛雞(每組雌雄各3只)的肝、腎和骨骼肌的總RNA,使用SuperScript Ⅲ First-Strand Synthesis System(Invitrogen公司)進行cDNA合成,然后利用Prime Taq Premix(2×)(GENETBIO公司)、 EvaGreen Dye(Biotium公司)和StepOne Real-time PCR System(Thermo Fisher公司)進行RT-PCR。反轉錄和RT-PCR的條件參考文獻[27]的方法。通過2-ΔΔCt方法計算目的基因相對β-actin的轉錄量,本試驗所用引物信息如表1。

將20日齡雛雞的骨骼肌剪碎,用4 ℃ RIPA裂解緩沖液(Thermo Fisher公司)裂解30 min,然后12 000×g離心10 min,收集上清液。利用bicinchoninic acid 蛋白分析試劑盒(Sigma-Aldrich公司)測量蛋白質濃度,并調平每個樣品。采用12%十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)分離蛋白質,通過濕法電泳轉印將蛋白質轉移到PVDF膜上(Bio-Rad公司),蛋白質印跡參考文獻[27-28]的方法,抗體信息如表2所示,最后用ImageJ軟件量化蛋白條帶強度。

1.5 統(tǒng)計分析

本試驗中每組3個生物學重復。數據分析使用SPSS 16.0軟件,利用t檢驗對兩組試驗數據進行統(tǒng)計處理。所有結果以“x±s”表示。在不區(qū)分性別時,*表示差異顯著(Plt;0.05);**表示差異極顯著(Plt;0.01);在區(qū)分性別時,*表示雌雞處理組與雌雞對照組之間的差異顯著性,*表示差異顯著(Plt;0.05);**表示差異極顯著(Plt;0.01),#表示雄雞處理組與雄雞對照組之間的差異顯著性,#表示差異顯著(Plt;0.05),##表示差異極顯著(Plt;0.01)。

2 結 果

2.1 TZD影響雞的生長和激素水平

TZD攝入后雛雞的ADFI無統(tǒng)計學差異(Pgt;0.05,圖1A),但ADG和F/G比值有所下降,與對照相比,分別下降了0.21倍和增加了0.25倍(Plt;0.05,圖1A)。與對照組相比,經TZD處理的雌性和雄性雛雞血清中ATP、INS、GH和IGF1的濃度顯著降低(Plt;0.05,圖1B、1D、1E)。然而,TZD處理可提高雄性雛雞血清中的脂聯素和IGFBP2水平(Plt;0.05),而雌性雛雞則無明顯差異(Pgt;0.05,圖1C、1E)。研究表明,IGF1是一種促進生長和代謝作用的合成代謝生長因子,可以調節(jié)細胞分裂、增殖和存活,并介導GH的許多作用;此外,IGF1還可以改善血脂水平,降低INS水平,增加胰島素敏感性,并促進葡萄糖代謝[29]。這些結果表明,TZD可以通過影響生長代謝相關激素來調節(jié)雛雞的生長。

2.2 TZD對雛雞肝、腎和肌肉線粒體功能的影響

TZD攝入使雛雞肝、腎和肌肉中的ATP水平顯著降低(Plt;0.05,圖2A),檢測這些器官中的線粒體呼吸酶活性,結果表明,TZD顯著降低雛雞肝、腎和肌肉中NADH水平、細胞色素C氧化酶和ATP合酶活性(Plt;0.05,圖2B、2C、2D)。肝、腎和肌肉是機體主要的代謝器官,這些器官中的線粒體功能可以反映ATP合成的能力和能量代謝的狀況。這些結果表明,TZD可以通過調節(jié)有氧氧化過程中的線粒體功能來抑制ATP的產生。

2.3 TZD對雛雞生長相關基因mRNA轉錄水平的影響

TZD的攝入能顯著提高雛雞肝、腎和肌肉中脂聯素(ADIPOQ)及其受體(ADIPOR1和ADIPOR2)的mRNA水平(Plt;0.05,圖3A、3D、3G)。鑒于TZD及脂聯素在細胞生長增殖過程中的作用[30],本研究對多個涉及細胞代謝及細胞周期的基因進行了mRNA轉錄水平的測定。結果表明,TZD處理顯著激活了雛雞肝、腎和肌肉中能量代謝相關基因AMPKα2 mRNA的轉錄,但抑制了mTOR mRNA的轉錄(Plt;0.05,圖3A、3D、3G)。另外,TZD還減少了葡萄糖代謝有關基因的mRNA水平,與對照組相比,TZD處理降低了雛雞肝、腎和肌肉中INS和INSR、IGF1和IGF1R、PIK3CA和AKT1的mRNA水平(Plt;0.05,圖3B、3E、3H)。此外,TZD還影響了p21、p27、CDK2和Cyclin E1等細胞周期有關基因的轉錄,與對照組相比,TZD增加了p21和p27的mRNA水平,降低了CDK2和Cyclin E1的mRNA水平(Plt;0.05,圖3C、3F、3I)。以上結果提示,TZD有可能從轉錄水平影響脂聯素及下游因子所介導的細胞代謝過程及細胞周期,從而對雞的生長產生抑制作用。

2.4 TZD對雛雞肌肉生長相關蛋白水平的影響

與mRNA表達結果一致,TZD攝入使雛雞肌肉中AMPKα2磷酸化水平、脂聯素、p21和p27的蛋白水平升高(Plt;0.05,圖 4A、4B、4D、4F),然而蛋白質合成和糖異生過程所涉及的mTOR磷酸化程度以及調控葡萄糖代謝和細胞周期進程的IGF1R、INSR、PIK3CA、AKT1、CDK2及Cyclin E1的蛋白表達都顯著下降(Plt;0.01,圖 4A、4C、4E、4F)。這些結果表明,TZD激活了脂聯素和AMPKα2信號通路,此通路可能通過調節(jié)ATP合成和生長相關激素來影響葡萄糖能量代謝,并且其下游通路在抑制細胞周期進程和細胞增殖中發(fā)揮作用,最終導致雞生長的抑制。

3 討 論

TZD可能會導致嚴重的肝損傷,這種不良反應的機制與線粒體毒性有關[31],TZD還可以降低線粒體跨膜電位進而導致ATP耗竭[32]。大鼠肝的線粒體中檢測到與PPAR免疫相關的蛋白質[33],這表明線粒體膜上存在一些TZD的蛋白質靶標[34]。研究發(fā)現TZD可以誘導線粒體去極化并隨后觸發(fā)MPT[35],TZD也能夠直接影響電子傳遞鏈或調節(jié)MPT孔道[36]。TZD誘導肝毒性的潛在機制可能與線粒體呼吸功能障礙、氧化應激和膜通透性改變有關[37]。線粒體被認為是ATP產生的主要來源,AMPK是機體內ATP感受器,可以調節(jié)細胞內ATP的穩(wěn)態(tài),幾乎所有線粒體損傷都與AMPK的激活有關[20]。本研究發(fā)現,TZD抑制了雛雞肝、腎和肌肉中線粒體呼吸酶的活性和ATP的產生,并激活了AMPKα2的表達。已有研究表明脂聯素是一種能激活AMPK的脂肪因子[38],而本研究發(fā)現TZD處理能提高脂聯素的水平及其受體的表達。因此,TZD通過脂聯素介導的AMPK信號通路誘導了雛雞肝、腎和肌肉中線粒體功能障礙。

TZD可改善2型糖尿病患者的血糖水平和胰島素敏感性,但其副作用是體重增加[39]。相反的結果顯示,TZD具有增加細胞分化、減少細胞增殖和細胞數量以及增加細胞凋亡的作用[40]。研究表明,2型糖尿病患者攝入TZD的劑量因人而異,吡格列酮和羅格列酮每天口服一次的最大劑量分別為45和8 mg[41]。本研究中,連續(xù)14 d灌服25 mg·(kg·d)-1劑量的TZD可顯著降低健康雛雞的生長速度,試驗過程中雛雞沒有飼喂高脂日糧,TZD處理組雛雞的采食量與對照組無顯著差異,雛雞在生長過程中未出現異位脂肪堆積與過度肥胖的情況,因此,與患2型糖尿病并伴隨過度肥胖情況下使用TZD導致體重增加相反,TZD對健康雛雞的生長表現為抑制作用。

TZD與PPAR相互作用可以增加脂聯素的表達、合成和釋放,刺激脂肪細胞分化、變小[42]。ADIPOR1和ADIPOR2是脂聯素的主要受體,ADIPOR1激活AMPK通路,ADIPOR2激活PPARα通路[43]。脂聯素能夠通過AMPK和PPARα信號通路調節(jié)脂質代謝[16];AMPK激活可抑制mTOR活性[44],促進p21和p27并抑制CDK2和Cyclin E1,從而降低細胞增殖能力[45]。此外,TZD還能抑制PI3K/AKT通路減少平滑肌細胞的收縮[46]。PI3K/AKT/mTOR通路與細胞生物能量和生物合成能力增加有關[47],可調節(jié)細胞的增殖、生長和新陳代謝[48]。本研究發(fā)現,TZD 攝入可降低肝、腎和肌肉中 PIK3CA、AKT1、mTOR、CDK2和Cyclin E1的mRNA和蛋白水平,提高p21和p27的mRNA和蛋白水平,從而抑制雛雞的生長代謝。

在雛雞的生長過程中,除脂聯素介導的AMPK信號通路及其下游分子調控線粒體功能和細胞增殖能力外,生長相關激素也起著調節(jié)代謝平衡的重要作用。本研究結果表明,TZD攝入降低了雛雞血清以及代謝器官中INS、GH和IGF1的表達。TZD與PPAR相互作用可以通過刺激基因表達來增加INS的作用,增加脂肪氧化和降低游離脂肪酸水平[49]。此外,脂聯素可以調節(jié)INS和IGF的循環(huán)水平,促進其敏感性和作用[16]。AMPK的激活增加了INS敏感性,刺激骨骼肌葡萄糖的攝取和脂肪組織脂肪酸的氧化,減少肝葡萄糖的產生[50]。INS對GH分泌和IGF1水平具有正向調節(jié)作用,GH可以激活PI3K/AKT信號通路[51],IGF1可以通過PI3K/AKT/mTOR通路增加骨骼肌的合成[52]。當INS與其受體結合后,INS可以刺激INSR固有激酶的活性,進而激活PI3K/AKT[53]。因此,TZD通過脂聯素介導的AMPK及其下游PI3K/AKT/mTOR信號通路降低生長相關激素水平,引起機體代謝功能障礙,進而造成雛雞體重減輕。

4 結 論

TZD通過脂聯素介導的AMPK信號通路及其下游分子PI3K/AKT/mTOR、p21/p27和CDK2/Cyclin E1降低線粒體功能和細胞增殖能力,進而抑制雞的生長。此外,TZD還通過脂聯素介導的AMPK信號通路減少生長相關激素(INS、GH和IGF1)的水平,進而引起雛雞代謝功能障礙。這些發(fā)現揭示了TZD通過脂聯素介導的AMPK信號通路對雞的生長產生不良作用,為臨床實踐與畜禽生產中避免濫用或不當使用TZD提供了理論依據。

參考文獻(References):

[1] DATAR S P, BHONDE R R. Modeling chick to assess diabetes pathogenesis and treatment[J]. Rev Diabet Stud, 2011, 8(2):245-253.

[2] SWEAZEA K L. Revisiting glucose regulation in birds-a negative model of diabetes complications[J]. Comp Biochem Physiol B Biochem Mol Biol, 2022, 262:110778.

[3] YU J G, JAVORSCHI S, HEVENER A L, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects[J]. Diabetes, 2002, 51(10):2968-2674.

[4] INZUCCHI S E, BERGENSTAL R M, BUSE J B, et al. Management of hyperglycemia in type 2 diabetes:a patient-centered approach:position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD)[J]. Diabetes Care, 2012, 35(6):1364-1379.

[5] LI Y W, KS N, BYRAN G, et al. Identification of selective PPAR-γ modulators by combining pharmacophore modeling, molecular docking, and adipogenesis assay[J]. Appl Biochem Biotechnol, 2023, 195(2):1014-1041.

[6] POURAZADI L, SHARAFI M, TORSHIZI M A K, et al. Modulatory effects of pioglitazone as a ligand for the peroxisome proliferator-activated receptor on semen quality and fertility potential of broiler breeder roosters[J]. Poult Sci, 2022, 101(5):101795.

[7] JIN C L, ZENG H R, XIE W Y, et al. Dietary supplementation with pioglitazone hydrochloride improves intramuscular fat, fatty acid profile, and antioxidant ability of thigh muscle in yellow-feathered chickens[J]. J Sci Food Agric, 2020, 100(2):665-671.

[8] QUARESMA P G F, REENCOBER N, ZANOTTO T M, et al. Pioglitazone treatment increases food intake and decreases energy expenditure partially via hypothalamic adiponectin/adipoR1/AMPK pathway[J]. Int J Obes (Lond), 2016, 40(1):138-146.

[9] TANYANSKIY D A, SHAVVA V S, DIZHE E B, et al. Adiponectin stimulates apolipoprotein A-1 gene expression in HepG2 cells via AMPK, PPARα, and LXRs signaling mechanisms[J]. Biochemistry (Mosc), 2022, 87(11):1252-1259.

[10] FANG H, JUDD R L. Adiponectin regulation and function[J]. Compr Physiol, 2018, 8(3):1031-1063.

[11] INVERNIZZI M, LIPPI L, FOLLI A, et al. Integrating molecular biomarkers in breast cancer rehabilitation. What is the current evidence?A systematic review of randomized controlled trials[J]. Front Mol Biosci, 2022, 9:930361.

[12] LI X R, ZHANG D Y, VATNER D F, et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice[J]. Proc Natl Acad Sci U S A, 2020, 117(51):32584-32593.

[13] FRANCISCHETTI E A, DEZONNE R S, PEREIRA C M, et al. Insights into the controversial aspects of adiponectin in cardiometabolic disorders[J]. Horm Metab Res, 2020, 52(10):695-707.

[14] REIS M, VENEZIANI L P, PORTO F L, et al. Intrathymic somatotropic circuitry:consequences upon thymus involution[J]. Front Immunol, 2023, 14:1108630.

[15] ORR S, NIGRO E, MANDOLA A, et al. A Functional Interplay between IGF-1 and adiponectin[J]. Int J Mol Sci, 2017, 18(10):2145.

[16] SCHINDLER M, PENDZIALEK M, GRYBEL K J, et al. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts[J]. Hum Reprod, 2017, 32(7):1382-1392.

[17] PARDINA E, FERRER R, BAENA-FUSTEGUERAS J A, et al. The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese[J]. Obes Surg, 2010, 20(5):623-632.

[18] GUEVARA-AGUIRRE J, ROSENBLOOM A L, GUEVARA A, et al. Divergent metabolic phenotypes in two genetic syndromes of low insulin secretion[J]. Diabetes Res Clin Pract, 2023, 196:110228.

[19] SATO T, SEGAWA M, SEKINE S, et al. Mild depolarization is involved in troglitazone-induced liver mitochondrial membrane permeability transition via mitochondrial iPLA2 activation[J]. J Toxicol Sci, 2019, 44(11):811-820.

[20] WU S N, ZOU M H. AMPK, mitochondrial function, and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(14):4987.

[21] WANG S T, HO H J, LIN J T, et al. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells[J]. Cell Death Dis, 2017, 8(2):e2626.

[22] JOUBERT R, MTAYER COUSTARD S, SWENNEN Q, et al. The beta-adrenergic system is involved in the regulation of the expression of avian uncoupling protein in the chicken[J]. Domest Anim Endocrinol, 2010, 38(2):115-125.

[23] YADAV U, VANJARI Y, LAXMIKESHAV K, et al. Synthesis and in vitro cytotoxicity evaluation of phenanthrene linked 2, 4- thiazolidinediones as potential anticancer agents[J]. Anticancer Agents Med Chem, 2021, 21(9):1127-1140.

[24] ZHANG J J, LI Y Q, SHI M, et al. 17β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin[J]. Ecotoxicol Environ Saf, 2022, 233:113308.

[25] GIANNINI S, SERIO M, GALLI A. Pleiotropic effects of thiazolidinediones:taking a look beyond antidiabetic activity[J]. J Endocrinol Invest, 2004, 27(10):982-991.

[26] HU X Y, LIU L, SONG Z G, et al. Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens[J]. Comp Biochem Physiol B Biochem Mol Biol, 2016, 191:146-154.

[27] ZHANG J J, WANG X Z, LUONG DO H, et al. MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation[J]. Sci Rep, 2018, 8(1):8761.

[28] JIAO Z J, YI W, RONG Y W, et al. MicroRNA-1285 regulates 17β-estradiol-inhibited immature boar sertoli cell proliferation via adenosine monophosphate-activated protein kinase activation[J]. Endocrinology, 2015, 156(11):4059-4070.

[29] MACVANIN M, GLUVIC Z, RADOVANOVIC J, et al. New insights on the cardiovascular effects of IGF-1[J]. Front Endocrinol (Lausanne), 2023, 14:1142644.

[30] BIONDO L A, TEIXEIRA A A S, DE O S FERREIRA K C, et al. Pharmacological strategies for insulin sensitivity in obesity and cancer:thiazolidinediones and metformin[J]. Curr Pharm Des, 2020, 26(9):932-945.

[31] SEGAWA M, SEKINE S, SATO T, et al. Increased susceptibility to troglitazone-induced mitochondrial permeability transition in type 2 diabetes mellitus model rat[J]. J Toxicol Sci, 2018, 43(5):339-351.

[32] SEYDI E, SERVATI T, SAMIEI F, et al. Toxicity of pioglitazone on mitochondria isolated from brain and heart:an analysis for probable drug-induced neurotoxicity and cardiotoxicity[J]. Drug Res (Stuttg), 2020, 70(2-3):112-118.

[33] JIANG Q X, JI A D, LI D C, et al. Mitochondria damage in ambient particulate matter induced cardiotoxicity:roles of PPAR alpha/PGC-1 alpha signaling[J]. Environ Pollut, 2021, 288:117792.

[34] QI Y B, HU M Y, QIU Y, et al. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET[J]. Toxicol Appl Pharmacol, 2023, 465:116440.

[35] JEON K I, KUMAR A, CALLAN C L, et al. Blocking mitochondrial pyruvate transport alters corneal myofibroblast phenotype:a new target for treating fibrosis[J]. Invest Ophthalmol Vis Sci, 2023, 64(13):36.

[36] BOVA M P, TAM D, MCMAHON G, et al. Troglitazone induces a rapid drop of mitochondrial membrane potential in liver HepG2 cells[J]. Toxicol Lett, 2005, 155(1):41-50.

[37] HU D, WU C Q, LI Z J, et al. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity:an in vitro model in mitochondria[J]. Toxicol Appl Pharmacol, 2015, 284(2):134-141.

[38] MANIERI E, HERRERA-MELLE L, MORA A, et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence[J]. J Exp Med, 2019, 216(5):1108-1119.

[39] GURU B, TAMRAKAR A K, MANJULA S N, et al. Novel dual PPARα/γ agonists protect against liver steatosis and improve insulin sensitivity while avoiding side effects[J]. Eur J Pharmacol, 2022, 935:175322.

[40] FRHLICH E, MACHICAO F, WAHL R. Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture[J]. Endocr Relat Cancer, 2005, 12(2):291-303.

[41] EGGLETON J S I. Thiazolidinediones[M]. Treasure Island:StatPearls Publishing, 2023.

[42] BODEN G, ZHANG M J. Recent findings concerning thiazolidinediones in the treatment of diabetes[J]. Expert Opin Investig Drugs, 2006, 15(3):243-250.

[43] YAMAUCHI T, NIO Y, MAKI T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J]. Nat Mede, 2007, 13(3):332-339.

[44] SUGIYAMA M, TAKAHASHI H, HOSONO K, et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway[J]. Int J Oncol, 2009, 34(2):339-44.

[45] QI H P, LIU Y, LI S Z, et al. Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via p21/p27 and miR-29 family pathways in rats[J]. Mol Ther Nucleic Acids, 2017, 8:277-290.

[46] SINAGRA T, TAMBURELLA A, URSO V, et al. Reversible inhibition of vasoconstriction by thiazolidinediones related to PI3K/Akt inhibition in vascular smooth muscle cells[J]. Biochem Pharmacol, 2013, 85(4):551-559.

[47] STRELECKIENE G, INCIURAITE R, JUZENAS S, et al. miR-20b and miR-451a are involved in gastric carcinogenesis through the PI3K/AKT/mTOR signaling pathway:data from gastric cancer patients, cell lines and ins-gas mouse model[J]. Int J Mol Sci, 2020, 21(3):877.

[48] ALZAHRANI A S. PI3K/Akt/mTOR inhibitors in cancer:at the bench and bedside[J]. Seminars in cancer biology, 2019, 59:125-132.

[49] LEE S M, MURATALLA J, SIERRA-CRUZ M, et al. Role of hepatic peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease[J]. J Endocrinol, 2023, 257(1):e220155.

[50] COUGHLAN K A, VALENTINE R J, RUDERMAN N B, et al. AMPK activation:a therapeutic target for type 2 diabetes?[J]. Diabetes Metab Syndr Obes, 2014, 7:241-253.

[51] QIU H, YANG J K, CHEN C. Influence of insulin on growth hormone secretion, level and growth hormone signalling[J]. Acta Physiol Sin, 2017, 69(5):541-556.

[52] YOSHIDA T, DELAFONTAINE P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9):1970.

[53] KUAI M Y, LI Y, SUN X, et al. A novel formula Sang-Tong-Jian improves glycometabolism and ameliorates insulin resistance by activating PI3K/AKT pathway in type 2 diabetic KKAy mice[J]. Biomed Pharmacother, 2016, 84:1585-1594.

(編輯 白永平)

猜你喜歡
脂聯素
脂聯素檢測在2型糖尿病診治中的研究進展
脂聯素對心血管保護作用的研究進展
脂聯素生物學與消化系統(tǒng)腫瘤
胃腸病學(2016年7期)2016-03-13 23:11:56
脂聯素與惡性腫瘤相關性研究進展
促甲狀腺激素對大鼠脂肪組織中瘦素、脂聯素、TNF-α及IL-6表達水平的影響
自噬與脂聯素誘導的人乳腺癌MCF-7細胞凋亡的關系
脂聯素及高敏C反應蛋白與急性腦梗死預后的相關性研究
脂聯素對脂多糖誘導的RAW264.7細胞NLRP3及炎癥因子表達的影響
脂聯素、瘦素與2型糖尿病患者輕度認知功能障礙的關系
脂聯素及其基因多態(tài)性與廣西瑤族冠心病的關系
乐都县| 玉环县| 昌平区| 黎川县| 扎鲁特旗| 巴林右旗| 昭觉县| 罗源县| 格尔木市| 滕州市| 清徐县| 大方县| 阿拉善左旗| 赤城县| 泗洪县| 大新县| 嵩明县| 金秀| 竹北市| 开鲁县| 广德县| 赣州市| 怀化市| 东乡县| 扎兰屯市| 天祝| 安化县| 林口县| 无极县| 宁明县| 阿拉善左旗| 新和县| 常宁市| 观塘区| 南阳市| 新宾| 绍兴县| 南部县| 象州县| 新蔡县| 黄龙县|