摘要:【目的】探究光合細(xì)菌沼澤紅假單胞菌PSB06 Atp2蛋白對(duì)水稻生長(zhǎng)、防御酶活性及防御相關(guān)基因轉(zhuǎn)錄水平的影響,為生防菌在水稻上的推廣應(yīng)用提供理論依據(jù)?!痉椒ā恳运酒贩NCO-39為試驗(yàn)材料,用0(蒸餾水,CK)、20和50μg/mL Atp2蛋白3種處理液對(duì)水稻種子和葉片進(jìn)行處理,對(duì)生長(zhǎng)14 d的水稻體內(nèi)葉綠素a/b和過氧化氫(H2O2)含量,以及過氧化物酶(POD)、過氧化氫酶(CAT)、超氧化物歧化酶(SOD)、谷胱氨肽還原酶(GR)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等水稻防御酶活性進(jìn)行檢測(cè);運(yùn)用實(shí)時(shí)熒光定量PCR檢測(cè)水稻體內(nèi)防御相關(guān)基因(OsWRKY70、OsLOX1、OsAOS2、OsPR1a、OsCHT1和OsPAL1)的轉(zhuǎn)錄水平?!窘Y(jié)果】與CK相比,Atp2蛋白處理水稻葉片后,其體內(nèi)葉綠素a/b顯著(Plt;0.05,下同)或極顯著(Plt;0.01,下同)升高,而處理種子后葉綠素a/b無顯著變化(Pgt;0.05);Atp2蛋白處理后水稻體內(nèi)H2O2含量均升高,其中處理葉片后H2O2含量極顯著升高;Atp2蛋白處理后水稻體內(nèi)POD和CAT活性顯著或極顯著下降;Atp2蛋白處理后水稻體內(nèi)SOD、GR和PAL活性均極顯著升高;Atp2蛋白處理種子后水稻體內(nèi)PPO活性顯著或極顯著升高,而處理葉片后PPO活性顯著或極顯著下降。Atp2蛋白處理后水稻防御相關(guān)基因OsWRKY70、OsLOX1、OsAOS2(50μg/mL Atp2蛋白處理水稻葉片外)、OsPR1a和OsCHT1表達(dá)均上調(diào),其中OsWRKY70、OsLOX1和OsCHT1基因表達(dá)顯著或極顯著上調(diào);Atp2蛋白處理種子后OsPAL1基因表達(dá)極顯著上調(diào),而處理葉片后OsPAL1基因表達(dá)極顯著下調(diào)?!窘Y(jié)論】沼澤紅假單胞菌PSB06 Atp2蛋白對(duì)水稻有較好的促生抗逆效果,具有推廣應(yīng)用潛力。
關(guān)鍵詞:光合細(xì)菌;沼澤紅假單胞菌;水稻;Atp2蛋白;防御酶活;防御相關(guān)基因
中圖分類號(hào):S511文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)09-2632-09
Effects of photosynthetic bacteria Rhodopseudomonas palustris Atp2 protein on growth and stress resistance in rice
CHEN Chun-yan1,2,HUANG Qiang1,2,WU Xi-yang2,QIN Ying-fei2,TAN Xin-qiu2,LIU Yong2,CHEN Yue1,2*,ZHANG De-yong1,2*
(1College of Plant Protection,Hunan Agricultural University,Changsha,Hunan 410125,China;2Institute ofPlant Protection,Hunan Academy of Agricultural Sciences,Changsha,Hunan 410125,China)
Abstract:【Objective】To investigate the effects of the photosynthetic bacteria Rhodopseudomonas palustris PSB06 Atp2 protein on the growth,defence enzyme activity and the transcript levels of defense-related genes in rice,and to pro-vide theoretical basis for the popularization of the use of biocontrol bacteria in rice.【Method】Rice variety CO-39 was used as the test material,and rice seeds and leaves were treated with 3 treatment solutions of 0(distilled water,CK),20 and 50μg/mL Atp2 protein,the chlorophyll a/b and the hydrogen peroxide(H2O2)content were detected,as well as the activities of rice defense-related enzymes such as peroxidase(POD),catalase(CAT),superoxide dismutase(SOD),glutathione reductase(GR),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO)in rice,and the transcriptlevels of defense-related genes(OsWRKY70,OsLOX1,OsAOS2,OsPR1a,OsCHT1 and OsPAL1)in rice were detected by real-time fluorescence quantitative PCR.【Result】Compared with CK,chlorophyll a/b was significantly(Plt;0.05,the same below)or extremely significantly(Plt;0.01,the same below)increased in rice after Atp2 protein treatment of rice leaves,while chlorophyll a/b did not change significantly after treatment of seeds(Pgt;0.05);H2O2 content in rice was ele-vated in all Atp2 protein treatments,with extremely significant elevation in the content of H2O2 after treatment of leaves;POD and CAT activities in rice were significantly or extremely significantly decreased after Atp2 protein treatment;SOD,GR and PAL activities in rice were extremely significantly increased after Atp2 protein treatment;PPO activity in rice was significantly or extremely significantly increased after Atp2 protein treatment of seeds,whereas PPO activity was signifi-cantly or extremely significantly decreased after treatment of leaves.After Atp2 protein treatment,expressions of rice de-fense genes OsWRKY70,OsLOX1,OsAOS2(except 50μg/mL Atp2 protein treated rice leaves),OsPR1a and OsCHT1 were all up-regulated,of which the expression of OsWRKY70,OsLOX1 and OsCHT1 genes were either significantly or extremely significantly up-regulated;the expression of OsPAL1 gene was extremely significantly up-regulated after the treatment of seeds with Atp2 protein,and OsPAL1 gene expression was extremely significantly up-regulated after the treat-ment of leaves.【Conclusion】The R.palustris PSB06 Atp2 protein of R.palustris has good growth-promoting and stress-resistant effect on rice,which has the potential for promotion and application.
Key words:photosynthetic bacteria;Rhodopseudomonas palustris;rice;Atp2 protein;defensive enzyme activity;defense-related genes
Foundation items:National Natural Science Foundation of China(31972323);Hunan Science and Technology Inno-vation Project(2021RC3114);Hunan Agricultural Science and Technology Innovation Project(2023CX04)
0引言
【研究意義】光合細(xì)菌(Photosynthetic bacteria,PSB)是廣泛分布的革蘭氏陰性菌,屬于原核生物。在自然界中,光合細(xì)菌利用光能作為能源,有機(jī)物、硫化物、氨等作為供氫體和碳源進(jìn)行光合作用(Idi et al.,2015)。光合細(xì)菌具有綠色環(huán)保特性,其培養(yǎng)簡(jiǎn)便,在工業(yè)和農(nóng)業(yè)等領(lǐng)域應(yīng)用廣泛。在農(nóng)業(yè)生產(chǎn)中,光合細(xì)菌主要應(yīng)用于促進(jìn)植物生長(zhǎng)、改良作物品質(zhì)、提高土壤肥力和防治植物病蟲害等方面。然而,目前對(duì)光合細(xì)菌在水稻生長(zhǎng)及抗逆方面的具體影響機(jī)制尚不清楚,因此,明確光合細(xì)菌對(duì)水稻生長(zhǎng)及抗逆的影響,對(duì)水稻的產(chǎn)量和品質(zhì)提升及水稻安全生產(chǎn)等均具有重要意義?!厩叭搜芯窟M(jìn)展】光合細(xì)菌被用作優(yōu)質(zhì)有機(jī)肥料,施用后可提高土壤肥力,有效改善土壤微生物群落結(jié)構(gòu),并對(duì)有益微生物的生長(zhǎng)有促進(jìn)作用,從而增加作物產(chǎn)量(楊芳等,2014);光合細(xì)菌菌液能降低油麥菜幼苗的硝酸鹽含量,從而提高油麥菜品質(zhì)(穆金艷等,2017);光合細(xì)菌類球紅細(xì)菌(Rhodobacter sphaeorides)可促進(jìn)番茄和水稻幼苗植株生長(zhǎng)(陳麗潔等,2019);光合細(xì)菌菌劑能提高黨參體內(nèi)多糖、全氮和全磷含量,改善黨參栽培質(zhì)量,提高藥材安全性(柴書彤,2023);光合細(xì)菌對(duì)朝天椒幼苗生長(zhǎng)起到促進(jìn)作用,對(duì)果實(shí)起到防病的效果(董培彥,2023);光合細(xì)菌菌株N1對(duì)沉水植物的生長(zhǎng)起到促進(jìn)作用,能顯著增強(qiáng)植株防御酶活性,提高植物根部活力(高蓉蓉等,2023)。光合細(xì)菌具有防治植物病害的能力。光合細(xì)菌菌株P(guān)SBCS、PSB06和PSB13-2-2對(duì)田間辣椒疫病具有一定的防效(羅源華等,2013);光合細(xì)菌菌劑2.0億CFU/mL嗜硫小紅卵菌HNI-1懸浮劑和2.0億CFU/mL沼澤紅假單胞菌PSB-S懸浮劑能有效提高水稻對(duì)稻瘟病和稻曲病的抗病性(羅路云等,2019)。本課題組前期研究發(fā)現(xiàn),光合細(xì)菌對(duì)蔬菜病毒病具有良好的防治效果(Su et al.,2015);進(jìn)一步研究發(fā)現(xiàn),使用沼澤紅假單胞菌PSB06浸種后不僅能促進(jìn)水稻種子萌發(fā),還能促進(jìn)水稻生長(zhǎng)(曾益波等,2018)。植物的抗逆性與抗氧化系統(tǒng)活性密切相關(guān)(Ahmad et al.,2008)。在植物生長(zhǎng)過程中,各種逆境脅迫往往會(huì)增加細(xì)胞內(nèi)活性氧濃度,導(dǎo)致氧化脅迫和傷害(古今等,2006;李永強(qiáng)等,2008)。為了對(duì)抗氧化傷害,植物進(jìn)化出多種防御酶,包括過氧化物酶(POD)、過氧化氫酶(CAT)、谷胱甘肽還原酶(GR)和超氧化物歧化酶(SOD),防御酶能分解活性氧(Anjum et al.,2016)。此外,苯丙氨酸解氨酶(PAL)和多酚氧化酶(PPO)在植物的抗病過程中扮演重要角色。PAL通過次生代謝途徑調(diào)控植物合成抗病性化合物(張昊等,2019);而PPO能氧化植物體內(nèi)酚類物質(zhì),從而抑制病原菌在植物體內(nèi)的生長(zhǎng)和擴(kuò)散(薛美昭和儀慧蘭,2017)。防御酶的活性變化對(duì)于植物在應(yīng)對(duì)各種脅迫環(huán)境時(shí)的適應(yīng)性和抗性具有重要作用。【本研究切入點(diǎn)】前期研究發(fā)現(xiàn),光合細(xì)菌沼澤紅假單胞菌菌株P(guān)SB06發(fā)酵液中含有抗真菌的F1F0 ATP酶β亞基Atp2蛋白,其能顯著降低稻瘟病菌的附著胞形成比例,噴施水稻后能顯著降低病原菌在水稻上的致病性,表明Atp2蛋白具有較好的抑菌效果(吳希陽(yáng)等,2020),但Atp2蛋白在稻瘟病菌與水稻互作過程中對(duì)水稻生長(zhǎng)、免疫的影響尚未見報(bào)道。【擬解決的關(guān)鍵問題】以水稻品種CO-39為試驗(yàn)材料,用不同濃度的沼澤紅假單胞菌PSB06 Atp2蛋白處理水稻種子和葉片,探究Atp2蛋白對(duì)水稻生長(zhǎng)、防御酶活性以及防御相關(guān)基因轉(zhuǎn)錄水平的影響,明確Atp2蛋白對(duì)水稻的促生及抗逆作用,為生防菌在水稻上的推廣應(yīng)用提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)材料
水稻CO-39種子由湖南省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所提供。沼澤紅假單胞菌PSB06由湖南省植物保護(hù)研究所分離提供。
1.2試驗(yàn)方法
1.2.1 Atp2蛋白浸種和噴施水稻克隆沼澤紅假單胞菌PSB06 ATP2基因全長(zhǎng),插入pET32a(+)載體(賽默飛世爾科技公司)構(gòu)建原核表達(dá)載體pET32a::ATP2(吳希陽(yáng)等,2020),轉(zhuǎn)化大腸桿菌后在37℃、200 r/min條件下?lián)u床4h使菌液充分生長(zhǎng),然后添加50 mg/mLIPTG,再置于28℃、200 r/min搖床誘導(dǎo)蛋白產(chǎn)生。4℃、5000 r/min離心富集菌液,通過His鎳柱(#635658,TaKaRa)純化Atp2蛋白,測(cè)定蛋白濃度,用水稀釋至20和50μg/mL用作Atp2蛋白處理液,收集的Atp2蛋白置于-20℃保存。設(shè)3個(gè)Atp2蛋白濃度處理:0(蒸餾水,CK)、20和50μg/mL。試驗(yàn)分別設(shè)Atp2蛋白浸種和噴施水稻處理:(1)Atp2蛋白浸種處理(S.T.):選取均勻飽滿的水稻種子,將種子置于培養(yǎng)皿中分別用3種處理液浸泡,于37℃條件下萌發(fā),每天更換處理液1~2次,持續(xù)3 d后,將已發(fā)芽的種子移栽到60 mm×60 mm的移栽盆中。培養(yǎng)過程中,光照培養(yǎng)時(shí)于光照強(qiáng)度50μmol/(m2·s)下28℃保持12h,暗培養(yǎng)時(shí)于22℃下保持12h,濕度保持在95%;(2)Atp2蛋白對(duì)水稻葉片噴施處理(L.T.):水稻生長(zhǎng)至第7 d時(shí),用3種處理液對(duì)未經(jīng)Atp2蛋白浸種處理的水稻葉片進(jìn)行噴施,于相同條件下生長(zhǎng)。14 d后收集水稻葉片,每處理稱取等重葉片,對(duì)不同處理水稻進(jìn)行標(biāo)記,-80℃保存。
1.2.2葉綠素a/b測(cè)定在液氮中,將0.1 g葉組織研磨成粉末,根據(jù)試劑盒(南京建成生物工程研究所)說明書處理葉組織3h后,收集上清液,并分別在664和647 nm波長(zhǎng)處測(cè)量葉綠素a和葉綠素b的吸光度(A)。葉綠素a和葉綠素b含量通過以下公式計(jì)算:葉綠素a含量=12.7×A664 nm-2.79×A647 nm;葉綠素b含量=20.7×A647 nm-4.62×A664 nm。根據(jù)葉綠素a和葉綠素b含量計(jì)算葉綠素a/b。試驗(yàn)重復(fù)3次。
1.2.3 Atp2蛋白處理后水稻防御酶活性及過氧化氫(H2O2)含量測(cè)定取1.2.1中培養(yǎng)14 d的水稻葉片,每處理用試劑盒(南京建成生物工程研究所)測(cè)定等重水稻苗期葉片SOD、POD、PPO、PAL、GR和CAT活性及H2O2含量。試驗(yàn)重復(fù)3次,結(jié)果取平均值。
1.2.4 RNA提取和實(shí)時(shí)熒光定量PCR檢測(cè)使用RNA提取試劑盒[E.Z.N.A.?Total RNA Kit II(R6934),Omega Bio-Tek]從水稻葉片組織中提取總RNA。檢測(cè)總RNA濃度和完整性后,使用反轉(zhuǎn)錄試劑盒(TransScript?One-Step gDNA Removal and cDNA Synthesis SuperMix)合成cDNA。以參考基因水稻EF1“基因?yàn)閮?nèi)參進(jìn)行實(shí)時(shí)熒光定量PCR,分析水稻防御相關(guān)基因(OsWRKY70、OsLOX1、OsAOS2、OsPR1a、OsCHT1和OsPAL1)的轉(zhuǎn)錄水平,3次重復(fù)。使用實(shí)時(shí)熒光定量RCR試劑盒(Q711-02,南京諾唯贊醫(yī)療科技有限公司)合成體系在BioRad CFX96 Fast Real-Time PCR系統(tǒng)中進(jìn)行實(shí)時(shí)熒光定量PCR。實(shí)時(shí)熒光定量PCR引物信息見表1。采用2-ΔΔCt法計(jì)算防御相關(guān)基因的相對(duì)表達(dá)量。
2結(jié)果與分析
2.1 Atp2蛋白對(duì)水稻苗期體內(nèi)葉綠素和H2O2含量的影響
對(duì)Atp2處理后的水稻苗期葉綠素a/b進(jìn)行測(cè)定,結(jié)果(圖1-A)顯示,使用20和50μg/mL Atp2蛋白處理種子后,水稻的葉綠素a/b無顯著變化(Pgt;0.05),而將Atp2蛋白噴施到水稻葉片后,水稻的葉綠素a/b顯著(Plt;0.05,下同)或極顯著(Plt;0.01,下同)升高,分別較CK高14.7%和20.2%。表明Atp2蛋白能明顯提高水稻葉片的葉綠素a/b。
進(jìn)一步檢測(cè)Atp2蛋白處理后水稻苗期H2O2含量,結(jié)果(圖1-B)顯示,20和50μg/mL Atp2蛋白處理種子后,水稻H2O2含量分別較CK高12.2%和30.8%;而噴施水稻葉片后,水稻H2O2含量極顯著升高,分別較CK高168.5%和98.9%。表明Atp2蛋白能明顯提高水稻體內(nèi)H2O2含量。
2.2 Atp2蛋白對(duì)水稻苗期體內(nèi)POD和CAT活性的影響
POD和CAT在平衡植物體內(nèi)H2O2水平中扮演著重要角色。對(duì)Atp2蛋白處理后水稻體內(nèi)POD和CAT活性測(cè)定結(jié)果顯示,與CK相比,20和50μg/mL Atp2蛋白處理種子后,水稻體內(nèi)POD活性分別下降34.3%和10.9%(圖2-A)、CAT活性分別下降67.9%和21.9%(圖2-B);20和50μg/mL Atp2蛋白處理葉片后,水稻體內(nèi)POD活性分別下降8.1%和36.0%(圖2-A)、CAT活性分別下降19.0%和78.4%(圖2-B)。表明Atp2蛋白可能對(duì)POD和CAT具有抑制作用。
2.3 Atp2蛋白對(duì)水稻苗期體內(nèi)SOD、GR、PAL和PPO活性的影響
SOD在植物應(yīng)答脅迫過程中可保護(hù)植物細(xì)胞免受氧化損傷,在調(diào)節(jié)植物的生長(zhǎng)和發(fā)育中起到重要作用。對(duì)Atp2蛋白處理后水稻體內(nèi)SOD活性測(cè)定結(jié)果(圖3-A)顯示,與CK相比,20和50μg/mL Atp2蛋白處理種子后,水稻體內(nèi)SOD活性分別提高351.9%和799.9%;處理葉片后SOD活性分別提高63.5%和708.0%。表明Atp2蛋白能極顯著提高水稻苗期SOD活性。
GR是一種黃素蛋白氧化還原酶,在植物對(duì)抗氧化脅迫過程中具有清除活性氧的作用。對(duì)Atp2蛋白處理后水稻體內(nèi)GR活性測(cè)定結(jié)果(圖3-B)顯示,與CK相比,20和50μg/mL Atp2蛋白處理種子后水稻體內(nèi)GR活性分別提高100.0%和59.4%;處理葉片后GR活性分別提高224.0%和70.2%。表明Atp2蛋白能極顯著提高水稻苗期GR活性。
參與酚類物質(zhì)代謝過程的PAL和PPO在植物抗病生理中具有重要作用。對(duì)Atp2蛋白處理后水稻體內(nèi)PAL和PPO活性測(cè)定結(jié)果顯示,與CK相比,20和50μg/mL Atp2蛋白處理種子后,水稻體內(nèi)PAL活性分別提高15.4%和18.6%,處理葉片后分別提高35.5%和64.4%(圖3-C);20和50μg/mL Atp2蛋白處理種子后,PPO活性分別提高7.3%和22.0%;而處理葉片后,PPO活性分別下降5.2%和46.4%(圖3-D)。表明Atp2蛋白能影響水稻苗期PAL和PPO活性。
2.4 Atp2蛋白對(duì)水稻苗期防御相關(guān)基因表達(dá)的影響
為進(jìn)一步探究Atp2蛋白在誘導(dǎo)水稻免疫響應(yīng)上的差別,對(duì)SA信號(hào)途徑關(guān)鍵基因OsCHT1、OsPAL1和OsPR1a,JA/ET信號(hào)途徑關(guān)鍵基因OsAOS2和OsLOX1,以及2條信號(hào)途徑的關(guān)鍵節(jié)點(diǎn)基因OsWRKY70的表達(dá)水平進(jìn)行比較分析。實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果顯示,Atp2蛋白處理后水稻防御相關(guān)基因OsWRKY70、OsLOX1、OsAOS2(50μg/mL Atp2蛋白處理水稻葉片外)、OsPR1a和OsCHT1基因表達(dá)均上調(diào),其中OsWRKY70、OsLOX1和OsCHT1基因表達(dá)顯著或極顯著上調(diào);Atp2蛋白處理種子后OsPAL1基因表達(dá)極顯著上調(diào),處理葉片后OsPAL1基因表達(dá)極顯著下調(diào)(圖4)。表明Atp2蛋白能激活水稻防御相關(guān)基因的免疫應(yīng)答反應(yīng)。
3討論
光合細(xì)菌作為重要的微生物資源具有綠色環(huán)保、低經(jīng)濟(jì)成本的特點(diǎn),其對(duì)營(yíng)養(yǎng)需求較少,在營(yíng)養(yǎng)貧乏的環(huán)境中也能生存,在各個(gè)領(lǐng)域應(yīng)用廣泛(胡青平等,2011)。葉綠素是植物進(jìn)行光合作用的必備條件,光合作用產(chǎn)生的有機(jī)質(zhì)是作物產(chǎn)量的重要來源(Fromme et al.,2003),葉綠素a和葉綠素b含量與植物抗性呈正相關(guān)(楊怡等,2022)。低濃度H2O2在植物中作為信號(hào)分子,功能類似于植物激素,在植物的生長(zhǎng)發(fā)育中起著不可或缺的作用(Cerny et al.,2018),但過量的H2O2會(huì)引起植物葉綠體自噬和細(xì)胞程序性死亡(Smirnoff and Arnaud,2019)。本研究中,Atp2蛋白處理后水稻葉綠素a/b上升,表明植物的光合作用增強(qiáng),與張麗娟等(2015)對(duì)豌豆、韓慶典等(2017)對(duì)小麥的研究結(jié)果一致。Atp2蛋白處理后水稻H2O2含量升高,表明在植物種子萌發(fā)過程中需要適量濃度H2O2來滿足自身生長(zhǎng)需求,與H2O2對(duì)花生種子萌發(fā)的作用效果(姜玉晴,2019)一致。表明Atp2蛋白能提高水稻光合作用能力,維持水稻生理功能,進(jìn)而提高水稻抗病能力。
在植物抗氧化的過程中,多種抗病相關(guān)酶在其中發(fā)揮著不同作用,組成防御酶系統(tǒng),可使植物有效抵御病原菌的生長(zhǎng)。POD與植物木質(zhì)化過程密切相關(guān),在植物耐鹽脅迫中起到重要作用(Fernández-Pérez etal.,2015;Jin et al.,2019);CAT在植物細(xì)胞器應(yīng)激條件下的復(fù)雜反應(yīng)中起到關(guān)鍵作用(Corpas,2015;常君等,2022);SOD活性與寄主植物的抗蟲性密切相關(guān)(蔣紅波等,2016;梁曉等,2017),植物抗寒性與SOD活性變化存在顯著相關(guān)(魏鑫等,2023;吳巧玉和何天久,2023);GR活性在植物抵御惡劣環(huán)境脅迫過程中起到重要作用(張騰國(guó)等,2018);PAL與多個(gè)蛋白形成一個(gè)多蛋白跨膜系統(tǒng),在細(xì)菌存活和發(fā)病機(jī)制中扮演重要角色(Godlewska et al.,2009);PPO是一種銅金屬酶,在植物應(yīng)對(duì)病原菌入侵中起重要作用(Zhang and Sun,2021)。前人研究發(fā)現(xiàn),玉米(王光達(dá),2010)、甘蔗(王竹青等,2015)、水稻(宛甜甜,2023)等作物在受到病原真菌感染后,植物體內(nèi)的PAL、PPO、CAT和POD等抗性相關(guān)酶活性增強(qiáng),與植物抗性呈正相關(guān)。本研究中,PAL和PPO(種子處理)活性顯著或極顯著增強(qiáng),水稻抗性提高;SOD和GR活性極顯著增強(qiáng),水稻抗性進(jìn)一步增強(qiáng);而POD和CAT活性呈下降趨勢(shì),可能是因?yàn)槟婢趁{迫使CAT的構(gòu)象發(fā)生改變,抑制CAT活性,從而提高有利于抗病反應(yīng)的H2O2含量(何婷等,2021)。綠盲蝽危害4種果樹葉片時(shí)發(fā)現(xiàn),POD活性在棗、葡萄和桃3種果樹葉片中均增加,而SOD活性在櫻桃葉片中卻有所下降(高勇等,2012),表明植物在應(yīng)對(duì)脅迫時(shí)體內(nèi)防御酶活性調(diào)節(jié)并非完全一致。
防御相關(guān)基因轉(zhuǎn)錄應(yīng)答是植物抵御病原菌入侵的基礎(chǔ)。本研究檢測(cè)了多個(gè)防御相關(guān)基因的轉(zhuǎn)錄水平,除Atp2蛋白處理水稻葉片后OsPAL1基因表達(dá)極顯著下調(diào)、50μg/mL處理水稻葉片后OsAOS2基因表達(dá)下調(diào)外,其他基因在Atp2蛋白處理后均上調(diào)表達(dá),其中OsWRKY70、OsLOX1和OsCHT1基因表達(dá)顯著或極顯著上調(diào)。WRKY70是正向調(diào)控植物免疫的主要基因(Chen et al.,2021);LOX1基因在植物體內(nèi)脂氧合酶產(chǎn)生過程中起到重要調(diào)控作用(Marla and Singh,2012);AOS2基因在大麥發(fā)育和茉莉酮的生物合成中發(fā)揮重要作用,參與茉莉酸途徑(Maucher etal.,2000);PR1a基因參與植物應(yīng)對(duì)各種環(huán)境調(diào)控(Le?o etal.,2015);CHT1基因誘導(dǎo)表達(dá)的幾丁質(zhì)酶能降解幾丁質(zhì),幾丁質(zhì)是病原體細(xì)胞壁的重要組成成分(Itoh and Kimoto,2019);PAL1基因在植物中特異性表達(dá),在植物對(duì)非生物脅迫的響應(yīng)過程中起到重要作用(Huanget al.,2010)。本研究中,Atp2蛋白處理后,水稻防御相關(guān)基因轉(zhuǎn)錄上調(diào),表明水稻防御反應(yīng)被激活,與抗病相關(guān)酶活性提高的結(jié)果一致,以增強(qiáng)水稻對(duì)病原菌的防御應(yīng)答。
綜上,Atp2蛋白可提高水稻葉綠素a/b、H2O2含量和多種防御酶活性,誘導(dǎo)水稻防御相關(guān)基因上調(diào)表達(dá),激發(fā)植物免疫應(yīng)答反應(yīng),顯著提高水稻抗逆能力和促進(jìn)水稻生長(zhǎng)發(fā)育。相關(guān)分子機(jī)制研究是本課題組下一步的探索目標(biāo)。
4結(jié)論
沼澤紅假單胞菌PSB06 Atp2蛋白對(duì)水稻生長(zhǎng)及抗逆有促進(jìn)作用。Atp2蛋白能提高水稻光合作用,對(duì)種子萌發(fā)起到促進(jìn)作用;Atp2蛋白對(duì)POD和CAT活性具有抑制作用;Atp2蛋白增強(qiáng)水稻SOD、GR、PAL和PPO活性,提高水稻抗逆性;Atp2蛋白促使抗病相關(guān)基因轉(zhuǎn)錄水平上調(diào),激活水稻防御反應(yīng)。沼澤紅假單胞菌PSB06 Atp2蛋白對(duì)水稻有較好的促生抗逆效果,具有推廣應(yīng)用潛力。
參考文獻(xiàn)(References):
柴書彤.2023.光合細(xì)菌菌劑對(duì)栽培黨參品質(zhì)影響的研究[D].太原:山西醫(yī)科大學(xué).[Chai S T.2023.Study on the effect of the photosynthetic bacterial agent on the quality of cultivated Codonopsispilosula[D].Taiyuan:Shanxi Me-dical University.]doi:10.27288/d.cnki.gsxyu.2023.001044.
常君,姚小華,張亞波,任華東,張瀟丹,張成才,萬(wàn)紅衛(wèi).2022.松針刺盤孢菌侵染對(duì)薄殼山核桃不同抗性品種酶活性和酚類物質(zhì)的影響[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),44(3):52-58.[Chang J,Yao X H,Zhang Y B,Ren H D,Zhang X D,Zhang C C,Wan H W.2022.Effects of Col-letotrichum fioriniae infection on enzyme activity and phe-nolics content of different resistant varieties of pecan[J].Journal of Southwest University(Natural Science Edition),44(3):52-58.]doi:10.13718/j.cnki.xdzk.2022.03.006.
陳麗潔,蘇品,張卓,翟忠英,孔小婷,杜曉華,程菊娥,唐雯,張德詠,劉勇.2019.一株耐鹽類球紅細(xì)菌的分離鑒定及其對(duì)不同作物的促生作用[J].南方農(nóng)業(yè)學(xué)報(bào),50(5):964-973.[Chen L J,Su P,Zhang Z,Zhai Z Y,Kong X T,Du X H,Cheng J E,Tang W,Zhang D Y,Liu Y.2019.Iso-lation and identification of one salt-tolerant strain of Rho-dobacter sphaeorides and its growth promoting effect on different crops[J].Journal of Southern Agriculture,50(5):964-973.]doi:10.3969/j.issn.2095-1191.2019.05.07.
董培彥.2023.光合細(xì)菌對(duì)朝天椒病害防治、生長(zhǎng)品質(zhì)及產(chǎn)量的影響研究[D].邯鄲:河北工程大學(xué).[Dong PY.2023.Effects of photosynthetic bacteria on disease control,growth quality and yield of facing chili pepper[D].Han-dan:Hebei University of Engineering.]doi:10.27104/d.cnki.ghbjy.2023.000472.
高蓉蓉,鄧雪婷,吳煒順,盛下放,何琳燕.2023.一株光合細(xì)菌的篩選及促進(jìn)苦草生長(zhǎng)的特性[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),39(3):360-368.[Gao R R,Deng X T,Wu W S,Sheng X F,He L Y.2023.Screening of a photosynthetic bacte-rium and its effect on promoting the growth of vallisneria[J].Journal of Ecology and Rural Environment,39(3):360-368.]doi:10.19741/j.issn.1673-4831.2022.0427.
高勇,門興元,于毅,周洪旭.2012.綠盲蝽危害后棗、桃、櫻桃、葡萄葉片生理代謝指標(biāo)的變化[J].中國(guó)農(nóng)業(yè)科學(xué),45(22):4627-4634.[Gao Y,Men X Y,Yu Y,Zhou H X.2012.Changes of physiological indexes of jujube,peach,cherry and grape leaves damaged by Apolygus lucorum in Northern China[J].Scientia Agricultura Sinica,45(22):4627-4634.]doi:10.3864/j.issn.0578-1752.2012.22.008.
古今,陳宗瑜,訾先能,羅麗瓊.2006.植物酶系統(tǒng)對(duì)UV-B輻射的響應(yīng)機(jī)制[J].生態(tài)學(xué)雜志,25(10):1269-1274.[Gu J,Chen Z Y,Zi X N,Luo L Q.2006.Response mechanism of plant enzymatic system to UV-B radiation[J].Chinese Journal of Ecology,25(10):1269-1274.]doi:10.13292/j.1000-4890.2006.0241.
韓慶典,楊美娟,黃擇祥,閆麗,胡曉君.2017.小麥白粉病菌對(duì)小麥幼苗光合生理特性的影響[J].基因組學(xué)與應(yīng)用生物學(xué),36(10):4373-4379.[Han Q D,Yang M J,Huang Z X,Yan L,Hu X J.2017.Effects of wheat powdery mildew on the photosynthetic physiological characteristics of wheat seedlings[J].Genomics and Applied Biology,36(10):4373-4379.]doi:10.13417/j.gab.036.004373.
何婷,劉太國(guó),陳萬(wàn)權(quán),郭青云,高利.2021.小麥光腥黑粉菌對(duì)小麥三種防御酶活性的影響[J].分子植物育種,19(2):614-621.[He T,Liu T G,Chen W Q,Guo Q Y,Gao L.2021.Effects of Tilletia foetida on activities of three defense enzymes in wheat[J].Molecular Plant Breeding,19(2):614-621.]doi:10.13271/j.mpb.019.000614.
胡青平,衛(wèi)紅萍,高紅,楊曉月,申瑜,秦燕,田呈瑞.2011.光合細(xì)菌PSB-B浸種對(duì)小麥種子萌發(fā)的影響[J].麥類作物學(xué)報(bào),31(4):720-723.[Hu Q P,Wei H P,Gao H,Yang X Y,Shen Y,Qin Y,Tian C R.2011.Influence of soakingseeds with PSB-B solution on germination of wheat seed[J].Journal of Triticeae Crops,31(4):720-723.]doi:10.7606/j.issn.1009-1041.2011.04.024.
蔣紅波,馮英財(cái),劉世火,王進(jìn)軍.2016.柑橘全爪螨PcSOD3的異源表達(dá)及其重組酶的抗氧化活性[J].中國(guó)農(nóng)業(yè)科學(xué),49(24):4735-4744.[Jiang H B,F(xiàn)eng Y C,Liu S H,Wang J J.2016.Heterologous expression of PcSOD3 from Panonychus citri and the anti-oxidant activity of its recom-binant enzyme[J].Scientia Agricultura Sinica,49(24):4735-4744.]doi:10.3864/j.issn.0578-1752.2016.24.006.
姜玉晴.2019.低溫脅迫下過氧化氫浸種對(duì)花生種子萌發(fā)的影響[D].合肥:安徽農(nóng)業(yè)大學(xué).[Jiang Y Q.2019.Effects of seed soaking with H2O2 on germination of peanut seeds under low teperature stress[D].Hefei:Anhui Agricultural University.]doi:10.26919/d.cnki.gannu.2019.000580.
李永強(qiáng),王亞男,何楊艷,馬丹煒.2008.干旱脅迫對(duì)外來雜草野茼蒿抗氧化系統(tǒng)的影響[J].四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),31(5):607-609.[Li Y Q,Wang Y N,He Y Y,Ma D W.2008.Effects of drought stress on the antioxidantsystem of invasive plant Crassocephlum crepidioides(Benth.)S.Moore[J].Journal of Sichuan Normal Univer-sity(Natural Science),31(5):607-609.]doi:10.3969/j.issn.1001-8395.2008.05.028.
梁曉,盧芙萍,盧輝,伍春玲,田桂子,陳青,朱俊洪.2017.保護(hù)酶SOD在木薯種質(zhì)抗螨中的功能初步分析[J].基因組學(xué)與應(yīng)用生物學(xué),36(5):2055-2060.[Liang X,Lu F P,Lu H,Wu C L,Tian G Z,Chen Q,Zhu J H.2017.Prelimi-nary analysis of the function of protective enzyme SOD in cassava resistance to mite[J].Genomics and Applied Bio-logy,36(5):2055-2060.]doi:10.13417/j.gab.036.002055.
羅路云,張卓,王培,王紫薇,譚新球,張德詠,劉勇,戴建平.2019.光合細(xì)菌菌劑對(duì)稻曲病和稻瘟病的田間藥效試驗(yàn)[J].湖南農(nóng)業(yè)科學(xué),(11):69-71.[Luo L Y,Zhang Z,Wang P,Wang Z W,Tan X Q,Zhang D Y,Liu Y,Dai J P.2019.Field efficiency of photosynthetic bacteria against rice 1 smut and rice blast[J].Hunan Agricultural Scien-ces,(11):69-71.]doi:10.16498/j.cnki.hnnykx.2019.011.019.
羅源華,陳冰,張卓,彭靜,張松柏,張德詠,劉勇.2013.光合細(xì)菌對(duì)辣椒疫病的田間防治試驗(yàn)[J].南方農(nóng)業(yè)學(xué)報(bào),44(10):1658-1661.[Luo Y H,Chen B,Zhang Z,Peng J,Zhang S B,Zhang D Y,Liu Y.2013.Field efficiency of photosynthetic bacteria against pepper phytophthora blight[J].Journal of Southern Agriculture,44(10):1658-1661.]doi:10.3969/j:issn.2095-1191.2013.10.1658.
穆金艷,趙蘭枝,王振宇.2017.不同濃度光合細(xì)菌對(duì)水培油麥菜產(chǎn)量及品質(zhì)的影響[J].北方園藝,(15):56-60.[MuJ Y,Zhao L Z,Wang Z Y.2017.Effects of different con-centrations of photosynthetic bacteria solutions on yield and quality of Lactuca sativa L.[J].Northern Horticulture,(15):56-60.]doi:10.11937/bfyy.20165045.
宛甜甜.2023.解淀粉芽孢桿菌SN16-1對(duì)水稻稻瘟病的防治作用及其誘抗機(jī)理研究[D].上海:華東理工大學(xué).[Wan T T.2023.Control of rice blast by Bacillus amyloliquefa-ciens SN16-1 and its resistance-inducing mechanism[D].Shanghai:East China University of Science and Techno-logy.]doi:10.27148/d.cnki.ghagu.2023.000229.
王光達(dá).2010.不同玉米品種抗病性與相關(guān)酶活性的研究[D].延吉:延邊大學(xué).[Wang G D.2010.Studies on di-sease resistance and related enzyme activity of different corn[D].Yanji:Yanbian University.]
王竹青,張旭,高鵬飛,蘇亞春.2015.黑穗病菌侵染早期的甘蔗生理生化響應(yīng)差異[J].基因組學(xué)與應(yīng)用生物學(xué),34(12):2631-2638.[Wang Z Q,Zhang X,Gao P F,Su Y C.2015.The different physiological and biochemical respo-nses in sugarcane during early infection of Sporisorium scitamineum[J].Genomics and Applied Biology,34(12):2631-2638.]doi:10.13417/j.gab.034.002631.
魏鑫,王升,王興東,楊玉春,劉有春,劉成.2023.不同藍(lán)莓品種對(duì)低溫處理的生理響應(yīng)及抗寒性評(píng)價(jià)[J].河南農(nóng)業(yè)科學(xué),52(8):115-125.[Wei X,Wang S,Wang X D,Yang Y C,Liu Y C,Liu C.2023.Physiological response and coldresistance evaluation of blueberry varieties under low tem-perature treatment[J].Journal of Henan Agricultural Scien-ces,52(8):115-125.]doi:10.15933/j.cnki.1004-3268.2023.08.013.
吳巧玉,何天久.2023.外源脫落酸對(duì)低溫脅迫下馬鈴薯野生材料生理特性的影響[J].東北農(nóng)業(yè)科學(xué),48(5):88-91.[Wu Q Y,He T J.2023.Effects of exogenous abscisic acid on physiological characteristics of potato wild materials under low temperature stress[J].Journal of Northeast Agri-cultural Sciences,48(5):88-91.]doi:10.16423/j.cnki.1003-8701.2023.05.019.
吳希陽(yáng),羅路云,譚新球,張德詠,陳岳,劉勇.2020.沼澤紅假單胞菌Atp2蛋白的原核表達(dá)及稻瘟病菌的互作蛋白初步篩選[J].中國(guó)生物防治學(xué)報(bào),36(3):421-428.[Wu X Y,Luo L Y,Tan X Q,Zhang D Y,Chen Y,Liu Y.2020.Prokaryotic expression of Atp2 protein of Rhodopseudomo-nas palustris and preliminary screening of interaction pro-tein in Magnaporthe oryzae[J].Chinese Journal of Bio-logical Control,36(3):421-428.]doi:10.16409/j.cnki.2095-039x.2020.03.019.
薛美昭,儀慧蘭.2017.果實(shí)抗病防御應(yīng)答參與SO2對(duì)‘紅提’葡萄的采后保鮮[J].應(yīng)用與環(huán)境生物學(xué)報(bào),23(5):806-810.[Xue M Z,Yi H L.2017.Induction of disease defense responses by SO2 during the preservation of‘Red Globe’grapes[J].Chinese Journal of Applied and Envi-ronmental Biology,23(5):806-810.]doi:10.3724/SP.J.1145.2016.10022.
楊芳,田俊嶺,楊盼盼,馮宏,賀廣生,陳旭東,盧鈺升,譚志遠(yuǎn),彭桂香.2014.高效光合細(xì)菌菌劑對(duì)番茄品質(zhì)、土壤肥力及微生物特性的影響[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),35(1):49-54.[Yang F,Tian J L,Yang P P,F(xiàn)eng H,He G S,Chen X D,Lu Y S,Tan Z Y,Peng G X.2014.Effects ofinoculant of photosynthetic bacteria on tomato quality,soilfertility and soil microbial characteristics[J].Journal of South China Agricultural University,35(1):49-54.]doi:10.7671/j.issn.1001-411X.2014.01.009.
楊怡,田麗波,商桑,陳虹容,范晨偉,郭雪松.2022.苦瓜葉片葉綠素響應(yīng)白粉病菌侵染的遺傳分析[J].熱帶作物學(xué)報(bào),43(9):1888-1898.[Yang Y,Tian L B,Shang S,Chen H R,F(xiàn)an C W,Guo X S.2022.Genetic law of chlorophyll response to powdery mildew infection in bitter melon leaves[J].Chinese Journal of Tropical Crops,43(9):1888-1898.]doi:10.3969/j.issn.1000-2561.2022.09.017.
曾益波,劉駿,趙國(guó)盛,吳希陽(yáng),陳岳,蘇品,張德詠,劉勇.2018.光合細(xì)菌PSB06浸種對(duì)水稻促生作用研究[J].雜交水稻,33(3):50-53.[Zeng Y B,Liu J,Zhao G S,Wu X Y,Chen Y,Su P,Zhang D Y,Liu Y.2018.Promoting effects of soaking seed with photosynthetic bacterium PSB06 on rice growth[J].Hybrid Rice,33(3):50-53.]doi:10.16267/j.cnki.1005-3956.20180102.003.
張昊,馮佳佳,孫丹丹,閆青地,趙亞林,王珊,王平平,趙亞卓,王倩,王鳳茹,董金皋.2019.油菜素內(nèi)酯提高玉米抗禾谷鐮孢菌侵染的生理機(jī)制[J].華北農(nóng)學(xué)報(bào),34(1):213-218.[Zhang H,F(xiàn)eng J J,Sun D D,Yan Q D,ZhaoY L,Wang S,Wang P P,Zhao Y Z,Wang Q,Wang F R,Dong J G.2019.The physiological mechanisms of the increase of the infection of the maize resistance to the Fusarium graminearum[J].Acta Agriculturae Boreali-Sinica,34(1):213-218.]doi:10.7668/hbnxb.201750779.
張麗娟,楊曉明,陸建英,王昶.2015.豌豆白粉病抗性相關(guān)指標(biāo)的研究[J].甘肅農(nóng)業(yè)科技,(3):33-36.[Zhang L J,Yang X M,Lu J Y,Wang C.2015.Study on indicators related with pea powdery mildew resistance[J].Gansu Agri-cultural Science and Technology,(3):33-36.]doi:10.3969/j.issn.1001-1463.2015.03.011.
張騰國(guó),聶亭亭,孫萬(wàn)倉(cāng),史中飛,王娟.2018.逆境脅迫對(duì)油菜谷胱甘肽還原酶基因表達(dá)及其酶活性的影響[J].應(yīng)用生態(tài)學(xué)報(bào),29(1):213-222.[Zhang T G,Nie T T,Sun W C,Shi Z F,Wang J.2018.Effects of diverse stresses on gene expression and enzyme activity of glutathione reduc-tasein Brassica campestris[J].Chinese Journal of Applied Ecology,29(1):213-222.]doi:10.13287/j.1001-9332.20 1801.010.
Ahmad P,Sarwat M,Sharma S.2008.Reactive oxygen species,antioxidants and signaling in plants[J].Journal of Plant Biology,51(3):167-173.doi:10.1007/bf03030694.
Anjum N A,Sharma P,Gill S S,Hasanuzzaman M,Khan E A,Kachhap K,Mohamed A A,Thangavel P,Devi G D,Vasudhevan P,Sofo A,Khan N A,Misra A N,Lukatkin A S,Singh H P,Pereira E,Tuteja N.2016.Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants[J].Environmental Science and Pollu-tion Research,23(19):19002-19029.doi:10.1007/s 11356-016-7309-6.
Cerny M,HabánováH,Berka M,LuklováM,Brzobohaty B.2018.Hydrogen peroxide:Its role in plant biology and crosstalk with signalling networks[J].International Jour-nal of Molecular Sciences,19(9):30.doi:10.3390/ijms 19092812.
Chen S Y,Ding Y L,Tian H N,Wang S C,Zhang Y L.2021.WRKY54 and WRKY70 positively regulate SARD1 and CBP60g expression in plant immunity[J].Plant Signalingamp;Behavior,16(10):1932142.doi:10.1080/15592324.2021.1932142.
Corpas F J.2015.What is the role of hydrogen peroxide in plant peroxisomes?[J].Plant Biology,17(6):1099-1103.doi:10.1111/plb.12376.
Fernández-Pérez F,Vivar T,Pomar F,Pedre?o M A,Novo-Uzal E 2015.Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana[J].Journal of Plant Physiology,175:86-94.doi:10.1016/j.jplph.2014.11.006.
Fromme P,Melkozernov A,Jordan P,Krauss N.2003.Struc-ture and function of photosystem I:Interaction with itssoluble electron carriers and external antenna systems[J].FEBS Letters,555(1):40-44.doi:10.1016/s0014-5793(03)01124-4.
Godlewska R,Wisniewska K,Pietras Z,Jagusztyn-Krynicka E K.2009.Peptidoglycan-associated lipoprotein(Pal)of Gram-negative bacteria:Function,structure,role in patho-genesis and potential application in immunoprophylaxis[J].FEMS Microbiology Letters,298(1):1-11.doi:10.1111/j.1574-6968.2009.01659.x.
Huang J L,Gu M,Lai Z B,F(xiàn)an B F,Shi K,Zhou Y H,Yu J Q,Chen Z X.2010.Functional analysis of the Arabidopsis PAL gene family in plant growth,development,andresponse to environmental stress[J].Plant Physiology,153(4):1526-1538.doi:10.1104/pp.110.157370.
Idi A,Md Nor H M,Abdul Wahab M F,Ibrahim Z.2015.Pho-tosynthetic bacteria:An eco-friendly and cheap tool for bioremediation[J].Reviews in Environmental Science and Bio-Technology,14(2):271-285.doi:10.1007/s 11157-014-9355-1.
Itoh T,Kimoto H.2019.Bacterial chitinase system as a model of chitin biodegradation[J].Targeting Chitin-Containing Organisms,1142:131-151.doi:10.1007/978-981-13-7318-3_7.
Jin T,Sun Y Y,Zhao R R,Shan Z,Gai J Y,Li Y.2019.Overex-pression of peroxidase gene GsPRX9 confers salt tolerance in soybean[J].International Journal of Molecular Scien-ces,20(15):3745.doi:10.3390/ijms20153745.
Le?o M P C,Tiago P V,Andreote F D,De Araújo W L,De Oliveira N T.2015.Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis[J].Genetics and Molecular Biology,38(1):86-92.doi:10.1590/s 1415-475738138120140236.
Marla S S,Singh V K.2012.LOX genes in blast fungus(Mag-naporthe grisea)resistance in rice[J].Functionalamp;Inte-grative Genomics,12(2):265-275.doi:10.1007/s 10142-012-0268-1.
Maucher H,Hause B,F(xiàn)eussner I,Ziegler J,Wasternack C.2000.Allene oxide synthases of barley(Hordeum vulgare cv.Salome):Tissue specific regulation in seedling deve-lopment[J].The Plant Journal,21(2):199-213.doi:10.1046/j.1365-313x.2000.00669.x.
Smirnoff N,Arnaud D.2019.Hydrogen peroxide metabolism and functions in plants[J].New Phytologist,221(3):1197-1214.doi:10.1111/nph.15488.
Su P,F(xiàn)eng T Z,Zhou X G,Zhang S B,Zhang Y,Cheng J,LuoY H,Peng J,Zhang Z,Lu X Y,Zhang D Y,Liu Y.2015.Isolation of Rhp-PSP,a member of YER057c/YjgF/UK114protein family with antiviral properties,from the photosyn-thetic bacterium Rhodopseudomonas palustris strain JSC-3b[J].Scientific Reports,5:16121.doi:10.1038/srep 16121.
Zhang J,Sun X L.2021.Recent advances in polyphenol oxidase-mediated plant stress responses[J].Phytochemis-try,181:112588.doi:10.1016/j.phytochem.2020.112588.
(責(zé)任編輯 麻小燕)
南方農(nóng)業(yè)學(xué)報(bào)2024年9期