摘要:【目的】探究復(fù)合微生物菌肥與番茄青枯病發(fā)生、根際土壤理化性質(zhì)及土壤細(xì)菌群落之間的關(guān)系,為合理應(yīng)用微生物菌肥綠色防控番茄青枯病提供理論依據(jù)?!痉椒ā恳酝攴亚嗫莶?yán)重發(fā)生地塊為試驗(yàn)地,設(shè)清水對(duì)照(T1)、復(fù)合微生物菌肥(T2)、菌肥營(yíng)養(yǎng)基質(zhì)(T3)和復(fù)合微生物(T4)4個(gè)處理,測(cè)定番茄根際土壤養(yǎng)分含量、番茄植株生長(zhǎng)、根系青枯病菌帶菌率、青枯病發(fā)病率及根際土壤呼吸速率;采用16S rDNA測(cè)序技術(shù)分析施用復(fù)合微生物菌肥后番茄根際土壤細(xì)菌群落結(jié)構(gòu)變化?!窘Y(jié)果】在番茄采收期測(cè)定結(jié)果顯示,復(fù)合微生物菌肥和復(fù)合微生物處理的番茄根際土壤中有機(jī)質(zhì)、銨態(tài)氮和速效磷含量均高于或顯著(Plt;0.05)高于其他處理;與清水對(duì)照相比,復(fù)合微生物菌肥、復(fù)合微生物和菌肥營(yíng)養(yǎng)基質(zhì)處理的番茄株高、莖圍、葉面積、光合作用、葉綠素相對(duì)含量(SPAD值)、產(chǎn)量和水溶性糖增幅分別為6.82%~27.88%、19.59%~47.40%、2.04%~17.08%、3.88%~11.21%、1.99%~17.15%、9.13%~22.37%和0.45%~5.12%;復(fù)合微生物菌肥處理的番茄根系青枯病菌帶菌率降至11.11%,土壤呼吸速率較清水對(duì)照提高54.05%;與清水對(duì)照相比,復(fù)合微生物菌肥、復(fù)合微生物和菌肥營(yíng)養(yǎng)基質(zhì)處理的番茄根際土壤細(xì)菌屬水平ACE指數(shù)和Chao1指數(shù)分別提高3.12%~6.64%和4.76%~7.18%,Simpson指數(shù)和Shannon指數(shù)無(wú)顯著差異(Pgt;0.05);復(fù)合微生物菌肥處理的芽孢桿菌目(Bacillales)和芽孢桿菌屬(Bacillus)分別為排名前10的優(yōu)勢(shì)目(8.31%)和優(yōu)勢(shì)屬(6.60%);4個(gè)處理中芽孢桿菌屬與Christensenellaceae_R-7_group和WCHB1-32的豐度相似,與WCHB1-32、瘤胃梭菌屬(Ruminiclostridium_1)、Christensenellaceae_R-7_group和噬幾丁質(zhì)菌科未培養(yǎng)菌屬(uncultured_bacterium f Chitinophagaceae)正相關(guān),與假單胞菌屬(Pseudomonas)、厭氧繩菌科未培養(yǎng)菌屬(uncultured_bacterium f Anaerolineaceae)和嗜甲基菌屬(Methy-lophilus)負(fù)相關(guān)。復(fù)合微生物菌肥處理的代謝途徑、次生代謝物生物合成、抗生素生物合成和氨基酸生物合成等功能微生物豐度增幅最明顯;有機(jī)質(zhì)、速效磷、速效鉀、芽孢桿菌屬、雷爾氏菌屬(Ralstonia)和土壤呼吸速率與抗生素生物合成功能正相關(guān),pH、芽孢桿菌屬、雷爾氏菌屬和土壤呼吸速率與氨基酸生物合成功能正相關(guān),而鹽度和發(fā)病率與2項(xiàng)功能負(fù)相關(guān)。【結(jié)論】復(fù)合微生物菌肥能顯著改良土壤養(yǎng)分比例、改善土壤細(xì)菌群落結(jié)構(gòu)和功能特性、提升抗生素生物合成和氨基酸生物合成等功能、促進(jìn)番茄生長(zhǎng)、降低青枯病發(fā)病率。復(fù)合微生物菌肥500倍稀釋液對(duì)番茄青枯病的防病促生作用顯著,具有良好的應(yīng)用前景。
關(guān)鍵詞:復(fù)合微生物菌肥;番茄青枯?。煌寥兰?xì)菌群落結(jié)構(gòu);功能
中圖分類號(hào):S436.419文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)09-2641-12
Effects of compound microbial fertilizer on the occurrence of tomato bacterial wilt and bacterial community of tomato rhizosphere soil
LI De-ming1,XU Yun-long1,DENG Tao2,ZHOU You1,YANG La-ying1,HUANG Jun-sheng1,WANG Jun1*
(1Institute of Environment and Plant Protection,Chinese Academy of Tropical Agricultural Sciences,Haikou,Hainan571100,China;2Institute of Microbiology,Jiangxi Academy of Sciences,Nanchang,Jiangxi 330095,China)
Abstract:【Objective】The purpose of the study was to explore the relationships between compound microbial ferti-lizer and the occurrence of tomato bacterial wilt,physicochemical properties of rhizosphere soil and soil bacterial commu-nities,so as to provide theoretical basis for the the rational application of microbial fertilizer in green prevention and con-trolof tomato bacterial wilt.【Method】Using plots with severe occurrence of tomato bacterial wilt in previous years as ex-perimental plots,4 treatments were set up:clearwater control(T1),compound microbial fertilizer(T2),bacterial ferti-lizer nutrient substrate(T3),compound microorganisms(T4).The nutrient content in tomato rhizosphere soil,the growth of tomato plant,the carrier rate of bacterial wilt pathogen in roots,incidence of bacterial wilt,and rhizosphere soil respiration rate were measured.Using 16S rDNA sequencing technology,the differences in the bacterial community structure of the tomato rhizosphere soil after the application of compound microbial fertilizer were investigated.【Result】Measurement results at the tomato harvest stage showed that,the contents of organic matter,ammonium nitrogen and available phosphorus in the rhizosphere soil of tomatoes treated with compound microbial fertilizer and compound micro-organisms were higher or significantly(Plt;0.05)higher than those in other treatments.Compared with the clearwater con-trol,the plant height,stem circumference,leaf area,photosynthesis,chlorophyll relative content(SPAD value),yield and water-soluble sugar content treated by compound microbial fertilizer,compound microorgani-sms and microbial fer-tilizer nutrient substrate all increased by 6.82%-27.88%,19.59%-47.40%,2.04%-17.08%,3.88%-11.21%,1.99%-17.15%,9.13%-22.37%and 0.45%-5.12%respectively.The carrier rate of bacterial wilt pathogens in tomato roots decreased to 11.11%with compound microbial fertilizer treatment,and the soil respiration rate increased by 54.05%compared with the clearwater control.Compared with the clearwater control,the ACE index and Chao1 index at the bacterial genus level in the rhizosphere soil of tomatoes treated with compound microbial fertilizer,compound microorganisms,and microbial fertilizer nutrient substrate increased by 3.12%-6.64%and 4.76%-7.18%respectively,while there was no significant dif-ferences in Simpson index and Shannon index(Pgt;0.05).For the compound microbial fertilizer treatment,Bacillales and Bacillus ranked among the top 10 dominant orders(8.31%)and genera(6.60%)respectively.Among the 4 treatments,the abundance of Bacillus was similar to that of Christensenellaceae_R-7_group and WCHB1-32,and it was positively correlated with WCHB1-32,Ruminiclostridium_1,Christensenellaceae_R-7_group and uncultured_bacterium f Chitin-ophagaceae,and negatively correlated with Pseudomonas,uncultured_bacterium f Anaerolineaceae and Methylophilus.The compound microbial fertilizer treatment showed the most obvious increase in the abundance of functional microor-ganisms involved in metabolic pathways,biosynthesis of secondary metabolites,biosynthesis of antibiotic and biosynthe-sis of amino acid.Organic matter,available phosphorus,available potassium,Bacillus,Ralstonia and soil respiration rate were positively correlated with function of biosynthesis of antibiotic.pH,Bacillus,Ralstonia and soil respiration rate were positively correlated with function of biosynthesis of amino acid.Salinity and incidence were negatively correlated with the two functions.【Conclusion】Compound microbial fertili-zer can significantly improve soil nutrient ratios,modify the structure and functional characteristics of soil bacterial communities,enhance functions such as biosynthesis of anti-biotic and biosynthesis of amino acid,promote the growth of tomato plant,and reduce the incidence of bacterial wilt.A 500-times dilution of compound microbial fertilizer exhibits remarkable disease prevention and growth-promoting effects on tomato bacterial wilt,indicating a promising application prospect.
Key words:compound microbial fertilizer;tomato bacterial wilt;soil bacterial community structure;function
Foundation items:Hainan Major Science and Technology Plan Project(ZDKJ2021016);Hainan Natural Science Foundation(321RC618);Jiangxi Key Research and Development Plan Project(20223BBF61015);Central Public Wel-fare Scientific Research Institutes Basal Research Fund(1630042022010)
0引言
【研究意義】由茄科雷爾氏菌(Ralstonia sola-nacearum)引起的番茄青枯?。═omato bacterial wilt)是一種發(fā)生在番茄上的毀滅性土傳病害,可影響超過53個(gè)植物科的200多種植物,該病害在熱帶、亞熱帶和溫暖地區(qū)尤為流行,造成番茄、辣椒、馬鈴薯、花生等多種作物顯著減產(chǎn)(Sun et al.,2023)。我國(guó)南方熱區(qū)高溫多雨,加上化學(xué)肥料和化學(xué)藥劑過度使用極易導(dǎo)致土壤酸化、養(yǎng)分和有益微生物失衡,致使青枯病等土傳病害頻發(fā)(李得銘,2020)。微生物制劑具有重構(gòu)土壤健康、防控土傳病害和綠色環(huán)保等優(yōu)點(diǎn)。芽孢桿菌(Bacillus spp.)等生防制劑是防控土傳病害和改良土壤的優(yōu)良生防菌,其防病機(jī)制主要有營(yíng)養(yǎng)和空間位點(diǎn)競(jìng)爭(zhēng)、分泌抗菌物質(zhì)、溶菌作用、誘導(dǎo)植物抗病性等(汪軍等,2019;Zhou et al.,2021;Chen et al.,2023;夏渝靜等,2024)。因此,研究微生物制劑對(duì)番茄青枯病發(fā)生和根際土壤細(xì)菌群落的影響,對(duì)保障番茄產(chǎn)業(yè)的健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】土壤微生物對(duì)植物的生長(zhǎng)和健康起著重要作用,健康土壤表現(xiàn)出比青枯病感染土壤更高的微生物多樣性和土壤質(zhì)量,包括高含量的芽孢桿菌等有益微生物,合理的土壤pH、速效磷和速效鉀含量(Wang et al.,2017)。Cai等(2021)評(píng)價(jià)烤煙根際微生物多樣性與青枯病發(fā)病率之間的關(guān)系時(shí)發(fā)現(xiàn),改善根際微生物多樣性可降低煙草青枯病的發(fā)病率。Ahmed等(2022)發(fā)現(xiàn)解淀粉芽孢桿菌菌株WS-10成功定殖煙草根際土壤后,可降低根際土壤中青枯菌的種群數(shù)量和青枯病發(fā)病率,將微生物群落結(jié)構(gòu)轉(zhuǎn)變?yōu)榻】禒顟B(tài)。由于單一生防菌菌株制劑存在功能有限的問題(吳思炫等,2023),因此選用不同功能的生防菌構(gòu)建微生物菌群,再與特定營(yíng)養(yǎng)基質(zhì)復(fù)配制備微生物菌肥,融合生防菌防病和有機(jī)肥促生功能,既克服單一菌株功能單一的局限,又為菌肥產(chǎn)品中的功能菌株提供有效營(yíng)養(yǎng),保障施用后的活性,有利于增產(chǎn)提質(zhì)(汪軍等,2017;Chen et al.,2023),具有廣闊的應(yīng)用前景。以產(chǎn)生脂肽類化合物的拮抗芽孢桿菌HR62和有機(jī)肥為原料制成的生物有機(jī)肥BIO62可顯著降低青枯病發(fā)病率,顯著降低根際土壤和冠部青枯菌的數(shù)量(Huang et al.,2014)。施用以解淀粉芽孢桿菌SQY162制備的生物有機(jī)肥后不僅能減少番茄根際土壤中青枯菌的數(shù)量,降低番茄青枯病發(fā)病率,還能促進(jìn)番茄植株生長(zhǎng),提高抗病性(Wu et al.,2016)。含有地衣芽孢桿菌(X-1)和甲基營(yíng)養(yǎng)芽孢桿菌(Z-1)的生物有機(jī)肥可改善草莓根際微生物多樣性,與對(duì)照相比鐮刀菌等病原菌減少了近5倍,芽孢桿菌含量增加3倍,根際有益微生物含量也顯著增加(Chen et al.,2020)。解淀粉芽孢桿菌ZM9與米糠等營(yíng)養(yǎng)基質(zhì)配合施用可提高ZM9的定殖能力,改善土壤理化性質(zhì),促進(jìn)根際土壤有益細(xì)菌生長(zhǎng),從而有效抑制煙草青枯病的發(fā)生(Hu etal.,2021)。施用以沼氣殘?jiān)⑴<S、稻草與拮抗菌株鏈霉菌G33堆肥制備獲得的生物菌肥BOF-G33能明顯減少番茄根際土壤中的病原菌數(shù)量,顯著降低番茄青枯病發(fā)病率,增加根際土壤中有益本土菌群的豐度(Shen et al.,2021)?!颈狙芯壳腥朦c(diǎn)】前人研究表明芽孢桿菌等制劑對(duì)土傳病害具有防治效果,但生防菌株與營(yíng)養(yǎng)基質(zhì)復(fù)配防控番茄青枯病的研究報(bào)道尚不多見。解淀粉芽孢桿菌HC200和枯草芽孢桿菌BLG010是中國(guó)熱帶農(nóng)業(yè)科學(xué)院環(huán)境與植物保護(hù)研究所的專利菌株(黃俊生等,2014,2018),對(duì)番茄青枯病等病害具有良好的生防潛力,但多菌種組合制備的微生物菌肥田間應(yīng)用穩(wěn)定性和防病促生作用尚不明確。【擬解決的關(guān)鍵問題】選取往年番茄青枯病嚴(yán)重發(fā)生地塊為試驗(yàn)地,應(yīng)用以解淀粉芽孢桿菌HC200、枯草芽孢桿菌BLG010和氨基酸粉制備的復(fù)合微生物菌肥處理番茄根際土壤,測(cè)定番茄根際土壤養(yǎng)分含量、番茄植株生長(zhǎng)性狀、根系青枯病菌帶菌率、青枯病發(fā)病率及根際土壤呼吸速率;采用16S rDNA測(cè)序技術(shù)分析復(fù)合微生物菌肥處理后番茄根際土壤細(xì)菌群落結(jié)構(gòu)變化,探究復(fù)合微生物菌肥與番茄青枯病發(fā)生、根際土壤理化性質(zhì)及土壤細(xì)菌群落之間的關(guān)系,為合理應(yīng)用微生物菌肥綠色防控番茄青枯病提供理論依據(jù)。
1材料與方法
1.1試驗(yàn)材料
供試復(fù)合微生物:由2株專利菌株枯草芽孢桿菌BLG010和解淀粉芽孢桿菌HC200分別經(jīng)活化、發(fā)酵、離心、去除代謝物、收集沉淀的高濃度菌體并干燥復(fù)配獲得干粉,總有效活菌數(shù)50億CFU/g,其中BLG010活菌數(shù)28億CFU/g、HC200活菌數(shù)22億CFU/g。供試氨基酸粉(氨基酸總量=35.6%)購(gòu)自四川世宏科技有限公司。供試復(fù)合微生物菌肥:由2株專利菌株BLG010和HC200的高濃度菌體干粉、氨基酸粉及復(fù)合肥(15-15-15)復(fù)配制備獲得;有效成分:有機(jī)質(zhì)≥40%,N+P2O5+K2O=12%,總有效活菌數(shù)50億CFU/g,其中BLG010活菌數(shù)28億CFU/g、HC200活菌數(shù)22億CFU/g。供試菌肥營(yíng)養(yǎng)基質(zhì):取復(fù)合微生物菌肥水溶后,于121℃、20 min條件下濕熱滅菌,養(yǎng)分指標(biāo)與復(fù)合微生物菌肥相同(有效成分:有機(jī)質(zhì)≥40%,N+P2O5+K2O=12%)。
供試番茄品種:千禧番茄。
1.2試驗(yàn)方法
1.2.1番茄苗種植于2023年10月9日—2023年12月19日種植番茄。試驗(yàn)地位于海南省瓊海市橋頭村番茄基地,常年番茄青枯病嚴(yán)重發(fā)生。試驗(yàn)地土壤以磚紅壤為主,土體深厚,質(zhì)地多為砂質(zhì)壤土。試驗(yàn)開始前耕層土壤理化性質(zhì):有機(jī)質(zhì)11.21 g/kg、銨態(tài)氮42.24 mg/kg、速效磷108.8 mg/kg、速效鉀117.6 mg/kg、pH 5.4。
1.2.2試驗(yàn)設(shè)計(jì)田間試驗(yàn)在常規(guī)施肥的基礎(chǔ)上設(shè)4個(gè)處理:清水對(duì)照(T1);復(fù)合微生物菌肥(T2);菌肥營(yíng)養(yǎng)基質(zhì)(T3);復(fù)合微生物(T4)。不同處理間開溝隔離約40 cm,隨機(jī)區(qū)組排列。于2023年10月9日定植,種植行距60 cm、株距40 cm,共4行,2個(gè)相鄰行為1組處理,每處理200株,3個(gè)重復(fù)。在常規(guī)施肥基礎(chǔ)上,定植時(shí)分別取復(fù)合微生物菌肥、復(fù)合微生物和菌肥營(yíng)養(yǎng)基質(zhì)稀釋至500倍澆灌于番茄根部,對(duì)照澆灌等量清水,然后每3周澆灌1次,共5次。
1.2.3土壤養(yǎng)分測(cè)定在番茄采收期,每處理采用五點(diǎn)取樣法選取5株番茄,每株取10~20 cm深根圍土壤200 g,混勻、去除石塊和植物殘?bào)w、風(fēng)干、過200目篩后,運(yùn)用灼燒法測(cè)量土壤有機(jī)質(zhì)含量,使用HM-TYA型土壤肥料養(yǎng)分速測(cè)儀對(duì)速效氮、速效磷和速效鉀含量進(jìn)行測(cè)定。TR-8D鹽度檢測(cè)儀測(cè)定鹽度,pH計(jì)測(cè)定酸堿度。
1.2.4番茄植株生長(zhǎng)測(cè)定番茄收獲時(shí)選擇在晴朗的天氣下測(cè)定,要求大氣CO2濃度保持在380.0±6.0μmol/mol、氣溫約26℃、相對(duì)濕度(60.0±4.0)%左右。每處理隨機(jī)選取3株番茄,分別從每株植株的上、下部位選取3張健康葉片,光合作用采用LCPRO-SD便攜式光合測(cè)定儀測(cè)定,測(cè)定時(shí)間為120 s;自然光下分別從每株植株的上、下部位選取健康葉片,用TYS-4N葉綠素測(cè)定儀測(cè)定葉片葉綠素相對(duì)含量(SPAD值);從每株植株的上、下部位選取5張健康完整葉片,用YMJ-CH型智能葉面積測(cè)定儀測(cè)定葉面積;果實(shí)成熟時(shí),選取第1、2穗果實(shí)稱重進(jìn)行單株產(chǎn)量測(cè)定;用具有溫度自動(dòng)補(bǔ)償功能的MSDR-P1高精度數(shù)顯糖度計(jì)進(jìn)行果實(shí)水溶性糖測(cè)定。
1.2.5土壤呼吸速率測(cè)定采用SoilBox-FMS便攜式土壤呼吸測(cè)量系統(tǒng),參考汪軍等(2019)的方法測(cè)定采收期番茄根際土壤呼吸速率。
1.2.6田間病害調(diào)查在番茄采收期,每處理采用五點(diǎn)取樣法選取15株番茄采集其根系,利用生工植物DNA提取試劑盒提取根系DNA,參考作者前期發(fā)表文獻(xiàn)(李得銘等,2020)進(jìn)行青枯病三重PCR檢測(cè),檢測(cè)根系帶菌率。參照鄭雪芳等(2018)的方法,每個(gè)重復(fù)選取100株番茄,統(tǒng)計(jì)苗期、花期、結(jié)果期和采收期的發(fā)病率,計(jì)算不同處理對(duì)番茄青枯病的防治效果。
發(fā)病率(%)=發(fā)病株數(shù)/調(diào)查總株數(shù)×100
防治效果(%)=(對(duì)照發(fā)病率-處理發(fā)病率)/對(duì)照發(fā)病率×100
1.2.7土壤細(xì)菌微生物多樣性測(cè)定取1.2.3中經(jīng)混勻、去除石塊和植物殘?bào)w、風(fēng)干、過200目篩后的土樣,委托北京百邁客生物科技有限公司提取土壤總DNA,基于Illumina NovaSeq測(cè)序平臺(tái),利用雙末端測(cè)序(Paired-End)方法構(gòu)建小片段文庫(kù)進(jìn)行測(cè)序。
1.3統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2016、SAS 9.0和GraphPad Prism 8進(jìn)行統(tǒng)計(jì)分析,采用Duncan’s新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn)。測(cè)序結(jié)果使用北京百邁客生物科技有限公司云平臺(tái)的Usearch、QIIME2、R語(yǔ)言、Python語(yǔ)言和PICRUSt2等進(jìn)行分析。采用SAS 9.0進(jìn)行Pearson相關(guān)分析。
2結(jié)果與分析
2.1不同處理的番茄根際土壤養(yǎng)分含量
不同處理番茄根際土壤養(yǎng)分測(cè)定結(jié)果(表1)顯示,T2與T4處理的番茄根際土壤中有機(jī)質(zhì)、銨態(tài)氮和速效磷含量差異顯著(rlt;0.05,下同),且二者均高于或顯著高于其他處理;T2、T3和T4處理的速效鉀含量均顯著高于T1處理;各處理鹽度差異顯著,其中T1處理顯著高于其他處理;T2處理的pH顯著高于T3和T1處理,但與T4處理差異不顯著(rgt;0.05,下同)。
2.2復(fù)合微生物菌肥對(duì)番茄生長(zhǎng)的影響
由表2可看出,不同處理促生長(zhǎng)作用表現(xiàn)為T2gt;T4gt;T3gt;T1,與T1處理相比,各處理株高、莖圍、葉面積、光合作用、SPAD值、產(chǎn)量和水溶性糖增幅分別為6.82%~27.88%、19.59%~47.40%、2.04%~17.08%、3.88%~11.21%、1.99%~17.15%、9.13%~22.37%和0.45%~5.12%;T2與T4處理的莖圍和SPAD值差異不顯著,其余指標(biāo)差異顯著;T3與T1處理的產(chǎn)量和 光合作用差異顯著,其余指標(biāo)差異不顯著;T4與T3處理的株高、光合作用和SPAD值差異顯著,其余指標(biāo)差異不顯著。
2.3復(fù)合微生物菌肥對(duì)番茄根系青枯病菌帶菌率的影響
經(jīng)三重PCR檢測(cè)各處理采收期番茄根系,統(tǒng)計(jì)青枯病菌帶菌率,結(jié)果(圖1)顯示,各處理番茄根系青枯病菌帶菌率差異顯著,其中以T2處理的帶菌率最低,顯著低于其他處理,說明T2處理控制青枯病菌入侵番茄根系的效果優(yōu)于T1、T3和T4處理,T1、T2、T3和T4處理的帶菌率分別為93.33%、11.11%、73.33%和33.33%。
2.4復(fù)合微生物菌肥對(duì)番茄根際土壤呼吸速率的影響
在番茄采收期,各處理間根際土壤呼吸速率存在一定差異,其中以T2處理的根際土壤呼吸速率最高,顯著高于T4處理外的其他處理;與T1處理相比,T2、T3和T4處理的土壤呼吸速率分別提高54.05%、2.73%和35.17%(圖2)。
2.5復(fù)合微生物菌肥對(duì)田間青枯病發(fā)病率的影響
調(diào)查不同處理對(duì)不同生長(zhǎng)期番茄青枯病發(fā)病率依次表現(xiàn)為T2gt;T4gt;T3。在苗期,T2與T4處理發(fā)病率差異不顯著,均顯著低于T3和T1處理;T2與T4處理的防效無(wú)顯著差異,但與T3處理差異顯著,T4與T3處理間差異不顯著。在花期、結(jié)果期和采收期,不同處理的發(fā)病率和防效差異顯著。在番茄苗期、花期、結(jié)果期和采收期,不同施肥處理的發(fā)病率控制在1.67%~5.33%、3.67%~19.33%、6.00%~31.33%和15.00%~60.33%,防效分別達(dá)75.96%~92.41%、55.23%~91.31%、41.45%~88.77%和31.02%~82.89%。
2.6復(fù)合微生物菌肥對(duì)番茄根際土壤細(xì)菌群落的影響
2.6.1細(xì)菌群落屬水平Alpha多樣性由表4可知,與T1處理相比,T2、T3和T4處理的物種豐度指標(biāo)ACE指數(shù)和Chao1指數(shù)分別提高3.12%~6.64%、4.76%~7.18%;多樣性指標(biāo)Simpson指數(shù)和Shannon指數(shù)各處理間無(wú)明顯差異。
2.6.2目和屬分類水平上細(xì)菌菌群結(jié)構(gòu)組成分析
目分類水平相對(duì)豐度(OTU數(shù)相對(duì)豐度排名前20)排名前5的細(xì)菌目中(圖3-A),β-變形菌目(Betapro-teobacteriales)和噬幾丁質(zhì)菌目(Chitinophagales)為各處理優(yōu)勢(shì)目;根瘤菌目(Rhizobiales)為T1和T3處理的優(yōu)勢(shì)目;擬桿菌目(Bacteroidales)和梭菌目(Clostridiales)為T2和T4處理的優(yōu)勢(shì)目。芽孢桿菌目(Bacillales)的相對(duì)豐度在T2處理排名第7(8.31%),在T1、T3和T4處理分別排名第20(1.01%)、14(2.17)和10(4.53%)。
進(jìn)一步對(duì)各處理在屬分類水平(OTU數(shù)相對(duì)豐度排名前20)的相對(duì)豐度進(jìn)行研究,結(jié)果(圖3-B)顯示,不同處理細(xì)菌群落結(jié)構(gòu)存在明顯差異,排名前5的細(xì)菌屬中,假單胞菌屬(Pseudomonas)為T1和T3處理的共有優(yōu)勢(shì)屬;地桿菌屬(Geobacter)為T1、T2和T4處理的共有優(yōu)勢(shì)屬;芽孢桿菌屬(Bacillus)為T2和T4處理的共有優(yōu)勢(shì)屬;Lacunisphaera為T1和T4處理的共有優(yōu)勢(shì)屬;噬幾丁質(zhì)菌科未培養(yǎng)菌屬(uncultured_bacterium f Chitinophagaceae)為T2和T3處理的共有優(yōu)勢(shì)屬。各處理中芽孢桿菌屬的相對(duì)豐度以T2處理最高,為6.60%,排名第3,T1、T3和T4處理的芽孢桿菌屬相對(duì)豐度排名雖然位于前10,但只有0.78%~3.87%,說明施用復(fù)合微生物菌肥后芽孢桿菌能在根際土壤中較好地定殖。
2.6.3物種豐度聚類熱圖橫向聚類結(jié)果顯示,不同物種在T2與T4處理及T1與T3處理的枝長(zhǎng)均較短,T2與T4處理間及T1與T3處理間的細(xì)菌豐度相似;縱向聚類結(jié)果顯示,各處理的芽孢桿菌屬與Christensenellaceae_R-7_group和WCHB1-32的豐度相似(圖4)。
2.6.4相關(guān)性網(wǎng)絡(luò)圖基于R語(yǔ)言繪制相關(guān)性最高的前15細(xì)菌屬的網(wǎng)絡(luò)圖,結(jié)果(圖5)顯示,芽孢桿菌屬與WCHB1-32、瘤胃梭菌屬(Ruminiclos-tridium_1)、Christensenellaceae_R-7_group和噬幾丁質(zhì)菌科未培養(yǎng)菌屬正相關(guān),與假單胞菌屬、厭氧繩菌科未培養(yǎng)菌屬(uncultured_bacterium f Anaerolinea-ceae)和嗜甲基菌屬(Methylophilus)負(fù)相關(guān)。
2.6.5土壤細(xì)菌群落功能預(yù)測(cè)基于PICRUSt2預(yù)測(cè)細(xì)菌KEGG三級(jí)功能通路,結(jié)果如圖6所示。與T1處理相比,T2和T3處理細(xì)菌群落三級(jí)功能通路差異顯著的有13類,T4處理細(xì)菌群落三級(jí)功能通路差異顯著的有14類。T2和T4處理增幅排名前5的三級(jí)功能通路為代謝途徑(Metabolic pathways)、次生代謝物的生物合成(Biosynthesis of secondary metabolites)、抗生素生物合成(Biosynthesis of anti-biotics)、核糖體(Ribosome)和氨基酸生物合成(Bio-synthesis of amino acids),增幅分別為0.20%~0.48%和0.15%~0.39%;T3處理細(xì)菌群落的Metabolic path-ways、Biosynthesis of secondary metabolites、Biosyn-thesis of antibiotics、Ribosome和嘧啶代謝(Pyrimi-dine metabolism)的功能通路增幅較小,僅增加0.02%~0.15%。
2.7番茄根際土壤主要細(xì)菌群落功能與土壤理化性質(zhì)和青枯病間的相關(guān)分析結(jié)果
由表5可知,有機(jī)質(zhì)、速效磷、速效鉀與抗生素生物合成功能呈顯著或極顯著(Plt;0.01,下同)正相關(guān),pH與氨基酸生物合成功能呈顯著正相關(guān),鹽度與抗生素生物合成和氨基酸生物合成功能呈顯著或極顯著負(fù)相關(guān)。
由表6可知,芽孢桿菌屬、雷爾氏菌屬(Ralsto-nia)、土壤呼吸速率與抗生素和氨基酸生物合成功能呈顯著或極顯著正相關(guān),發(fā)病率與抗生素生物合成和氨基酸生物合成功能呈顯著或極顯著負(fù)相關(guān)。
3討論
近年來(lái)研究表明,微生物菌肥具有改良土壤理化性質(zhì)、防治土傳病害、提高作物產(chǎn)量和品質(zhì)等功效(何建清和張格杰,2022;郭艷蘭等,2023)。郭立佳等(2019)和邵雪鳳(2020)研究發(fā)現(xiàn),氨基酸水溶肥可促進(jìn)芽孢桿菌在土壤中的生長(zhǎng)繁殖,使之分泌抑菌活性物質(zhì)和促生長(zhǎng)激素,增強(qiáng)植物對(duì)病原菌的防御能力。土壤養(yǎng)分是土壤肥力的重要特征,微生物菌肥在提高土壤養(yǎng)分方面具有重要作用(韋中等,2021;Yuetal.,2023)。本研究發(fā)現(xiàn),復(fù)合微生物菌肥和復(fù)合微生物處理的番茄根際土壤有機(jī)質(zhì)、銨態(tài)氮和速效磷含量均高于或顯著高于其他處理,與楊淑娜等(2022)、楊皓等(2023)的研究結(jié)果基本一致。說明微生物菌肥中的功能菌株利用根部營(yíng)養(yǎng)生長(zhǎng)和分泌活性物質(zhì),加速了土壤中難溶養(yǎng)分的分解,提升營(yíng)養(yǎng)元素的有效性和土壤有效養(yǎng)分利用率,從而提高土壤供肥能力和土地質(zhì)量。
邵雪鳳(2020)、Zhou等(2021)研究發(fā)現(xiàn),含有芽孢桿菌的微生物制劑能促進(jìn)番茄植株生長(zhǎng)。高意帆等(2024)研究表明,施用微生物菌肥能促進(jìn)大豆和花生根系生長(zhǎng)和葉片光合作用,從而提高同化物轉(zhuǎn)運(yùn)效率,增加干物質(zhì)積累和產(chǎn)量,并改善籽粒品質(zhì)。本研究也發(fā)現(xiàn)復(fù)合微生物菌肥、復(fù)合微生物和菌肥營(yíng)養(yǎng)基質(zhì)均能在一定程度上提高番茄的株高、莖圍、葉面積、光合作用、葉綠素及番茄果實(shí)的產(chǎn)量和水溶性糖含量,說明施用微生物菌肥后具有良好的田間增產(chǎn)效果,在番茄生產(chǎn)中具有較好的應(yīng)用前景。
復(fù)合微生物菌肥制劑具有改善土壤生態(tài)環(huán)境、抑制病原菌增殖、提高作物免疫力、增加有益微生物數(shù)量、改善土壤呼吸等植物根際生態(tài)中重要指標(biāo)的功效(胡哲偉等,2021;黃璐璐等,2022),有效抑制土傳病害發(fā)生(汪軍等,2017,2019;Chen et al.,2020)。本研究中,復(fù)合微生物菌肥控制番茄根系青枯病菌帶菌率在11.11%,土壤呼吸速率較清水對(duì)照提高54.05%,苗期、花期、結(jié)果期和采收期的青枯病發(fā)病率為1.67%~15.00%,防效為82.89%~92.41%,表現(xiàn)出較好的穩(wěn)定性;復(fù)合微生物和菌肥營(yíng)養(yǎng)基質(zhì)處理后,從苗期至采收期發(fā)病率和防效的差異較大,到采收期的防效僅60.35%和31.02%。由此推斷,微生物菌群需要利用營(yíng)養(yǎng)基質(zhì)提供的關(guān)鍵營(yíng)養(yǎng)繁殖和分泌拮抗物質(zhì),施用復(fù)合微生物菌肥后在作物根際形成了有利于復(fù)合微生物菌群存活的環(huán)境,從而降低土壤及根系病原菌豐度,恢復(fù)根際有益微生物種類及數(shù)量,提升土壤微生物、根系呼吸速率,從而提高根系和微生物活性。與T1處理相比,T2、T3和T4處理的物種豐度指標(biāo)ACE指數(shù)和Chao1指數(shù)分別提高3.12%~6.64%、4.76%~7.18%;多樣性指標(biāo)Simp-son指數(shù)和Shannon指數(shù)各處理間無(wú)明顯差異。
施用芽孢桿菌菌劑等生防制劑可增加根際土壤假單胞菌目和芽孢桿菌目等有益微生物的種群豐度,誘導(dǎo)土壤中的細(xì)菌群落抑制病原菌增殖(Tang et al.,2023;魯耀雄等,2024)。本研究施用復(fù)合微生物菌肥、菌肥營(yíng)養(yǎng)基質(zhì)和復(fù)合微生物后土壤細(xì)菌屬水平的物種豐度指標(biāo)ACE指數(shù)和Chao1指數(shù)分別較空白對(duì)照提高3.12%~6.64%、4.76%~7.18%,而多樣性指標(biāo)Simpson指數(shù)和Shannon指數(shù)各處理間無(wú)明顯差異,由此推測(cè)上述3種處理提高了土壤中部分細(xì)菌種類豐度,抑制部分菌群的定殖,因此多樣性指標(biāo)有所降低,與李審微等(2020)的研究結(jié)果一致。芽孢桿菌是青枯病等土傳病害的優(yōu)勢(shì)生防菌(汪軍等,2019;Zhou et al.,2021;Chen et al.,2023),本研究中復(fù)合微生物菌肥處理的芽孢桿菌目和芽孢桿菌屬分別為豐度排名前10的優(yōu)勢(shì)目(8.31%)和優(yōu)勢(shì)屬(6.60%),4個(gè)處理中芽孢桿菌屬與Chris-tensenellaceae_R-7_group和WCHB1-32的豐度相似,與WCHB1-32、瘤胃梭菌屬、Christensenellaceae_R-7_group和噬幾丁質(zhì)菌科未培養(yǎng)菌屬正相關(guān),與假單胞菌屬、厭氧繩菌科未培養(yǎng)菌屬和嗜甲基菌屬負(fù)相關(guān)。
土壤細(xì)菌氨基酸代謝功能具有促進(jìn)植物生長(zhǎng),提高植物抗病性等功能(潘美清等,2024),土壤抗生素生物合成功能則反映了有益微生物對(duì)土傳病原菌的拮抗作用。本研究發(fā)現(xiàn),有機(jī)質(zhì)、速效磷、速效鉀、芽孢桿菌屬、雷爾氏菌屬和土壤呼吸速率與抗生素生物合成功能正相關(guān),pH、芽孢桿菌屬、雷爾氏菌屬和土壤呼吸速率與氨基酸生物合成功能正相關(guān),而鹽度和發(fā)病率與2項(xiàng)功能負(fù)相關(guān),原因可能是提高土壤酸堿度、速效養(yǎng)分含量和降低鹽度對(duì)土壤抗生素生物合成、氨基酸生物合成具有促進(jìn)作用,激發(fā)了根際土壤免疫應(yīng)答機(jī)制的通路功能,從而減輕番茄青枯病發(fā)病程度。
4結(jié)論
復(fù)合微生物菌肥具有改善番茄根際土壤有機(jī)質(zhì)、銨態(tài)氮、速效磷、速效鉀、鹽度和pH,促進(jìn)番茄株高、莖圍、葉面積、光合作用、葉綠素、水溶性糖和產(chǎn)量生長(zhǎng)指標(biāo),提高可培養(yǎng)微生物數(shù)量和土壤呼吸速率,降低番茄根系青枯病菌帶菌率,控制番茄苗期、花期、結(jié)果期和采收期的青枯病發(fā)病率,改善土壤細(xì)菌群落結(jié)構(gòu),增加芽孢桿菌屬豐度,提升抗生素生物合成和氨基酸生物合成功能。復(fù)合微生物菌肥500倍稀釋液對(duì)番茄青枯病的防病促生作用顯著,具有良好的應(yīng)用前景。
參考文獻(xiàn)(References):
高意帆,陳銀銀,溫濤,高剛強(qiáng),常洪慶,劉天學(xué),李鴻萍.2024.微生物菌肥拌種對(duì)大豆花生增產(chǎn)效應(yīng)的影響[J].核農(nóng)學(xué)報(bào),38(5):955-967.[Gao Y F,Chen Y Y,Wen T,Gao G Q,Chang H Q,Liu T X,Li H P.2024.Effects of seed dressing with microbial fertilizer on yield increase of soybean and peanut[J].Journal of Nuclear Agricultural Sciences,38(5):955-967.]doi:10.11869/j.issn.1000-8551.2024.05.0955.
郭立佳,汪軍,楊臘英,梁昌聰,周游,劉磊,黃俊生.2020.含氨基酸水溶肥料對(duì)2株芽孢桿菌的激活作用[J].熱帶作物學(xué)報(bào),41(3):549-555.[Guo L J,Wang J,Yang LY,Liang C C,Zhou Y,Liu L,Huang J S.2020.Activation oftwo Bacillus strains by an amino acids-containing water-soluble fertilizer[J].Chinese Journal of Tropical Crops,41(3):549-555.]doi:10.3969/j.issn.1000-2561.2020.03.018.
郭艷蘭,牟德生,張勤德,趙連鑫,李棟,王鑫.2023.化肥減量配施不同用量微生物菌肥對(duì)黑比諾葡萄生長(zhǎng)、品質(zhì)及土壤肥力的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),39(9):1938-1944.[Guo Y L,Mou D S,Zhang Q D,Zhao L X,Li D,Wang X.2023.Effects of chemical fertilizer reduction combined with microbial fertilizer on growth,quality and soil fertili-ty of Pinot Noir grape[J].Jiangsu Journal of Agricultural Sciences,39(9):1938-1944.]doi:10.3969/j.issn.1000-4440.2023.09.016.
何建清,張格杰.2022.植物根際促生菌肥代替部分化肥對(duì)黑青稞生長(zhǎng)、產(chǎn)量和品質(zhì)的影響[J].河南農(nóng)業(yè)科學(xué),51(7):93-101.[He J Q,Zhang G J.2022.Effects of plant growth promoting rhizobacteria(PGPR)fertilizer instead of part of chemical fertilizer on growth,yield and quality of Black Highland Barley[J].Journal of Henan Agricultural Scien-ces,51(7):93-101.]doi:10.15933/j.cnki.1004-3268.2022.07.010.
胡哲偉,金淑,應(yīng)蓉蓉,劉國(guó)強(qiáng).2021.蚓糞和益生菌配施對(duì)土壤微生物生物量及酶活性的影響[J].江蘇農(nóng)業(yè)科學(xué),49(11):201-207.[Hu Z W,Jin S,Ying R R,Liu G Q.2021.Impacts of combined application of vermicompost and pro-biotics on soil microbial biomass and enzyme activities[J].Jiangsu Agricultural Science,49(11):201-207.]doi:10.15889/j.issn.1002-1302.2021.11.035.
黃俊生,梁昌聰,朱利林,王國(guó)芬,劉磊.2014.一株枯草芽孢桿菌及其應(yīng)用:CN201210248300.2[P].(2014-04-09)[2024-06-05].[Huang J S,Liang C C,Zhu L L,Wang G F,Liu L.2014.A Bacillus subtilis strain and its applica-tion:CN20121 0248300.2[P].(2014-04-09)[2024-06-05].]
黃俊生,汪軍,曹智淳,梁昌聰,劉磊,王國(guó)芬,楊臘英,郭立佳.2018.一株解淀粉芽孢桿菌及其菌劑和應(yīng)用:CN 201510653843.6[P].(2018-04-13)[2024-06-05].[Huang J S,Wang J,Cao Z C,Liang C C,Liu L,Wang G F,Yang L Y,Guo L J.2018.A strain,its microbial agent and applica-tion:CN201510653843.6[P].(2018-04-13)[2024-06-05].]
黃璐璐,王站付,邱韓英,楊業(yè)鳳,王振旗,薄玉華.2022.施用稻秸沼渣肥料對(duì)西藍(lán)花產(chǎn)量及土壤環(huán)境的影響[J].北方園藝,(20):76-83.[Huang L L,Wang Z F,Qiu H Y,Yang Y F,Wang Z Q,Bo Y H.2022.Effects on broccoli produc-tion and soil environmental quality by applying qiogas residue-based fertilizers of rice straw[J].Northern Horti-culture,(20):76-83.]doi:10.11937/bfyy.20220150.
李得銘.2020.綠農(nóng)林?41號(hào)微生物復(fù)合菌肥對(duì)番茄青枯病防控效果的研究[D].海口:海南大學(xué).[Li D M.2020.Study on the control effect of microbial compound ferti-lizerofLünonglin?41 on tomato bacterial wilt[D].Haikou:Hainan University.]doi:10.27073/d.cnki.ghadu.2020.00 1179.
李得銘,翟子翔,鄧濤,鄧大豪,周游,黃俊生.2020.番茄青枯菌分離與三重PCR體系建立[J].分子植物育種,18(11):3655-3661.[Li D M,Zhai Z X,Deng T,Deng D H,Zhou Y,Huang J S.2020.Isolation of tomato R.sola-nacearum and establishment of triple PCR system[J].Molecular Plant Breeding,18(11):3655-3661.]doi:10.13271/j.mpb.018.003655.
李審微,洪艷云,李新文,何可佳,戴良英,盧曉鵬,易圖永.2020.枯草芽孢桿菌M-23對(duì)柑橘砂皮病防效及柑橘葉際細(xì)菌群落多樣性的影響[J].南方農(nóng)業(yè)學(xué)報(bào),51(7):1699-1705.[Li S W,Hong YY,Li X W,He K J,Dai LY,Lu X P,Yi T Y.2020.Effects of Bacillus subtilis M-23 on Diaporthe citri and diversity of bacterial community in the citrus phyllosphere[J].Journal of Southern Agriculture,51(7):1699-1705.]doi:10.3969/j.issn.2095-1191.2020.07.024.
魯耀雄,高鵬,彭福元,李衛(wèi)東,李靜,崔新衛(wèi),王運(yùn)生.2024.蚯蚓聯(lián)合生防細(xì)菌Bacillus velezensis改善連作百合土壤細(xì)菌群落結(jié)構(gòu)及防治枯萎病的效果[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),30(1):147-159.[Lu Y X,Gao P,Peng F Y,Li W D,Li J,Cui X W,Wang Y S.2024.Earthworm combined with Bacillus velezensis improves bacterial community structure and the control effect of Fusarium wilt diseases of continuous cropping lily[J].Journal of Plant Nutrition and Fertilizers,30(1):147-159.]doi:10.11674/zwyf.2023 262.
潘美清,唐莉娜,吳長(zhǎng)征,楊銘榆,張汴泓,黃錦文,王成己.2024.生物炭用量對(duì)煙草青枯病及土壤細(xì)菌群落的影響[J].核農(nóng)學(xué)報(bào),38(6):1186-1195.[Pan M Q,Tang L N,Wu C Z,Yang M Y,Zhang B H,Huang J W,Wang C J.2024.Effects of biochar dosage on tobacco bacterial wilt and soil bacterial community[J].Journal of Nuclear Agri-cultural Sciences,38(6):1186-1195.]doi:10.11869/j.issn.1000-8551.2024.06.1186.
邵雪鳳.2020.防控土傳病害的綠農(nóng)林?41號(hào)菌肥田間激活技術(shù)研究與應(yīng)用[D].武漢:華中農(nóng)業(yè)大學(xué).[Shao X F.2020.Research and application of Lünoglin?41 bacterial fertilizers field activation technology to prevent and con-trolsoil-borne diseases[D].Wuhan:Huazhong Agricultural University.]doi:10.27158/d.cnki.ghznu.2020.001058.
汪軍,梁昌聰,周游,王國(guó)芬,楊臘英,劉磊,黃俊生.2017.復(fù)合微生物肥料對(duì)香蕉枯萎病防控作用研究[J].熱帶農(nóng)業(yè)科學(xué),37(8):36-41.[Wang J,Liang C C,Zhou Y,Wang G F,Yang L Y,Liu L,Huang J S.2017.Effect of com-pound microbial fertilizer on controlling of fusarium wilt of banana[J].Chinese Journal of Tropical Agriculture,37(8):36-41.]doi:10.12008/j.issn.1009-2196.2017.08.009.
汪軍,周游,楊臘英,劉磊,符紅文,黃俊生.2019.施用復(fù)合菌肥與套作對(duì)香蕉枯萎病控病作用的影響[J].中國(guó)果樹,(6):69-72.[Wang J,Zhou Y,Yang L Y,Liu L,F(xiàn)u H W,Huang J S.2019.Effects of compound microbial fertilizer application and intercropping on controlling fusarium wilt of banana[J].Chinese Fruit,(6):69-72.]doi:10.16626/j.cnki.issn 1000-8047.2019.06.014.
韋中,沈宗專,楊天杰,王孝芳,李榮,徐陽(yáng)春,沈其榮.2021.從抑病土壤到根際免疫:概念提出與發(fā)展思考[J].土壤學(xué)報(bào),58(4):814-824.[Wei Z,Shen Z Z,Yang T J,Wang X F,Li R,Xu Y C,Shen Q R.2021.From suppressivesoil to rhizosphere immunity:Towards an ecosystem thinking for soil-borne pathogen control[J].Acta Pedologica Sinica,58(4):814-824.]doi:10.11766/trxb202003230038.
吳思炫,高復(fù)云,張銳澎,蘇浩,姚槐應(yīng),范雪蓮,李雅穎.2023.番茄青枯病生物防治的研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),34(9):2585-2592.[Wu S X,Gao F Y,Zhang R P,Su H,Yao H Y,F(xiàn)an X L,Li Y Y.2023.Research progress in biological control of tomato bacterial wilt[J].Chinese Jour-nal of Applied Ecology,34(9):2585-2592.]doi:10.13287/j.1001-9332.202309.028.
夏渝靜,盧樹昌,張迎珂.2024.減氮與配施微生物菌劑對(duì)設(shè)施番茄產(chǎn)量、品質(zhì)及氮素吸收的影響[J].江蘇農(nóng)業(yè)科學(xué),52(9):189-195.[Xia YJ,Lu SC,Zhang YK.2024.Influen-ces of nitrogen fertilizer reduction combined with micro-bial agents on yield,quality and nitrogen uptake of toma-toes in greenhouse,52(9):189-195.]doi:10.15889/j.issn.1002-1302.2024.09.026.
楊皓,莊家堯,鄭康,孫永濤.2023.不同載體菌肥對(duì)刺槐光合特性及土壤養(yǎng)分、細(xì)菌群落的影響[J].核農(nóng)學(xué)報(bào),37(4):844-853.[Yang H,Zhuang J Y,Zheng K,Sun Y T.2023.Effects of different carrier bacterial fertilizers on photosyn-thetic characteristics,soil nutrients and bacterial communi-ties of Robinia pseudoacacia L.[J].Journal of Nuclear Agricultural Sciences,37(4):844-853.]doi:10.11869/j.issn.1000-8551.2023.04.0844.
楊淑娜,高志遠(yuǎn),奚昕琰,王莉,殷益明,姚瑩,賈惠娟.2022.芽孢桿菌菌肥和菌劑對(duì)連作條件下桃幼樹生長(zhǎng)和土壤環(huán)境的影響[J].應(yīng)用生態(tài)學(xué)報(bào),33(2):423-430.[Yang S N,Gao Z Y,Xi X Y,Wang L,Yin Y M,Yao Y,Jia H J.2022.Effects of Bacillus fertilizer and agent on growth of young peachtree and soil environment under replant condi-tion[J].Chinese Journal of Applied Ecology,33(2):423-430.]doi:10.13287/j.1001-9332.202202.026.
鄭雪芳,劉波,朱育菁,林抗美,葛慈斌,陳德局.2018.植物疫苗鄂魯冷特對(duì)番茄青枯病的田間防治效果[J].植物保護(hù)學(xué)報(bào),45(5):1096-1102.[Zheng X F,Liu B,Zhu Y J,Lin K M,Ge C B,Chen D J.2018.Control effects of plant vac-cine avirulent Ralstonia solanacearum against tomato bac-terial wilt disease in the field[J].Journal of Plant Protec-tion,45(5):1096-1102.]doi:10.13802/j.cnki.zwbhxb.2018.2017149.
Ahmed W,Dai Z L,Zhang J H,Li S C,Ahmed A,Munir S,Liu Q,Tan Y J,Ji G H,Zhao Z X.2022.Plant-microbe interac-tion:Mining the impact of native Bacillus amyloliquefa-ciens WS-10 on tobacco bacterial wilt disease and rhizo-sphere microbial communities[J].Microbiology Spectrum,10(4):e0147122.doi:10.1128/spectrum.01471-22.
Cai Q H,Zhou G S,Ahmed W,Cao Y Y,Zhao M W,Li Z H,Zhao Z X.2021.Study on the relationship between bacte-rial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars[J].European Journal of Plant Pathology,160:265-276.doi:10.1007/s 10658-021-02237-4.
Chen P,Zhang J L,Li M,F(xiàn)ang F,Hu J D,Sun Z W,Zhang A S,Gao X X,Li J.2023.Synergistic effect of Bacillus subti-lis and Paecilomyces lilacinusin alleviating soil degrada-tion and improving watermelon yield[J].Frontiers in Mi-crobiology,13:1101975.doi:10.3389/fmicb.2022.1101975.
Chen Y,Xu Y P,Zhou T,Akkaya M S,Wang LL,Li S Y,Li X Y.2020.Biocontrol ofFusarium wilt disease in strawber-ries using bioorganic fertilizer fortified with Bacillus licheniformis X-1 and Bacillus methylotrophicus Z-1[J].3 Biotech,10(2):80.doi:10.1007/s 13205-020-2060-6.
Hu Y,Li Y Y,Yang X Q,Li C L,Wang L,F(xiàn)eng J,Chen S W,Li X H,Yang Y.2021.Effects of integrated biocontrol on bacterial wilt and rhizosphere bacterial community of tobacco[J].Scientific Reports,11:2635.doi:10.1038/s41598-021-82060-3.
Huang J F,Wei Z,Tan S Y,Mei X L,Shen Q R,Xu Y C.2014.Suppression of bacterial wilt of tomato by bioorganic ferti-lizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62[J].Journal of Agri-cultural and Food Chemistry,62(44):10708-10716.doi:10.1021/jf503136a.
Shen T,Lei Y H,Pu X D,Zhang S Y,Du Y H.2021.Identifica-tion and application of Streptomyces microflavus G33 in compost to suppress tomato bacterial wilt disease[J].App-lied Soil Ecology,157:103724.doi:10.1016/j.apsoil.2020.103724.
SunY H,Su Y T,Meng Z,Zhang J,Zheng L,Miao S,Qin D,Ruan Y L,Wu Y H,Xiong L N,Yan X,Dong Z Y,Cheng P,Shao M W,Yu G H.2023.Biocontrol of bacterial wilt disease in tomato using Bacillus subtilis strain R31[J].Frontiers in Microbiology,14:1-14.doi:10.3389/fmicb.2023.1281381.
Tang T T,Sun X,Liu Q,Dong Y H,Zha M F.2023.Treatment with organic manure inoculated with a biocontrol agent induces soil bacterial communities to inhibit tomato Fusarium wilt disease[J].Frontiers in Microbiology,13:1-11.doi:10.3389/fmicb.2022.1006878.
Wang R,Zhang H C,Sun L G,Qi G F,Chen S,Zhao X Y.2017.Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J].Scientific Reports,7(1):343.doi:10.1038/s41598-017-00472-6.
Wu K,F(xiàn)ang Z Y,Wang L L,Yuan S F,Guo R,Shen B,Shen Q R.2016.Biological potential of bioorganic fertilizer forti-fied with bacterial antagonist for the control of tomato bac-terial wilt and the promotion of crop yields[J].Journal of Microbiology and Biotechnology,26(10):1755-1764.doi:10.4014/jmb.1604.04021.
Yu X Q,Zhang Y Z,Shen M C,Dong S Y,Zhang F J,Gao Q,He P L,Shen G M,Yang J M,Wang Z B,Bo G D.2023.Soil conditioner affects tobacco rhizosphere soil microeco-logy[J].Microbial Ecology,86(1):460-473.doi:10.1007/s00248-022-02030-8.
Zhou Y,Yang L Y,Wang J,Guo L J,Huang J S.2021.Syner-gistic effect between Trichodermavirens and Bacillus velezensis on the control of tomato bacterial wilt disease[J].Horticulturae,7(11):439.doi:10.3390/horticulturae 7110439.
(責(zé)任編輯 麻小燕)
南方農(nóng)業(yè)學(xué)報(bào)2024年9期