摘要:【目的】探究不同模式防護(hù)林內(nèi)直徑≤2.5μm的是浮顆粒物(PM2.5)濃度變化及其影響因子,為優(yōu)化防護(hù)林植物配置,建設(shè)宜居城市環(huán)境提供理論參考依據(jù)?!痉椒ā恳?種植物配置模式(櫸樹(shù)+桃樹(shù)混交林、落羽杉純林、落羽杉+石楠混交林、女貞+落羽杉混交林、女貞純林和櫸樹(shù)+櫻花混交林)且林齡均在10年左右的防護(hù)林為研究對(duì)象,空曠地作為對(duì)照(CK),測(cè)定防護(hù)林和CK的空氣溫度、空氣濕度、氣壓、風(fēng)向、PM2.5濃度、光照強(qiáng)度6種環(huán)境因子及9種土壤理化因子,并分析不同防護(hù)林模式下氣候和土壤因子之間相關(guān)性;通過(guò)建立隨機(jī)森林模型分析不同種植模式的重要性得分?!窘Y(jié)果】落羽杉純林、落羽杉+石楠混交林、女貞+落羽杉混交林模式下PM2.5濃度低于櫸樹(shù)+桃樹(shù)混交林、女貞純林和櫸樹(shù)+櫻花混交林3種防護(hù)林模式和CK。7個(gè)監(jiān)測(cè)點(diǎn)的土壤pH均呈弱堿性,女貞+落羽杉混交林和女貞純林模式的有機(jī)質(zhì)含量顯著高于其他防護(hù)林模式和CK(Plt;0.05),落羽杉純林模式下有效磷含量為最高值,為14.53 mg/kg。相關(guān)分析結(jié)果表明,PM2.5濃度與空氣濕度、土壤微生物碳和土壤微生物氮含量之間呈極顯著正相關(guān)(Plt;0.01,下同),與空氣溫度呈極顯著負(fù)相關(guān),銨態(tài)氮與PM2.5濃度相關(guān)性不顯著(Pgt;0.05)。隨機(jī)森林模型結(jié)果顯示,空氣溫度、空氣濕度、氣壓、風(fēng)向、光照強(qiáng)度、土壤微生物碳、土壤微生物氮和含水量對(duì)PM2.5濃度影響的重要性得分較高?!窘Y(jié)論】不同防護(hù)林模式下的風(fēng)向和PM2.5濃度有差異,空氣溫度、空氣濕度、土壤微生物碳和土壤微生物氮含量是影響大氣PM2.5濃度變化的重要因子,防護(hù)林配置落羽杉能有效降低大氣PM2.5濃度。
關(guān)鍵詞:防護(hù)林;環(huán)境因子;PM2.5;土壤微生物碳;土壤微生物氮
中圖分類(lèi)號(hào):S727.2文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)09-2689-12
Variation of PM2.5 concentration and its influencing factors in protective forests under different patterns
LI Li-wen1,2,3,ZHOU Run-yang3,WAN Xin1,2*,XING Wei1,2
(1Jiangsu Academy of Forestry Sciences,Nanjing,Jiangsu 211153,China;2Jiangsu Yangzhou Urban Forest EcosystemNational Observation and Research Station,Yangzhou,Jiangsu 225000,China;3College of Horticulture andLandscape Architecture,Yangzhou University,Yangzhou,Jiangsu 225009,China)
Abstract:【Objective】To explore the variations in(PM2.5)concentrations in different protective forest patterns and their influencing factors,which could provide theoretical basis for optimizing plant arrangements in protective forests and for the development of livable urban environments.【Method】This study focused on 6 plant configuration patterns within protective forests,including mixed forests of Zelkova serrata and Prunus persica,pure stands of Taxodium distichum,mixed forests of Taxodium distichum and Photinia serratifolia,mixed forests of Ligustrum lucidum and Taxodium disti-chum,pure stands of Ligustrum lucidum,and mixed forests of Zelkova serrata and Prunus serrulata,all with an approxi-mate stand age of 10 years.An open space served as the control(CK).The 6 environmental factors(air temperature,air humidity,atmospheric pressure,wind direction,PM2.5 concentration and light intensity)and 9 soil physicochemical pro-perties were measured in both the protective forests and the control site.Correlations between climatic and soil factorsacross different protective forest patterns were analyzed.A random forest model was employed to assess the importance scores of different planting patterns.【Result】PM2.5 concentrations under pure stands of Taxodium distichum,mixed forests of Taxodium distichum and Photinia serratifolia and mixed forests of Ligustrum lucidum and Taxodium distichum were lower than those in mixed forests of Zelkova serrata and Prunus persica,pure stands of Ligustrum lucidum,mixed forests of Zelkova serrata and Prunus serrulata,as well as the CK site.Soil pH at all 7 monitoring points was slightly alkaline.Organic matter content in mixed forests of Ligustrum lucidum and Taxodium distichum and pure stands of Ligustrum lucidum was significantly higher than in other protective forest patterns and the CK(Plt;0.05).The highest available phos-phorus content(14.53 mg/kg)was found in pure stands of Taxodium distichum.Correlation analysis indicated that PM2.5 concentration was extremely significantly positively correlated with air humidity,soil microbial carbon content and soil microbial nitrogen content(Plt;0.01,the same below),and extremely significantly negatively correlated with air tempera-ture.There was no significant correlation with ammonium nitrogen(Pgt;0.05).Additionally,the random forest model revealed that air temperature,air humidity,atmospheric pressure,wind direction,light intensity,soil microbial carbon,soil microbial nitrogen and moisture content had high importance scores in influencing PM2.5 concentration.【Conclusion】There are differences in wind direction and PM2.5 concentrations under various protective forest patterns.Air temperature,air humidity,soil microbial carbon,and soil microbial nitrogen content are important factors affecting atmospheric PM2.5 concentration variations.The inclusion of Taxodium distichum in protective forest configurations can effectively reduce atmospheric PM2.5 concentrations.
Key words:protective forest;environmental factor;PM2.5;soil microbial carbon;soil microbial nitrogen
Foundation items:Jiangsu Forestry Science and Technology Innovation and Promotion Project(LYKJ〔2021〕38)
0引言
【研究意義】有關(guān)大氣顆粒物的來(lái)源及組成已開(kāi)展諸多相關(guān)研究(Aller etal.,2005;Shah etal.,2006;車(chē)瑞俊等,2007)。大氣顆粒物是大氣中存在的各種固態(tài)和液態(tài)顆粒狀物質(zhì)的總稱(chēng)。各種顆粒狀物質(zhì)均勻地分散在空氣中構(gòu)成一個(gè)相對(duì)穩(wěn)定龐大的懸浮體系,即氣溶膠體系,因此大氣顆粒物也被稱(chēng)為大氣氣溶膠。顆粒物成分與其來(lái)源有關(guān),可根據(jù)污染物組分與顆粒物組分對(duì)比判斷顆粒來(lái)源(Aller et al.,2005;Luo et al.,2005)。大氣顆粒物是評(píng)價(jià)空氣質(zhì)量的重要標(biāo)準(zhǔn),且會(huì)對(duì)人類(lèi)身體健康造成影響。顆粒物對(duì)兒童、孕婦和老人的危害尤為嚴(yán)重(Lippmann et al.,2003)。小顆粒物對(duì)兒童的心肺功能有顯著影響(Pekkanen etal.,1997)。粒徑在2.5μm以下的顆粒物可避開(kāi)上呼吸道組織直接進(jìn)入肺泡,且存留時(shí)間較長(zhǎng)(周忠凱等,2022)。PM2.5又稱(chēng)為細(xì)顆粒物,是指大氣中直徑≤2.5μm的懸浮顆粒物(楊復(fù)沫等,2000;王冰和張承中,2009;傅敏寧等,2011)。相較于較大的懸浮顆粒物,PM2.5粒徑小,比表面積大,活性強(qiáng),易攜帶有毒物質(zhì),且在大氣中停留時(shí)間較長(zhǎng)(Chan et al.,1999;Pope et al.,2002)。隨著現(xiàn)代化進(jìn)程加快,大氣中PM2.5不斷積累,導(dǎo)致發(fā)生霧霾天氣的次數(shù)不斷增加。人們長(zhǎng)期暴露于大氣顆粒物中會(huì)增加死亡風(fēng)險(xiǎn)(Strand et al.,2012)。因此,探究不同模式的防護(hù)林內(nèi)PM2.5濃度變化及其影響因子,對(duì)優(yōu)化防護(hù)林植物配置,建設(shè)宜居城市環(huán)境具有重要意義?!厩叭搜芯窟M(jìn)展】諸多研究表明,森林在吸收大氣污染物及改善空氣質(zhì)量方面效果顯著(Yang et al.,2005;Nowak etal.,2006)。植被可通過(guò)葉片氣孔、分泌物及蠟質(zhì)層吸附大氣顆粒物,從而達(dá)到凈化空氣、降低大氣中PM2.5濃度的作用。植物表面能有效滯留大氣顆粒物,可降低空氣中PM2.5等顆粒物濃度,這是植物莖、葉等器官與大氣中顆粒物相互作用的結(jié)果(Becker et al.,2000)。植物葉片是滯留大氣污染物的重要器官,葉片表面的特殊形態(tài),如氣孔和毛狀體均能有效吸附大氣顆粒物(Kaupp etal.,2000;Jouraeva et al.,2002)。大量樹(shù)木組成森林對(duì)削減大氣顆粒物濃度的作用會(huì)更強(qiáng)(Yang et al.,2005)。此外,PM2.5濃度還受多種因素共同作用。彭金龍等(2017)通過(guò)多元回歸分析發(fā)現(xiàn),降雨量、風(fēng)速、平均氣溫等對(duì)PM2.5濃度均有較大影響,降雨能依靠沖刷沉降作用消減PM2.5濃度,風(fēng)速則影響大氣顆粒物流動(dòng)和擴(kuò)散,溫度影響大氣層結(jié)構(gòu)的穩(wěn)定(蔣燕等,2016)。曹軍等(2023)研究發(fā)現(xiàn)土壤中的無(wú)機(jī)鹽,尤其是硝酸鹽,是導(dǎo)致大氣PM2.5濃度升高的重要因素,硝酸鹽等無(wú)機(jī)鹽的存在還會(huì)影響顆粒物的理化性質(zhì),如吸濕性、密度等,進(jìn)而影響PM2.5的生成和分布??諝馕廴境潭炔煌瑫?huì)造成防護(hù)林對(duì)PM2.5離子的吸附能力不同(牛慶花,2019),并影響消減PM2.5等空氣懸浮顆粒物的能力(包紅光等,2016)。此外,諸多學(xué)者已開(kāi)展了在不同配置模式下城市綠地對(duì)PM2.5的阻滯作用以及小氣候因子與林帶減塵率關(guān)系等方面研究(劉旭輝等,2014;王會(huì)霞等,2015;張淑平等,2016;邱玲等,2018)。包紅光等(2016)研究發(fā)現(xiàn),闊葉喬木林、闊葉喬草林在距道路165m以上寬度處出現(xiàn)正消減作用,針闊混交林在45m以上寬度處出現(xiàn)正消減作用,并能維持正消減作用;劉浩棟等(2020)研究發(fā)現(xiàn),不同的防護(hù)林模式對(duì)PM2.5濃度影響存在季節(jié)性變化,例如,春夏季節(jié)對(duì)PM2.5阻滯能力最強(qiáng)的是喬灌草結(jié)構(gòu),其次是針闊混交喬木結(jié)構(gòu)、單排喬木結(jié)構(gòu);而秋冬季節(jié),只有針闊混交喬木單排喬木和喬灌草阻滯效果較好。隨機(jī)森林是Breiman于2001年提出的一種機(jī)器學(xué)習(xí)方法,是一種以決策樹(shù)為基分類(lèi)器的Bagging集成算法,目前已廣泛應(yīng)用于回歸和分類(lèi)(Breiman,2001)。該方法通過(guò)組合多個(gè)決策樹(shù)完成分類(lèi)和回歸。首先,從樣本數(shù)據(jù)中利用自助抽樣形成N個(gè)樣本;其次,對(duì)每個(gè)樣本分別建立回歸樹(shù)模型構(gòu)成相應(yīng)決策樹(shù),最后以N個(gè)回歸樹(shù)模型結(jié)果的平均值獲得最終結(jié)果。與其他模型相比,隨機(jī)森林模型具有提高預(yù)測(cè)精度、減少過(guò)擬合、對(duì)缺失數(shù)據(jù)和多元共線性不敏感,且具有簡(jiǎn)單處理大量的定量和定性數(shù)據(jù)能力的優(yōu)點(diǎn)(李欣海,2013)?!颈狙芯壳腥朦c(diǎn)】當(dāng)前城市污染嚴(yán)重,防護(hù)林種植模式較為單一,不能滿足居民生活對(duì)環(huán)境的需求,除此之外,有關(guān)不同模式防護(hù)林內(nèi)PM2.5濃度變化及其影響因子的研究鮮有報(bào)道。【擬解決的關(guān)鍵問(wèn)題】基于觀測(cè)站點(diǎn)收集的PM2.5濃度數(shù)據(jù),輔以同期氣象觀測(cè)資料及土壤理化性質(zhì)指標(biāo)的測(cè)定結(jié)果,探討不同植物配置模式下防護(hù)林中大氣PM2.5濃度變化,分析PM2.5濃度與其他環(huán)境因子的相關(guān)性,為優(yōu)化防護(hù)林配置,建設(shè)宜居城市環(huán)境提供參考依據(jù)。
1材料與方法
1.1試驗(yàn)地概況
于江蘇省泰州市姜堰區(qū)三水街道小楊村(32°32′N(xiāo)~32°34′N(xiāo),120°5′E~120°6′E)開(kāi)展試驗(yàn),選擇較為常見(jiàn)的6種不同植物配置模式且林齡均在10年左右的防護(hù)林作為研究對(duì)象,分別是櫸樹(shù)(Zelkova serrata)+桃樹(shù)(Prunus persica)混交林、落羽杉(Taxodium distichum)純林、落羽杉+石楠(Photinia serratifolia)混交林、女貞(Ligustrum lucidum)+落羽杉混交林、女貞純林、櫸樹(shù)+櫻花(Prunus serrulata)混交林。另選1處空曠地作為空白對(duì)照(CK),已布設(shè)7個(gè)監(jiān)測(cè)點(diǎn)的地理位置示意圖見(jiàn)圖1。經(jīng)實(shí)地調(diào)研,6種植物配置模式的防護(hù)林均栽植2行,株行距為3 m×4m,帶寬4m。具體情況如表1所示。
1.2測(cè)量方法及數(shù)據(jù)收集
采用長(zhǎng)期固定觀測(cè)與人工輔助觀測(cè)相結(jié)合的方法,對(duì)不同種植模式防護(hù)林下的環(huán)境因子進(jìn)行實(shí)時(shí)監(jiān)測(cè)與評(píng)價(jià)。7個(gè)觀測(cè)地分別安裝自動(dòng)觀測(cè)設(shè)備,測(cè)定環(huán)境因子傳感器信息見(jiàn)表2所示。為保證7個(gè)觀測(cè)地的同步監(jiān)測(cè),試驗(yàn)前對(duì)監(jiān)測(cè)儀器進(jìn)行同步測(cè)量和統(tǒng)一校正。長(zhǎng)期固定觀測(cè)主要通過(guò)布設(shè)的小型自動(dòng)氣象站,對(duì)氣壓、風(fēng)向、PM2.5濃度和光照強(qiáng)度進(jìn)行實(shí)時(shí)監(jiān)測(cè)(每間隔1h記錄1次),共收集65520組數(shù)據(jù)。人工輔助觀測(cè)使用土鉆從0~20 cm深處采集各防護(hù)林下的根際土壤,在每個(gè)防護(hù)林觀測(cè)點(diǎn)內(nèi),采集3個(gè)不同地點(diǎn)土壤作為代表性樣品。去除樣品中所有凋落物、細(xì)根、小石頭和其他雜質(zhì),將樣本徹底混合。將每個(gè)樣品包裝在無(wú)菌塑料袋中,密封,使用冰盒帶回實(shí)驗(yàn)室,用于測(cè)定7個(gè)觀測(cè)點(diǎn)基礎(chǔ)土壤理化性質(zhì)。
1.3土壤理化性質(zhì)及微生物碳、氮含量指標(biāo)測(cè)定方法
將新鮮土樣分成兩份,保留一半土樣,另一半土樣經(jīng)自然風(fēng)干后,去除雜物后,經(jīng)研磨,過(guò)篩、裝袋、稱(chēng)重后待測(cè)。
土壤基本理化性質(zhì)參照鮑士旦(2000)的方法測(cè)定。pH采用pH計(jì)測(cè)定;電導(dǎo)率采用電導(dǎo)率計(jì)測(cè)定;含水量采用重量法測(cè)定;有機(jī)質(zhì)含量用重鉻酸鉀滴定法測(cè)定;硝態(tài)氮和銨態(tài)氮含量采用紫外分光光度法測(cè)定;有效磷含量測(cè)定采用碳酸氫鈉法和氟化銨—鹽酸法測(cè)定。
土壤微生物碳和土壤微生物氮含量采用氯仿熏蒸-K2SO4浸提法測(cè)定(Vance et al.,1987;Joergensen,1996),稱(chēng)取新鮮土壤10 g放入干燥器中,干燥至氯仿沸騰并保持至少2 min。干燥結(jié)束后將土樣于黑暗中靜置24h,用反復(fù)抽真空方法除去殘存氯仿,同時(shí),稱(chēng)同樣質(zhì)量的新鮮土壤1份,不進(jìn)行熏蒸處理,使用K2SO4溶液浸提、振蕩和過(guò)濾。過(guò)濾后濾液中的土壤微生物碳含量采用重鉻酸鉀氧化法測(cè)定,土壤微生物氮含量采用凱氏定氮法測(cè)定。
1.4統(tǒng)計(jì)分析
1.4.1環(huán)境因子比較分析采用RStudio 4.4.1分析環(huán)境因子在不同防護(hù)林模式下差異。
1.4.2相關(guān)分析矩陣采用Pearson相關(guān)分析,從整體上探討6種防護(hù)林模式下環(huán)境因子間的相關(guān)性。采用Excel 2019進(jìn)行數(shù)據(jù)處理,使用R語(yǔ)言讀取,利用rstatix函數(shù)和psych函數(shù)對(duì)環(huán)境因子進(jìn)行相關(guān)性分析,并通過(guò)Ggally函數(shù)與ggplot2函數(shù)制圖。1.4.3隨機(jī)森林分析隨機(jī)森林模型構(gòu)建利用R語(yǔ)言randomForest包。計(jì)算公式參考施光耀等(2021),如下:
式中:R2表示預(yù)測(cè)方法的決定系數(shù)。pi和oi為預(yù)測(cè)值和觀測(cè)值,oi是觀測(cè)值的平均值。VIn(Xj)表示變量Xj在第n株樹(shù)的重要性。NooB為袋外樣本數(shù);f(Xi)為袋外數(shù)據(jù)第i次觀測(cè)值;fn(Xi)是袋外數(shù)據(jù)在隨機(jī)替換變量Xi的觀測(cè)值之前的第n棵樹(shù)上的第i個(gè)觀測(cè)值的結(jié)果。對(duì)應(yīng)的預(yù)測(cè)值fn(Xi')是隨機(jī)替換變量Xi的觀測(cè)值后,第n棵樹(shù)上袋外數(shù)據(jù)的第i個(gè)觀測(cè)值對(duì)應(yīng)的預(yù)測(cè)值;I[f(Xi)=fn(Xi)]和I[f(Xi)=fn(Xi')]是判別函數(shù),當(dāng)f(Xi)=fn(Xi)或f(Xi)=fn(Xi')時(shí),值為1;當(dāng)f(Xi)≠fn(Xi)或f(Xi)≠fn(Xi')時(shí),值為0。
本研究采用隨機(jī)森林模型計(jì)算的具體步驟如下:
(1)將數(shù)據(jù)樣本在Excel 2019表格中進(jìn)行預(yù)處理。
(2)采用RStudio 4.4.1讀取預(yù)處理的樣本數(shù)據(jù),并設(shè)置對(duì)應(yīng)7個(gè)樣地的種子,利用importance函數(shù)計(jì)算出每個(gè)變量對(duì)PM2.5濃度的重要性得分,構(gòu)成對(duì)應(yīng)決策樹(shù)。
(3)利用cor函數(shù)計(jì)算環(huán)境因子與PM2.5濃度之間的相關(guān)性。通過(guò)回歸樹(shù)模型計(jì)算獲得最終結(jié)果。
(4)利用ggplot函數(shù)得到隨機(jī)森林重要性得分及相關(guān)性熱圖。
2結(jié)果與分析
2.1不同防護(hù)林模式下環(huán)境因子差異分析結(jié)果
由圖2可知,通過(guò)對(duì)不同防護(hù)林模式和CK的風(fēng)向、氣壓、光照強(qiáng)度、PM2.5濃度、空氣溫度和空氣濕度環(huán)境因子進(jìn)行檢測(cè)分析發(fā)現(xiàn),7個(gè)監(jiān)測(cè)點(diǎn)的風(fēng)向有差異,櫸樹(shù)+桃樹(shù)混交林與櫸樹(shù)+櫻花混交林模式的風(fēng)向相似,落羽杉+石楠混交林與CK的風(fēng)向相似,6種防護(hù)林模式與CK的氣壓和光照強(qiáng)度較為相似,女貞+落羽杉混交林與其他5種防護(hù)林模式和CK的濕度有較大差異,櫸樹(shù)+櫻花混交林與CK的空氣溫度較為相似。PM2.5濃度變化結(jié)果表明,落羽杉純林、落羽杉+石楠混交林、女貞+落羽杉混交林模式下PM2.5濃度低于櫸樹(shù)+桃樹(shù)混交林、女貞純林和櫸樹(shù)+櫻花混交林3種防護(hù)林模式和CK,說(shuō)明不同防護(hù)林模式的風(fēng)向和PM2.5濃度有所區(qū)別。
2.2不同防護(hù)林模式下土壤理化性質(zhì)分析結(jié)果
由圖3可知,7個(gè)監(jiān)測(cè)點(diǎn)的土壤pH均呈弱堿性,櫸樹(shù)+桃樹(shù)混交林、落羽杉純林、櫸樹(shù)+櫻花混交林模式下的pH顯著高于CK(rlt;0.05,下同)。女貞純林模式下電導(dǎo)率、銨態(tài)氮和硝態(tài)氮含量均為最高值,且該模式下電導(dǎo)率和硝態(tài)氮含量均顯著高于CK。落羽杉純林和女貞+落羽杉混交林模式下含水量最高,顯著高于其他防護(hù)林模式和CK。女貞+落羽杉混交林和女貞純林模式下有機(jī)質(zhì)含量顯著高于其他防護(hù)林和CK。落羽杉純林模式下有效磷含量為最高值,為14.53 mg/kg,顯著高于除落羽杉+石楠混交林外的其他防護(hù)林模式和CK。此外,通過(guò)對(duì)土壤微生物碳和土壤微生物氮含量進(jìn)行測(cè)定,結(jié)果(圖4)顯示,落羽杉純林、落羽杉+石楠混交林和櫸樹(shù)+櫻花混交林模式下的土壤微生物碳和土壤微生物氮含量均顯著高于其他防護(hù)林模式和CK。
2.3不同防護(hù)林模式下環(huán)境因子的相關(guān)分析結(jié)果
對(duì)與防護(hù)林有關(guān)的15個(gè)環(huán)境因子進(jìn)行相關(guān)分析,結(jié)果(圖5)顯示,PM2.5濃度與空氣濕度、土壤微生物碳和土壤微生物氮含量之間呈極顯著正相關(guān)(rlt;0.01,下同),與空氣溫度呈極顯著負(fù)相關(guān),說(shuō)明空氣溫度、濕度和土壤微生物碳、土壤微生物氮含量對(duì)于調(diào)節(jié)大氣中PM2.5濃度具有重要作用。銨態(tài)氮與PM2.5濃度相關(guān)性不顯著(rgt;0.05,下同)。
通過(guò)隨機(jī)森林模型研究能揭示影響PM2.5濃度的環(huán)境因素在不同種植模式下的重要性得分,結(jié)果如圖6所示。除女貞+落羽杉混交林模式外,其他5種防護(hù)林模式和CK的空氣溫度、空氣濕度的重要性得分均較高。除女貞+落羽杉混交林模式下空氣溫度與PM2.5濃度均呈正相關(guān)外,其他5種防護(hù)林和CK下的空氣溫度與PM2.5濃度均呈負(fù)相關(guān),而空氣濕度正好相反,除女貞+落羽杉混交林空氣濕度與PM2.5濃度均呈負(fù)相關(guān)外,其他5種種植模式和CK下的空氣濕度均與PM2.5濃度均呈正相關(guān)。在落羽杉純林、櫸樹(shù)+櫻花混交林模式及CK的氣壓重要性得分較高,其中在女貞純林模式下的重要性得分較低,此外,在CK下,各指標(biāo)與PM2.5濃度間的相關(guān)性整體較??;除女貞純林模式外,其他種植模式和CK下風(fēng)向的重要性得分均較高;僅CK下光照有較小的重要性得分,防護(hù)林模式下光照均無(wú)重要性得分,說(shuō)明在防護(hù)林種植模式下光照對(duì)PM2.5濃度的影響不明顯;僅在女貞純林和櫸樹(shù)+櫻花混交林模式下有機(jī)質(zhì)有較小的重要性得分。
從隨機(jī)森林結(jié)果所有這一列指標(biāo)可以看出,6種防護(hù)林種植模式和CK的空氣溫度、空氣濕度、氣壓、風(fēng)向、光照強(qiáng)度、土壤微生物碳和土壤微生物氮含量及含水量對(duì)PM2.5濃度的影響重要性得分較高,其中光照的重要性得分最小。
3討論
森林在吸收大氣污染物,改善空氣質(zhì)量方面效果顯著(Yang et al.,2005;Nowak etal.,2006;Esco-bedo and Nowak,2009)。植被可通過(guò)葉片氣孔、分泌物及蠟質(zhì)層吸附大氣顆粒物,從而達(dá)到凈化空氣、降低大氣中PM2.5濃度的作用。森林對(duì)大氣顆粒物的阻滯吸附作用主要通過(guò)減塵作用實(shí)現(xiàn)(王贊紅和李紀(jì)標(biāo),2006;楊進(jìn)懷,2012)。本研究發(fā)現(xiàn),落羽杉純林、女貞+落羽杉混交林和落羽杉+石楠混交林模式PM2.5濃度低于其他3種防護(hù)林模式和CK,說(shuō)明這3種防護(hù)林模式能有效減少大氣中的PM2.5濃度,說(shuō)明不同防護(hù)林模式的風(fēng)向和PM2.5濃度有所區(qū)別,與劉萌萌(2014)研究發(fā)現(xiàn)防護(hù)林對(duì)PM2.5離子的吸附能力在不同空氣污染程度上表現(xiàn)存在差異的結(jié)果一致。
本研究結(jié)果表明,空氣溫度是影響PM2.5濃度的重要因子,其與PM2.5濃度呈極負(fù)相關(guān),除女貞+落羽杉混交林外,其他5種防護(hù)林模式和CK的空氣溫度重要性得分均較高,與前人的研究結(jié)果(Aldrin andHaff,2005;車(chē)瑞俊等,2007;劉萌萌,2014)一致。不同模式的防護(hù)林在不同程度上降低了空氣溫度,從而影響大氣對(duì)流層內(nèi)垂直對(duì)流運(yùn)動(dòng),該運(yùn)動(dòng)隨著溫度降低而減弱,進(jìn)而讓PM2.5難以擴(kuò)散,導(dǎo)致PM2.5濃度增加(劉萌萌,2014)。此外,有部分學(xué)者卻認(rèn)為氣溫升高會(huì)促進(jìn)光化學(xué)反應(yīng),產(chǎn)生更多的PM前驅(qū)體2.5等二次污染物,從而增加大氣中PM2.5的含量(Zhang et al.,2015a;Zhang et al.,2015b;Zhang et al.,2015c;Zhang et al.,2015d)。不同地區(qū)空氣溫度對(duì)PM2.5濃度的影響會(huì)通過(guò)不同作用機(jī)制造成不同效果(Chen et al.,2020),可能是地理環(huán)境、社會(huì)環(huán)境等因素不同導(dǎo)致,因此,有關(guān)空氣溫度和PM2.5濃度之間的關(guān)系有待進(jìn)一步分析更多環(huán)境因素指標(biāo)進(jìn)行深入研究。
本研究結(jié)果表明,空氣濕度也是影響PM2.5濃度的重要因子之一,而且空氣濕度與PM2.5濃度呈極顯著正相關(guān),且空氣濕度影響PM2.5濃度的重要性得分較高。前人研究表明,PM2.5濃度隨著蒸汽濃度增加而增加,而較高濕度會(huì)造成PM2.5附著更多的蒸汽(Wang and Ogawa,2015;Liao et al.,2017),本研究結(jié)果與之一致,也與王淑英和張小玲(2002)研究發(fā)現(xiàn)的濕度接近飽和時(shí)的天氣不利于顆粒物擴(kuò)散,導(dǎo)致顆粒物濃度增加的研究結(jié)果一致,但與劉娜等(2014)研究發(fā)現(xiàn)PM2.5會(huì)發(fā)生濕沉降,當(dāng)空氣濕度增大到一定程度時(shí),PM2.5濃度會(huì)降低的結(jié)果有差異。因此,有關(guān)空氣濕度對(duì)霧霾天氣下PM2.5濃度的影響還有待進(jìn)一步研究。
不同樹(shù)種的形態(tài)特征各異,滯留顆粒物的能力也不同。前人研究通過(guò)風(fēng)洞模擬試驗(yàn)證明針葉樹(shù)對(duì)顆粒物的沉積速率和捕獲效率均大于闊葉樹(shù),針葉樹(shù)滯留顆粒物的能力更強(qiáng)(Beckett et al.,2000;Freer-Smith et al.,2004)。本研究發(fā)現(xiàn),7個(gè)監(jiān)測(cè)點(diǎn)的風(fēng)向有差異,櫸樹(shù)+桃樹(shù)混交林與櫸樹(shù)+櫻花混交林的風(fēng)向相似,落羽杉+石楠混交林與CK的風(fēng)向相似,說(shuō)明防護(hù)林能改變風(fēng)向,與王珍(2010)研究發(fā)現(xiàn)木麻黃防護(hù)林樹(shù)干高大,枝葉繁茂,對(duì)空氣的流動(dòng)起阻礙作用,能夠控制氣團(tuán)的移動(dòng),降低風(fēng)速,改變風(fēng)向,使風(fēng)力變小的結(jié)果相似。本研究還發(fā)現(xiàn),櫸樹(shù)+桃樹(shù)混交林、女貞純林和櫸樹(shù)+櫻花混交林3種模式下PM2.5濃度較高,而落羽杉純林、女貞+落羽杉混交林和落羽杉+石楠混交林模式下PM2.5濃度較低,表明落羽杉能有效降低大氣PM2.5濃度。
研究表明土壤銨態(tài)氮含量對(duì)大氣PM2.5濃度有重要作用,氮氧化物是PM2.5的重要前體物質(zhì)(Gu et al.,2012)。本研究結(jié)果顯示銨態(tài)氮與PM2.5濃度無(wú)顯著相關(guān)性,與前人研究結(jié)果不一致。此外,防護(hù)林會(huì)對(duì)土壤的pH產(chǎn)生影響(Wu et al.,2023)。本研究發(fā)現(xiàn)7個(gè)監(jiān)測(cè)點(diǎn)的土壤pH均呈弱堿性,但6種防護(hù)林模式下pH均略高于CK,說(shuō)明防護(hù)林模式對(duì)土壤都有一定的堿化,與防護(hù)林會(huì)對(duì)土壤有一定程度酸化的研究結(jié)果(牛慶花,2019;Nguyen et al.,2023)不一致。
4結(jié)論
落羽杉純林、女貞+落羽杉混交林和落羽杉+石楠混交林均能有效降低大氣PM2.5濃度。不同防護(hù)林模式下的風(fēng)向和PM2.5濃度有差異,空氣溫度、空氣濕度、土壤微生物量碳和土壤微生物量氮含量是影響大氣PM2.5濃度變化的重要因子,防護(hù)林配置落羽杉能有效降低大氣PM2.5濃度。
參考文獻(xiàn)(References):
包紅光,王成,郄光發(fā),杜萬(wàn)光,孫麗.2016.城市公園外側(cè)防護(hù)林結(jié)構(gòu)對(duì)外源PM2.5的消減作用[J].生態(tài)環(huán)境學(xué)報(bào),25(6):987-993.[Bao H G,Wang C,Qie G F,Du W G,Sun L.2016.The effect of forest shelter belt on subduction of PM2.5 in urban parks[J].Ecology and Environmental Scien-ces,25(6):987-993.]doi:10.16258/j.cnki.1674-5906.2016.06.011.
鮑士旦.2000.土壤農(nóng)化分析[M].第3版.北京:中國(guó)農(nóng)業(yè)出版社.[Bao S D.2000.Soil agrochemical analysis[M].The 3rd Edition.Beijing:China Agriculture Press.]
曹軍,謝佳麗,孫娟,李錦雯,徐政,華陳杰,張雨生,宋柏穎,劉永春.2023.硫酸銨和硝酸銨對(duì)鎮(zhèn)江市大氣PM2.5理化性質(zhì)的影響[J].環(huán)境科學(xué),44(10):5356-5369.[Cao J,Xie J L,Sun J,Li J W,Xu Z,Hua C J,Zhang Y S,Song B Y,Liu Y C.2023.Influence of ammonium sulfate and ammonium nitrate on the properties of ambient PM2.5 in Zhenjiang[J].Environmental Science,44(10):5356-5369.]doi:10.13227/j.hjkx.202210270.
車(chē)瑞俊,劉大錳,袁楊森.2007.北京冬季大氣顆粒物污染水平和影響因素研究[J].中國(guó)科學(xué)院大學(xué)學(xué)報(bào),24(5):556-563.[Che R J,Liu D M,Yuan Y S.2007.Research on the pollution level and affecting factors of atmospheric par-ticulates in Beijing City during winter[J].Journal of Uni-versity of Chinese Academy of Sciences,24(5):556-563.]doi:10.3969/j.issn.1002-1175.2007.05.002.
傅敏寧,鄭有飛,徐星生,牛魯燕.2011.PM2.5監(jiān)測(cè)及評(píng)價(jià)研究進(jìn)展[J].氣象與減災(zāi)研究,34(4):1-6.[Fu M N,Zheng Y F,Xu X S,Niu L Y.2011.Advances of study on moni-toring and evaluation of PM2.5[J].Meteorology and Disas-ter Reduction Research,34(4):1-6.]doi:10.3969/j.issn.1007-9033.2011.04.001.
蔣燕,陳波,魯紹偉,李少寧.2016.北京城市森林PM2.5質(zhì)量濃度特征及影響因素分析[J].生態(tài)環(huán)境學(xué)報(bào),25(3):447-457.[Jiang Y,Chen B,Lu S W,Li S N.2016.Analy-sis on characteristics and influential factors of PM2.5 mass concentration in Beijing’s urban forest[J].Ecology and Environmental Sciences,25(3):447-457.]doi:10.16258/j.cnki.1674-5906.2016.03.012.
李欣海.2013.隨機(jī)森林模型在分類(lèi)與回歸分析中的應(yīng)用[J].應(yīng)用昆蟲(chóng)學(xué)報(bào),50(4):1190-1197.[Li X H.2013.Using“random forest”for classification and regression[J].Chi-nese Journal of Applied Entomology,50(4):1190-1197.]
劉浩棟,陳亞靜,李清殿,肖茂,郭慧玲,申衛(wèi)星,譚亞軍,李傳榮.2020.城市道路林對(duì)細(xì)顆粒物(PM2.5)的阻滯作用解析[J].浙江農(nóng)林大學(xué)學(xué)報(bào),37(3):397-406.[Liu H D,Chen Y J,Li Q D,Xiao M,Guo H L,Shen W X,Tan Y J,Li C R.2020.Analysis of blocking effects of urban road-side forests on PM2.5[J].Journal of Zhejiang Aamp;F Uni-versity,37(3):397-406.]doi:10.11833/j.issn.2095-0756.20190335.
劉萌萌.2014.林帶對(duì)阻滯吸附PM2.5等顆粒物的影響研究[D].北京:北京林業(yè)大學(xué).[Liu M M.2014.Studies oninfluence of the forest belt to intercept and adsorb particu-late matter[D].Beijing:Beijing Forestry University.]
劉娜,馮新斌,Landis Matthcw,陳卓,仇廣樂(lè).2014.貴陽(yáng)市大氣顆粒物(PM2.5)污染特征及氣象參數(shù)的影響[J].地球與環(huán)境學(xué)報(bào),42(3):311-315.[Liu N,F(xiàn)eng X B,Landis M,Chen Z,Qiu G L.2014.Pollution characteristics of PM2.5 in Guiyang and its influence on meteorological parameters[J].Earth and Environment,42(3):311-315.]doi:10.14050/j.cnki.1672-9250.2014.03.016.
劉旭輝,余新曉,張振明,劉萌萌,阮氏青草.2014.林帶內(nèi)PM2.5,PM2.5污染特征及其與氣象條件的關(guān)系[J].生態(tài)學(xué)雜志,33(7):1715-1721.[Liu X H,Yu X X,Zhang Z M,Liu M M,Ruanshi Q C.2014.Pollution characteristics of atmospheric particulates in forest belts and their relation-ship with meteorological conditions[J].Chinese Journal of Ecology,33(7):1715-1721.]doi:10.13292/j.1000-4890.20140422.016.
牛慶花.2019.御道口地區(qū)主要林分類(lèi)型防護(hù)效益分析[D].保定:河北農(nóng)業(yè)大學(xué).[Niu Q H.2019.Analysis on protec-tion benefit of main forest types in Yudaokou area[D].Baoding:Hebei Agricultural University.]doi:10.27109/d.cnki.ghbnu.2019.000392.
彭金龍,關(guān)欣,楊思培,王廣,李巧云.2017.氣象因素對(duì)長(zhǎng)沙顆粒物濃度影響的季節(jié)性差異分析[J].四川環(huán)境,36(4):103-108.[Peng J L,Guan X,Yang S P,Wang G,Li Q Y.2017.The differential effects of meteorological fac-tors on the particulate concentration among seasons in Changsha[J].Sichuan Environment,36(4):103-108.]doi:10.14034/j.cnki.schj.2017.04.019.
邱玲,劉芳,張祥,高天.2018.城市公園不同植被結(jié)構(gòu)綠地削減空氣顆粒物濃度研究[J].環(huán)境科學(xué)研究,31(10),1685-1694.[Qiu L,Liu F,Zhang X,Gao T.2018.Redu-cing effect of air particulate matter concentration by green spaces with different vegetation structure in city parks[J].Research of Environmental Sciences,31(10):1685-1694.]doi:10.13198/j.issn.10016929.2018.06.29.
施光耀,周宇,桑玉強(qiáng),張勁松,孟平,蔡露露,裴松義,王堯.2021.基于隨機(jī)森林方法分析環(huán)境因子對(duì)空氣負(fù)離子的影響[J].中國(guó)農(nóng)業(yè)氣象,42(5):390-401.[Shi G Y,Zhou Y,Sang Y Q,Zhang J S,Meng P,Cai L L,Pei S Y,Wang Y.2021.Influence of environmental factors on negative air ion using random forest algorithm[J].Chinese Journal of Agrometeorology,42(5):390-401.]doi:10.3969/j.issn.1000-6362.2021.05.004.
王冰,張承中.2009.大氣可吸入顆粒物PM2.5研究進(jìn)展[J].中國(guó)科技信息,(8):25-26.[Wang B,Zhang C Z.2009.Research progress on atmospheric inhalable particulate matter PM2.5[J].China Science and Technology Informa-tion,(8):25-26.]doi:10.3969/j.issn.1001-8972.2009.08.008.
王會(huì)霞,石輝,王彥輝.2015.典型天氣下植物葉面滯塵動(dòng)態(tài)變化[J].生態(tài)學(xué)報(bào),35(6):1696-1705.[Wang H X,Shi H,Wang Y H.2015.Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions[J].Acta Ecologica Sinica,35(6):1696-1705.]doi:10.5846/stxb201306051356.
王淑英,張小玲.2002.北京地區(qū)PM10污染的氣象特征[J].應(yīng)用氣象學(xué)報(bào).13(S1):177-184.[Wang S Y,Zhang X L.2002.Meteorological features of PM10 pollution in Beijing[J].Journal of Applied Meteorological Science,13(S1):177-184.]doi:10.3969/j.issn.1001-7313.2002.z 1.020.
王贊紅,李紀(jì)標(biāo).2006.城市街道常綠灌木植物葉片滯塵能力及滯塵顆粒物形態(tài)[J].生態(tài)環(huán)境,15(2):327-330.[Wang Z H,Li J B.2006.Capacity of dust uptake by leaf surface of Euonymus Japonicus Thunb.and the morphology of captured particle in air polluted city.Ecology and Environ-mental Sciences,15(2):327-330.]doi:10.3969/j.issn.1674-5906.2006.02.027.
王珍.2010.福建省沿海木麻黃防護(hù)林生態(tài)系統(tǒng)服務(wù)功能及其評(píng)價(jià)[D].福州:福建農(nóng)林大學(xué).[Wang Z.2010.Evalu-ation on the ecological service value of the coastal protec-tion forest of Casuarina equisetifolia in Fujian Province[D].Fuzhou:Fujian Agriculture and Forestry University.]doi:10.7666/d.y1748058.
楊復(fù)沫,馬永亮,賀克斌.2000.細(xì)微大氣顆粒物PM2.5及其研究概況[J].世界環(huán)境,(4):32-34.[Yang F M,Ma Y L,He K B.2000.A brief introduction to PM2.5 and related research[J].World Environment,(4),32-34.]
楊進(jìn)懷.2012.水土保持在治理北京空氣可吸入顆粒物PM2.5工作中的作用及思考[J].中國(guó)水利,(2):21-22.[Yang J H.2012.Functions of soil and water conservation in improvement of air quality in Beijing[J].China Water Resources,(2):21-22.]doi:10.3969/j.issn.1000-1123.2012.02.007.
張淑平,韓立建,周偉奇,鄭曉欣.2016.冬季PM2.5的氣象影響因素解析[J].生態(tài)學(xué)報(bào),36(24):7897-7907.[Zhang S P,Han L J,Zhou W Q,Zheng X X.2016.Relationships between fine particulate matter(PM2.5)and meteorological factors in winter at typical Chinese cities[J].Acta Ecolo-gica Sinica,36(24):7897-7907.]doi:10.5846/stxb201505 020901.
周忠凱,霍連飛,王慧鑫,湯赤,孟力力,柏宗春.2022.畜禽舍顆粒物排放特征及控制技術(shù)與裝備[J].江蘇農(nóng)業(yè)學(xué)報(bào),38(5):1421-1431.[Zhou Z K,Huo L F,Wang H X,Tang C,Meng L L,Bai Z C.2022.Emission characteristics and control technology and equipment of particulate matter inlivestock and poultry houses[J].Jiangsu Journal of Agri-cultural Sciences,38(5):1421-1431.]doi:10.3969/j.issn.1000-4440.2022.05.030.
Aldrin M,Haff I H.2005.Generalised additive modelling of air pollution,traffic volume and meteorology[J].Atmospheric Environment,39(11):2145-2155.doi:10.1016/j.atmosenv.2004.12.020.
Aller J Y,Kuznetsova M R,Jahns C J,Kemp P F.2005.The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J].Journal of Aerosol Scien-ce,36(5-6):801-812.doi:10.1016/j.jaerosci.2004.10.012.
Becker J S,Bellis D,Staton I,McLeod C W,Dombovari J,Becker J S.2000.Determination of trace elements inclu-ding platinum in tree bark by ICP mass spectrometry[J].Fresenius’Journal of Analytical Chemistry,368:490-495.doi:10.1007/s002160000539.
Beckett K P,F(xiàn)reer Smith P,Taylor G.2000.Effective tree spe-cies for local air quality management[J].Arboricultural Journal,26(1):12-19.
Breiman L.2001.Random forests[J].Machine Learning,45:5-32.doi:10.1023/A:1010933404324.
Chan Y C,Simpson R W,Mctainsh G H,Vowles P D,Cohen D D,Bailey G M.1999.Source apportionment of visibility degradation problems in Brisbane(Australia)using the multiple linear regression techniques[J].Atmospheric En-vironment,33(19):3237-3250.doi:10.1016/S1352-2310(99)00091-6.
Chen Z Y,Chen D L,Zhao C F,Kwan M P,Cai J,Zhuang Y,Zhao B,Wang X Y,Chen B,Yang J,Li R Y,He B,Gao B B,Wang K C,Xu Bing.2020.Influence of meteorological conditions on PM2.5 concentrations across China:A review of methodology and mechanism[J].Environment Interna-tional,139:105558.doi:10.1016/j.envint.2020.105558.
Escobedo F J,Nowak D J.2009.Spatial heterogeneity and air pollution removal by an urban forest[J].Landscape Urban Planning,90(3-4):102-110.doi:10.1016/j.landurbplan.2008.10.021.
Freer-Smith P H,El-Khatib A A,Taylor G.2004.Capture of particulate pollution by trees:A comparison of species typi-cal of semi-arid areas(Ficus nitida and Eucalyptus globu-lus)with European and North American species[J].Water,Air,amp;Soil Pollution,155:173-187.doi:10.1023/B:WATE.0000026521.99552.fd.
Gu B J,Zhang L,Van Dingenen R,Vieno M,Van Grinsven H J M,Zhang X M,Zhang S H,Chen Y F,Wang S T,Ren C C,Ren C C,Rao S,Holland M,Winiwarter W,Chen D,
Xu J M,Jian L,Zhao Y,Zhu Y P,Zhang M B,Bertolatti D.2012.An application of ARIMA model to predict sub-micron particle concentrations from meteorological factors at a busy roadside in Hangzhou,China[J].Science of the Total Environment,426:336-345.doi:10.1016/j.scitotenv.2012.03.025.
Joergensen R G.1996.The fumigation-extraction method toestimatesoil microbial biomass:calibration of the kEC value[J].Soil Biology and Biochemistry,28(1):25-31.doi:10.1016/0038-0717(95)00102-6.
Jouraeva VA,Johnson D L,HassettJ P,Nowak D J.2002.Dif‐ferences in accumulation of PAHs and metals on the leaves of Tilia×euchlora and Pyrus calleryana[J].Environmental Pollution,120(2):331-338.doi:10.1016/S0269-7491(02)00121-5.
Kaupp H,Blumenstock M,McLachlan M S.2000.Retention and mobility of atmospheric particle‐associated organic pollutant PCDD/Fs and PAHs in maize leaves[J].New Phytologist,148(3):473-480.doi:10.1046/J.1469-8137.2000.00770.X.
Liao T T,Wang S,Ai J,Gui K,Duan B L,Zhao Q,Zhang X,Jiang W T,Sun Y.2017.Heavy pollution episodes,trans‐port pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu(China)[J].Science of the Total Environment,584-585:1056-1065.doi:10.1016/j.scitotenv.2017.01.160.
Lippmann M,F(xiàn)rampton M,Schwartz J,Dockery D,Schlesinger R,Koutrakis P,F(xiàn)roines J,Nel A,F(xiàn)inkelstein J,Godleski J,Kaufman J,Koenig J,Larson T,Luchtel D,Liu L J S,Oberdorster C,Peters A,Sarnat J,Sioutas C,Suh H,Jeff S,Utell M,Wichmann E,Zelikoffeff J.2003.The U.S.environmental protection agency particulate matter health effects research centers program:A midcourse report of status,progress,and plans[J].Environmental Health Per‐spectives,111(8):1074-1092.doi:10.1289/ehp.5750.
Luo Q Q,Xian X F,Chen G C,Yang Q L.2005.Water soluble components of PM10 in Chongqing,China[J].Chinese Jour‐nal of Geochemistry,24:155-157.doi:10.1007/BF0284 1159.
Nguyen T B A,Henao L A,Li Z L,Cheng L,Hu H W.2023.Impacts of shelterbelt systems on pasture production andsoil bacterial and fungal communities in agricultural fields[J].Journal of Sustainable Agriculture and Environment,2(3):301-313.doi:10.1002/SAE2.12059.
Nowak D J,Crane D E,Stevens J C.2006.Air pollution removal by urban trees and shrubs in the United States[J].Urban Forestryamp;Urban Greening,4(3-4):115-123.doi:10.1016/j.ufug.2006.01.007.
Pekkanen J,Timonen K L,Ruuskanen J,Reponen A,Mirme A.1997.Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symp‐toms[J].Environmental Research,74(1):24-33.doi:10.1006/enrs.1997.3750.
Pope CA,Burnett R T,Thun M J,Calle E E,Krewski D,Ito K,Thurston G D.2002.Lung cancer,cardiopulmonary mor‐tality,and long-term exposure to fine particulate air pollu‐tion[J].Jama,287(9):1132-1141.doi:10.1001/jama.287.9.1132.
Shah M H,Shahee N,Jaffar M,Khalique A.Tariq S R,Man‐zoor S.2006.Spatial variations in selected metal contents and particle size distribution in an urban and rural atmo‐sphere of Islamabad,Pakistan[J].Journal of Environmen‐tal Management,78(2):128-137.doi:10.1016/j.jenvman.2005.04.011.
Strand L B,Barnett A G,Tong S.2012.Maternal exposure to ambient temperature and the risks of preterm birth and still‐birth in Brisbane,Australia[J].American Journal of Epide‐miology,175(2):99-107.doi:10.1093/aje/kwr404.
Vance E D,Brookes P C,Jenkinson D S.1987.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,19(6):703-707.doi:10.1016/0038-0717(87)90052-6.
Wang J H,Ogawa S.2015.Effects of meteorological conditions on PM2.5 concentrations in Nagasaki,Japan[J].Internatio-nal Journal of Environmental Research and Public Health,12(8):9089-9101.doi:10.3390/ijerph 120809089.
Wu Y,Wang W J,Wang Q,Zhong Z L,Wang H M,Yang Y B.2023.Farmland shelterbelt changes in soil properties:Soil depth-location dependency and general pattern in songnen plain,northeastern China[J].Forests,14(3):584.doi:10.3390/F14030584.
Yang J,McBride J,Zhou J X,Sun Z Y.2005.The urban forest in Beijing and its role in air pollution reduction[J].Urban Forestryamp;Urban Greening,3(2):65-78.doi:10.1016/j.ufug.2004.09.001.
Zhang C,Ni Z W,Ni L P.2015a.Multifractal detrended cross-correlation analysis between PM2.5 and meteorological fac‐tors[J].Physica A:Statistical Mechanics and its Applica‐tions,438:114-123.doi:10.1016/j.physa.2015.06.039.
Zhang H L,Wang Y G,Hu J L,Ying Q,Hu X M.2015b.Rela‐tionships between meteorological parameters and criteria air pollutants in three megacities in China[J].Environmen‐tal Research,140:242-254.doi:10.1016/j.envres.2015.04.004.
Zhang Q,Quan J N,Tie X X,Li X,Liu Q,Gao Y,Zhao D L.2015c.Effects of meteorology and secondary particle for‐mation on visibility during heavy haze events in Beijing,China[J].Science of the Total Environment,502:578-584.doi:10.1016/j.scitotenv.2014.09.079.
Zhang Z Y,Zhang X L,Gong D Y,Quan W J,Zhao X J,Ma Z Q,Kim S J.2015d.Evolution of surface O3 and PM2.5 con‐centrations and their relationships with meteorological con‐ditions over the last decade in Beijing[J].Atmospheric Environment,108:67-75.doi:10.1016/j.atmosenv.2015.02.071.
(責(zé)任編輯 李洪艷)
南方農(nóng)業(yè)學(xué)報(bào)2024年9期