国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

促卵泡素對(duì)雛雞原始卵泡形成的影響

2024-12-27 00:00:00崔毓菲楊燦燦凌衛(wèi)東劉思琪彭睿梁炅明虞霖田陸陽(yáng)清
關(guān)鍵詞:卵巢

摘要:【目的】探究促卵泡素(FSH)對(duì)雛雞原始卵泡形成的影響,為開(kāi)展雛雞卵巢的早期發(fā)育及提高蛋雞產(chǎn)蛋性能的研究提供理論依據(jù)?!痉椒ā繉?0只剛出殼雛雞隨機(jī)分為試驗(yàn)組(FSH)和對(duì)照組(CK),分別肌肉注射20 IU/mL FSH和生理鹽水。試驗(yàn)開(kāi)始后0和5.5 d稱取雛雞體重,5.5 d采集雛雞卵巢組織進(jìn)行石蠟切片、HE染色和轉(zhuǎn)錄組測(cè)序(RNA-Seq)分析。通過(guò)生物信息學(xué)分析篩選差異表達(dá)基因(DEGs),并進(jìn)行GO功能注釋和KEGG信號(hào)通路富集分析。將DEGs上傳STRING數(shù)據(jù)庫(kù)構(gòu)建蛋白互作(PPI)網(wǎng)絡(luò)。最后通過(guò)實(shí)時(shí)熒光定量PCR檢測(cè)基因相對(duì)表達(dá)量。【結(jié)果】與CK組相比,F(xiàn)SH組雛雞體重?zé)o顯著變化(Pgt;0.05,下同),卵巢體積明顯增大。HE染色結(jié)果表明,F(xiàn)SH組卵巢皮質(zhì)較厚,卵巢組織更致密,原始卵泡數(shù)量增多且體積增大,能明顯看到原始卵泡結(jié)構(gòu)。2組雛雞卵巢中共存在617個(gè)DEGs,F(xiàn)SH組有107個(gè),CK組有510個(gè)。GO功能注釋和KEGG信號(hào)通路富集分析結(jié)果表明,DEGs注釋到的GO功能條目可分為生物學(xué)過(guò)程、細(xì)胞組分和分子功能三大類,主要富集到PI3K-AKT、Wnt/β-catenin、MEK/ERK和MEK1/2/ERK1/2信號(hào)通路。實(shí)時(shí)熒光定量PCR結(jié)果顯示,與CK組相比,F(xiàn)SH組DAZL和PIWIL1基因相對(duì)表達(dá)量極顯著降低(Plt;0.01,下同),SMAD2、ZP1和CYP17A1基因相對(duì)表達(dá)量顯著(Plt;0.05)或極顯著升高,F(xiàn)SHR基因相對(duì)表達(dá)量無(wú)顯著變化?!窘Y(jié)論】FSH可能是通過(guò)影響顆粒細(xì)胞增殖、類固醇生成和血管生成等多條卵泡發(fā)育相關(guān)信號(hào)通路來(lái)促進(jìn)雛雞原始卵泡形成,其對(duì)CYP17A1、SMAD2和ZP1等基因的調(diào)控可能是其促進(jìn)原始卵泡生成的主要分子機(jī)制之一。

關(guān)鍵詞:雞;促卵泡素;卵巢;原始卵泡;RNA-Seq

中圖分類號(hào):S831.89文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)09-2772-11

Effects of follicle stimulation hormone on primordial follicle formation in chicks

CUI Yu-fei,YANG Can-can,LING Wei-dong,LIU Si-qi,PENG Rui,LIANG Jiong-ming,YU Lin-tian,LU Yang-qing*

(College of Animal Science and Technology,Guangxi University,Nanning,Guangxi 530004,China)

Abstract:【Objective】To investigate the effect of follicle stimulating hormone(FSH)on the formation of primordial follicles in chicks,which could provide theoretical basis for research on the early development of the ovary in chicks and the improvement of egg-laying performance inlaying hens.【Method】Forty freshly fledged chicks were randomly divided into test group(FSH)and control group(CK),and were injected intramuscularly with equal amounts of 20 IU/mL FSH and saline respectively.The chicks were weighed at 0 and 5.5 d after the start of the experiment,and the ovarian tissues were collected at 5.5 d for paraffin sectioning,HE staining and transcriptome sequencing(RNA-Seq)analysis.Differen-tially expressed genes(DEGs)were screened by bioinformatics analysis,and GO function annotation analysis and KEGG signal pathway enrichment analysis were performed.The DEGs were uploaded to the STRING database to con-struct the protein interaction(PPI)network.Finally,the relative gene expression was detected by real-time fluorescence quantitative PCR.【Result】Compared with the CK group,there was no significant change in the body weight of the chicks in the FSH group(Pgt;0.05,the same below),and the volume of the ovary increased greatly;HE staining results showed that the ovarian cortex was thicker in the FSH group,the ovarian tissues were denser,the number of primordial follicleswas increased and their volume was enlarged and the primordial follicular structure could be clearly seen.There were 617 DEGs in the ovaries of the 2 groups,107 in the FSH group and 510 in the CK group.The analysis of GO function annota-tion and KEGG signal pathway enrichment showed that the GO function entries annotated by DEGs could be classified into 3 major categories:biological processes,cellular components and molecular functions,and were mainly enriched in the signal pathways such as PI3K-AKT,Wnt/β-catenin,MEK/ERK and MEK1/2/ERK1/2.The results of real-time fluores-cence quantitative PCR showed that compared with the CK group,the relative expression of DAZL and PIWIL1 genes in the FSH group was extremely significantly decreased(Plt;0.01,the same below),the relative expression of SMAD2,ZP1 and CYP17A1 genes was significantly(Plt;0.05)or extremely significantly increased,and there was no significant change in the relative expression ofFSHR genes.【Conclusion】FSH may promote the formation of primordial follicles in chicks by affecting several signal pathways related to follicular development,such as granulosa cell proliferation,steroidogene-sis and angiogenesis,and its regulation of genes such as CYP17A1,SMAD2 and ZP1 may be one of the main molecular mechanisms to promote primordial folliculogenesis.

Key words:chick;follicle stimulating hormone;ovary;primordial follicle;RNA-Seq

Foundation items:National Natural Science Foundation of China(31960157);Guangxi University Undergraduate Innovation and Entrepreneurship Training Project(202210593102)

0引言

【研究意義】在專門化蛋雞實(shí)際生產(chǎn)中,產(chǎn)蛋性能是一個(gè)重要的生產(chǎn)指標(biāo)。產(chǎn)蛋性能與卵巢發(fā)育活動(dòng)密切相關(guān),包括原始卵泡池建立、各級(jí)卵泡形成和發(fā)育及正常排卵等。雞原始卵泡池大小取決于原始卵泡的形成和激活,并在雛雞孵化后4~5 d逐漸形成(Li etal.,2016)。促卵泡素(FSH)是一種促性腺激素,主要作用于性腺。Roy和Albee(2000)、Wang和Roy(2007)研究發(fā)現(xiàn),F(xiàn)SH能促進(jìn)小鼠原始卵泡的形成;Recchia等(2021)研究表明,F(xiàn)SH主要通過(guò)作用于卵巢中的顆粒細(xì)胞,以提高雌激素等類固醇激素的合成水平,進(jìn)而促進(jìn)卵泡的發(fā)生。因此,探究FSH對(duì)雛雞原始卵泡形成的影響對(duì)解析雞原始卵泡的早期發(fā)育和提升雞的繁殖性能具有重要意義?!厩叭搜芯窟M(jìn)展】在雌性動(dòng)物胚胎中,原始生殖細(xì)胞在胚胎早期遷移到性腺后成為卵原細(xì)胞,出生前通過(guò)有絲分裂發(fā)育形成簇狀生殖系囊(Germ cell cyst)或卵母細(xì)胞巢(Oocyte nest),出生后經(jīng)歷卵母細(xì)胞巢崩解過(guò)程后單個(gè)卵母細(xì)胞被顆粒細(xì)胞包圍形成原始卵泡(O’Connell and Pepling,2021)。原始卵泡形成過(guò)程伴隨著大量卵母細(xì)胞損耗,損耗的卵母細(xì)胞會(huì)發(fā)生程序性降解,為能正常發(fā)育的卵母細(xì)胞提供營(yíng)養(yǎng)物質(zhì)和細(xì)胞器等以協(xié)助其形成原始卵泡(Lei and Spra-dling,2016)。原始卵泡的形成是一個(gè)復(fù)雜且精細(xì)的調(diào)控過(guò)程,涉及多細(xì)胞類型和多因素調(diào)節(jié)。Wang等(2020)通過(guò)單細(xì)胞測(cè)序探究小鼠原始卵泡的形成,鑒定了原始生殖細(xì)胞、不同類型的卵巢體細(xì)胞及其不同階段的細(xì)胞群;Zhao等(2020)對(duì)猴子胎兒卵巢發(fā)育調(diào)控的研究也得到了類似結(jié)果。雞的生殖細(xì)胞數(shù)量在孵化后第17 d達(dá)到高峰(約680000個(gè))(Hughes,1963),而后隨著孵化逐漸損耗,至孵化后第4 d卵母細(xì)胞巢開(kāi)始崩解并形成原始卵泡;出殼當(dāng)天生殖細(xì)胞數(shù)量約為175000~480000個(gè),至孵化后第7 d銳減到約75000個(gè);原始卵泡在4周齡左右完全建立,此時(shí)生殖細(xì)胞數(shù)量?jī)H剩約50000個(gè)(Méndez-Herrera et al.,1998;González-Morán,2011)。原始卵泡的發(fā)育與顆粒細(xì)胞和膜細(xì)胞等細(xì)胞的正常發(fā)育密不可分。Skinner(2005)研究發(fā)現(xiàn),牛、人和嚙齒動(dòng)物等物種顆粒細(xì)胞的初始功能是合成雌二醇(E2)和黃體酮;Zachos等(2002)、Wang和Roy(2007)、Chakraborty和Roy(2017)研究發(fā)現(xiàn),雌激素能促進(jìn)狒狒、倉(cāng)鼠等物種原始卵泡的形成。而Chen等(2007)、Tanimoto等(2021)研究表明,雌激素和孕酮對(duì)小鼠原始卵泡的組裝具有抑制作用,這種抑制作用是通過(guò)雌激素激活其受體雌激素受體1(ESR1)并誘導(dǎo)下游抗繆勒管激素(AMH)的表達(dá),進(jìn)而調(diào)控顆粒細(xì)胞的增殖分化,導(dǎo)致原始卵泡發(fā)育延遲。提示哺乳動(dòng)物原始卵泡的形成受類固醇激素的調(diào)控,但具體的調(diào)控機(jī)制與物種有關(guān)。Guo等(2019)研究表明,雞促卵泡激素和干細(xì)胞因子聯(lián)用能促進(jìn)卵泡發(fā)生并抑制細(xì)胞凋亡;Nie等(2023)研究發(fā)現(xiàn),短吻鱷孵化后卵巢中FSH和E2能促進(jìn)減數(shù)分裂標(biāo)記基因SYCP3的表達(dá),卵巢體外培養(yǎng)試驗(yàn)還表明FSH和E2能有效抑制細(xì)胞凋亡。細(xì)胞色素P450 17A1(CYP17A1)是細(xì)胞色素(P450)家族成員,具有多種生物學(xué)活性。Rangel等(2007)研究發(fā)現(xiàn),CYP17A1是合成雄激素的限速酶,不僅參與早期卵泡的生長(zhǎng)發(fā)育,合成的雄激素還能通過(guò)增加促黃體激素(LH)刺激雞排卵前卵泡顆粒細(xì)胞產(chǎn)生孕酮(P);Akhtar等(2011)研究表明,CYP17A1具有羥化酶活性,能將孕烯醇酮和孕酮轉(zhuǎn)化為17-羥孕烯醇酮和17-羥基孕酮,為17,20-碳鏈裂解酶裂解第17和第20位碳鏈提供前體物質(zhì)。Li等(2008)研究發(fā)現(xiàn),卵巢顆粒細(xì)胞敲除SMAD2基因會(huì)導(dǎo)致女性生育缺陷;Sharum等(2017)研究表明,SMAD2也能參與調(diào)節(jié)小鼠卵巢的早期卵泡發(fā)育,其在多數(shù)卵泡細(xì)胞中不表達(dá),但在顆粒細(xì)胞中表達(dá)。Li等(2007)發(fā)現(xiàn)MEK/ERK信號(hào)通路能通過(guò)拮抗STAT3活性來(lái)調(diào)節(jié)小鼠胚胎干細(xì)胞(mESC)的自我更新,對(duì)維持細(xì)胞干性起重要作用;Sun等(2013)研究發(fā)現(xiàn),幼年斑馬魚(yú)能通過(guò)MEK1/2-ERK1/2信號(hào)通路調(diào)控SOX9A基因胞質(zhì)表達(dá)水平,進(jìn)而促進(jìn)卵泡的發(fā)生;Li等(2014)研究表明,激活Wnt/β-catenin信號(hào)通路能促進(jìn)顆粒細(xì)胞凋亡并抑制卵泡類固醇生成,顯著抑制卵泡發(fā)育;Guo等(2019)研究表明,F(xiàn)SH和堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)協(xié)同作用能調(diào)節(jié)磷脂酰肌醇-3-激11酶-蛋白激酶B(PI3K-AKT)和細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)信號(hào)通路,進(jìn)而調(diào)節(jié)顆粒細(xì)胞活性、增殖和凋亡?!颈狙芯壳腥朦c(diǎn)】終生產(chǎn)蛋量是蛋雞實(shí)際生產(chǎn)中的重要指標(biāo),與飼養(yǎng)經(jīng)濟(jì)效益密切相關(guān),原始卵泡數(shù)量是決定雌雞終生產(chǎn)蛋量的重要因素。目前提升蛋雞終生產(chǎn)蛋量的措施多立足于疾病防控、飼養(yǎng)管理和日糧營(yíng)養(yǎng)配方等方面,有關(guān)雞原始卵泡形成的研究相對(duì)較少,原始卵泡形成的調(diào)控機(jī)制也尚未明確。【擬解決的關(guān)鍵問(wèn)題】通過(guò)轉(zhuǎn)錄組測(cè)序(RNA-Seq)和實(shí)時(shí)熒光定量PCR等方法探究FSH對(duì)雛雞原始卵泡形成的影響及其作用機(jī)制,為開(kāi)展雛雞卵巢早期發(fā)育及提高蛋雞產(chǎn)蛋性能的研究提供理論依據(jù)。

1材料與方法

1.1試驗(yàn)動(dòng)物

供試廣西麻雞(0日齡,80羽)飼養(yǎng)于廣西大學(xué)牧場(chǎng),雛雞在溫度和濕度適宜的環(huán)境中自由采食。雛雞的飼養(yǎng)管理和采樣步驟參照廣西大學(xué)動(dòng)物實(shí)驗(yàn)倫理審查規(guī)范進(jìn)行。動(dòng)物試驗(yàn)由廣西大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn),批準(zhǔn)號(hào)GXU-2023-0207。

1.2試驗(yàn)方法

1.2.1 FSH劑量篩選預(yù)試驗(yàn)設(shè)3個(gè)FSH注射劑量為3個(gè)試驗(yàn)組(FSH),分別對(duì)應(yīng)3個(gè)對(duì)照組(CK),每組10只雛雞。3個(gè)FSH組于試驗(yàn)開(kāi)始后0~5.5 d每天17:00肌肉注射25、50和100μL 20 IU/mL FSH,3個(gè)CK組分別注射等體積生理鹽水。第5.5 d使用頸脫位屠宰60只雛雞,分離卵巢并觀察卵巢形態(tài)。結(jié)果發(fā)現(xiàn),100μL注射劑量組雛雞卵巢膨大最明顯,長(zhǎng)度和寬度均大于其他組,故選擇100μL FSH開(kāi)展后續(xù)試驗(yàn)。

1.2.2分組與采樣將40只雛雞隨機(jī)分為FSH組和CK組,每組20只。FSH組雛雞在0~5.5 d注射100μL 20 IU/mL FSH,CK組注射等體積生理鹽水。分別在第0和第5.5 d稱取雛雞體重;第5.5 d使用頸脫位屠宰雛雞,迅速采集卵巢并清理多余組織,一部分卵巢放入EP管中,液氮速凍后轉(zhuǎn)移至-80℃冰箱保存?zhèn)溆?,另一部分卵巢迅速放置?%多聚甲醛中固定,隨后進(jìn)行脫水、包埋、切片和蘇木精—伊紅(HE)染色。

1.2.3卵巢形態(tài)觀察采集卵巢后,使用刻度尺測(cè)量對(duì)比雛雞卵巢,觀察其表觀差異。卵巢石蠟包埋后切成5μm的切片,每個(gè)卵巢選擇3~4個(gè)連續(xù)切片進(jìn)行HE染色,觀察每皮質(zhì)面積的卵泡發(fā)育情況。

1.2.4 RNA-Seq分析采用總RNA提取試劑盒(R0027,上海碧云天生物技術(shù)股份有限公司)提取總RNA。使用Illumina平臺(tái)進(jìn)行二代RNA-Seq,委托北京諾禾致源科技股份有限公司構(gòu)建測(cè)序文庫(kù)。對(duì)測(cè)序獲得的原始序列(Raw reads)進(jìn)行檢測(cè)和質(zhì)控,得到高質(zhì)量的Clean reads。利用HISAT2將Clean reads與參考基因組序列(GRCg6a)進(jìn)行比對(duì)。使用FeatureCounts計(jì)算比對(duì)到每個(gè)基因的Reads數(shù)目。根據(jù)每個(gè)基因的長(zhǎng)度和該基因的讀取數(shù)計(jì)算TPM值。使用R語(yǔ)言factoextra軟件包進(jìn)行主成分分析,DESeq2軟件包分析差異表達(dá)基因(DEGs),以|log2 Fold Change|gt;1且Plt;0.05為標(biāo)準(zhǔn)篩選DEGs,并進(jìn)行GO功能注釋分析和KEGG信號(hào)通路富集分析。將DEGs上傳STRING數(shù)據(jù)庫(kù)構(gòu)建蛋白互作(PPI)網(wǎng)絡(luò),置信評(píng)分gt;0.4。利用Cytoscape軟件對(duì)DEGs進(jìn)行PPI網(wǎng)絡(luò)分析。

1.2.5 RNA提取和實(shí)時(shí)熒光定量PCR分析使用RNAeasyTM動(dòng)物RNA抽提試劑盒(離心柱式)(R0027,上海碧云天生物技術(shù)股份有限公司)提取RNA,使用TransScript?All-in-One First-Strand cDNA Synthe-sis SuperMix for qPCR(One-Step gDNA Removal)試劑盒(Q51122,北京全式金生物技術(shù)有限公司)將RNA反轉(zhuǎn)錄合成cDNA并進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。反應(yīng)體系20.0μL:SYBR Green PCR Mix 10.0μL,上、下游引物各0.4μL,cDNA模板4.0μL,ddH2O 5.2μL。擴(kuò)增程序:94℃預(yù)變性30 s;94℃5 s,55℃15 s,72℃10 s,進(jìn)行40個(gè)循環(huán)。利用2-ΔΔCt法計(jì)算目的基因相對(duì)表達(dá)量。引物序列見(jiàn)表1。

1.3統(tǒng)計(jì)分析

使用GraphPad Prism 9.5.1對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理和制圖,采用t檢驗(yàn)進(jìn)行差異顯著性分析。

2結(jié)果與分析

2.1雛雞卵巢形態(tài)觀察及體重變化情況

雛雞卵巢形態(tài)如圖1-A所示,與CK組相比,F(xiàn)SH組雛雞卵巢體積明顯增大。雛雞體重變化情況如圖1-B所示,F(xiàn)SH組0~5.5 d雛雞體重變化較CK組更明顯,2組內(nèi)0和5.5 d雛雞體重均無(wú)顯著差異(Pgt;0.05,下同)。雛雞卵巢組織HE染色如圖2所示,CK組卵巢皮質(zhì)中存在較多的原始生殖細(xì)胞簇和較少的成型原始卵泡,常見(jiàn)由多個(gè)生殖細(xì)胞以細(xì)胞內(nèi)橋連接而聚集成的簇狀結(jié)構(gòu);FSH組雛雞卵巢組織中成型的原始卵泡數(shù)量增多且體積增大,可明顯觀察到原始卵泡結(jié)構(gòu)(由單層扁平化顆粒細(xì)胞包圍的卵母細(xì)胞結(jié)構(gòu))和原始生殖細(xì)胞簇;與CK組相比,F(xiàn)SH組雛雞卵巢皮質(zhì)較厚,組織更致密。

2.2主成分分析(PCA)和聚類分析結(jié)果

PCA結(jié)果(圖3-A)顯示,與CK組相比,F(xiàn)SH組樣本空間分布較集中,分類更明顯,組內(nèi)樣本相似性較高,重復(fù)性較好,具有較好的聚類特性。CK組和FSH組樣本在三維得分圖中可以各自區(qū)分,點(diǎn)分布相對(duì)離散。樣本聚類分析結(jié)果(圖3-B)顯示,CK組和FSH組樣本被劃分為兩簇,表現(xiàn)出明顯的差異,與PCA結(jié)果一致,說(shuō)明可以開(kāi)展進(jìn)一步分析。

2.3 DEGs篩選結(jié)果

DEGs篩選結(jié)果(圖4)顯示,F(xiàn)SH組和CK組分別檢測(cè)到12337和12740個(gè)基因,其中FSH組和CK組共有的基因有12230個(gè),F(xiàn)SH組DEGs有107個(gè),CK組DEGs有510個(gè)。

2.4 DEGs的GO功能注釋分析和KEGG信號(hào)通路富集分析結(jié)果

根據(jù)DEGs篩選結(jié)果進(jìn)行GO功能注釋分析,結(jié)果(圖5)發(fā)現(xiàn),DEGs注釋到的GO功能條目可分為生物學(xué)過(guò)程(BP)、細(xì)胞組分(CC)和分子功能(MF)三大類,其中生物學(xué)過(guò)程主要涉及系統(tǒng)發(fā)育(System development)、細(xì)胞分化(Cell differentiation)和細(xì)胞發(fā)育過(guò)程(Cellular developmental process)等GO功能條目;細(xì)胞組分主要涉及質(zhì)膜(Plasma membrane)和細(xì)胞外區(qū)域(Extracellular region)等GO功能條目;分子功能主要涉及調(diào)節(jié)分子功能活性(Molecu-lar function regulator activity)、激活分子功能活性(Molecular function activator activity)和受體活性(Receptor ligand activity)等GO功能條目。為了進(jìn)一步分析DEGs的功能,對(duì)表達(dá)量顯著上調(diào)和下調(diào)的DEGs進(jìn)行GO功能注釋分析,根據(jù)基因富集數(shù)目展示前20個(gè)GO功能條目,結(jié)果(圖6)顯示,上調(diào)的DEGs參與了細(xì)胞外區(qū)域(Extracellular region)、維持細(xì)胞位置(Maintenance of location in cell)和抗氧化活性(Antioxidant activity)等GO功能條目;下調(diào)的DEGs參與了神經(jīng)發(fā)生(Neurogenesis)、解剖結(jié)構(gòu)形態(tài)變化(Anatomical structure morphogenesis)和軸突發(fā)育(Axon development)等GO功能條目。KEGG信號(hào)通路富集分析結(jié)果(表2)顯示,DEGs主要富集于mToR、Wnt和TGF-β信號(hào)通路,主要包括PI3K-AKT、Wnt/β-catenin、MEK1/2-ERK1/2和MEK/ERK信號(hào)通路。

2.5 DEGs的PPI網(wǎng)絡(luò)分析結(jié)果

利用STRING數(shù)據(jù)庫(kù)構(gòu)建PPI互作網(wǎng)絡(luò),進(jìn)一步探究DEGs間的互作關(guān)系,結(jié)果(圖7)顯示,共得到25個(gè)蛋白節(jié)點(diǎn)和33條互作關(guān)系,差異基因有HSPH1、SMAD2、HSP90B1、HSPA5、HSPB8和MYOC等,與其他基因互作最多的基因是HSPA2和ALB。

2.6實(shí)時(shí)熒光定量PCR驗(yàn)證結(jié)果

實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果(圖8和圖9)顯示,與CK組相比,F(xiàn)SH組DAZL和PIWIL1基因相對(duì)表達(dá)量極顯著降低(Plt;0.01,下同),表明FSH組雛雞卵巢發(fā)育先于CK組,F(xiàn)SH促進(jìn)了雛雞卵泡發(fā)育;與CK組相比,F(xiàn)SH組SMAD2、ZP1和CYP17A1基因相對(duì)表達(dá)量顯著(Plt;0.05)或極顯著升高,表明這些基因及其所在信號(hào)通路可能參與FSH影響雛雞原始卵泡形成的過(guò)程;FSH受體相關(guān)基因FSHR相對(duì)表達(dá)量在FSH組和CK組間無(wú)顯著差異,提示FSH促進(jìn)雛雞卵泡發(fā)育可能是通過(guò)提高SMAD2、ZP1和CYP17A1基因相對(duì)表達(dá)量來(lái)實(shí)現(xiàn)。此外,DAZL、PIWIL1、SMAD2、ZP1和CYP17A1基因的實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果與RNA-Seq結(jié)果一致,反應(yīng)測(cè)序數(shù)據(jù)質(zhì)量可靠的同時(shí)也進(jìn)一步證明了DAZL、PIWIL1、SMAD2、ZP1和CYP17A1基因在FSH組和CK組之間存在差異。

3討論

動(dòng)物原始卵泡的發(fā)生是一個(gè)復(fù)雜且調(diào)控嚴(yán)密的生理過(guò)程,由于缺乏有效的研究模型,該方面的研究存在諸多困難,至今FSH調(diào)控動(dòng)物原始卵泡形成的機(jī)制仍有待揭示。Lei等(2010)研究表明,F(xiàn)SH能促進(jìn)小鼠原始卵泡的發(fā)生;Guo等(2019)研究發(fā)現(xiàn),雞卵巢體外培養(yǎng)時(shí)添加FSH能促進(jìn)原始卵泡的發(fā)生;Bi等(2021)研究發(fā)現(xiàn),F(xiàn)SH能促進(jìn)雞顆粒細(xì)胞增殖。本研究結(jié)果顯示,F(xiàn)SH組雛雞卵巢體積和原始卵泡數(shù)量明顯大于CK組,且體重變化更明顯,提示FSH可能促進(jìn)了雛雞卵巢的發(fā)育。此外,F(xiàn)SH處理后的雛雞卵巢體積明顯增大,并且觀察到有更多原始卵泡的形成,提示FSH對(duì)雛雞原始卵泡的形成有積極影響。

PCA是對(duì)數(shù)據(jù)進(jìn)行降維處理的一種方法,在不損失或低程度損失原有信息的前提下,將原來(lái)個(gè)數(shù)較多且彼此相關(guān)的指標(biāo)轉(zhuǎn)化為個(gè)數(shù)較少且彼此獨(dú)立或相關(guān)性較小的綜合指標(biāo),可避免重復(fù)信息的干擾并簡(jiǎn)化選擇程序,便于綜合評(píng)價(jià)候選個(gè)體,具有準(zhǔn)確性和科學(xué)性(Guillén-Casla et al.,2011)。聚類分析是一種將數(shù)據(jù)對(duì)象劃分成若干簇或類的過(guò)程,使同一類中的對(duì)象高度相似,而不同類之間的對(duì)象具有較大的差異(蘇嘉庚等,2014)。本研究PCA結(jié)果顯示,F(xiàn)SH組與CK組間差異明顯,組內(nèi)相似性較高,且與聚類分析結(jié)果基本一致,為DEGs分析打下了基礎(chǔ)。PPI網(wǎng)絡(luò)分析可揭示蛋白之間的互作關(guān)系,更好的理解生物過(guò)程的調(diào)控機(jī)制、疾病發(fā)生的分子基礎(chǔ)和藥物作用的潛在靶點(diǎn)(Li etal.,2014)。本研究中,PPI網(wǎng)絡(luò)分析確定了主要參與FSH影響雛雞原始卵泡發(fā)育的基因,這些基因編碼的蛋白可能在FSH影響雛雞原始卵泡發(fā)育的過(guò)程中發(fā)揮作用。此外,通過(guò)PPI網(wǎng)絡(luò)分析共得到25個(gè)蛋白節(jié)點(diǎn)和33條互作關(guān)系,并鑒定出SMAD2等基因在FSH影響雛雞原始卵泡發(fā)育中起關(guān)鍵作用。

本研究共獲得617個(gè)DEGs,主要富集到PI3K-AKT、Wnt/β-catenin、MEK1/2-ERK1/2和MEK/ERK信號(hào)通路,這些通路主要參與顆粒細(xì)胞增殖(Lapointe et al.,2012)、原始卵泡的形成和發(fā)育(Li etal.,2014)及血管生成(Gong et al.,2021)等過(guò)程。DAZL和PIWIL1是原始生殖細(xì)胞中的高表達(dá)基因,常被視為原始生殖細(xì)胞的標(biāo)記基因。PIWIL1是Argonaute(AGO)家族成員(Iwasaki et al.,2015),PIWI亞家族蛋白主要在生殖腺中表達(dá),調(diào)控生殖干細(xì)胞維持和自我更新及生殖細(xì)胞發(fā)育和分化等生殖相關(guān)事件(Ku and Lin,2014)。研究表明,雞卵巢PIWIL1基因表達(dá)水平隨日齡的增長(zhǎng)呈下降趨勢(shì)(Chen et al.,2013)。本研究結(jié)果顯示,F(xiàn)SH處理顯著降低了DAZL和PIWIL1基因表達(dá)水平,推測(cè)是FSH促進(jìn)了原始卵泡的發(fā)育,原始生殖細(xì)胞逐漸形成了原始卵泡所致。研究發(fā)現(xiàn),CYP17A1參與雄激素的合成且能影響雞的排卵進(jìn)程(Rangel et al.,2007)。本研究結(jié)果顯示,F(xiàn)SH處理顯著升高了CYP17A1基因表達(dá)水平,推測(cè)FSH是通過(guò)調(diào)控CYP17A1基因的表達(dá)來(lái)調(diào)節(jié)雄激素的合成,進(jìn)而影響雛雞原始卵泡的形成。研究發(fā)現(xiàn),SMAD2在多數(shù)早期卵泡中不表達(dá),但會(huì)在顆粒細(xì)胞中表達(dá)(Sharum etal.,2017);敲除卵巢顆粒細(xì)胞中SMAD2基因會(huì)導(dǎo)致女性生育能力缺陷,這種缺陷與多個(gè)卵巢發(fā)育過(guò)程相關(guān),包括卵泡發(fā)育和卵母細(xì)胞產(chǎn)生(Li etal.,2008),提示SMAD2基因可能與雛雞卵泡發(fā)育相關(guān)。

研究表明,PI3K-AKT和Wnt信號(hào)通路參與細(xì)胞活性、增殖和凋亡的調(diào)控,在原始卵泡形成中發(fā)揮重要作用(Lapointe et al.,2012;Guo et al.,2019);MEK1/2-ERK1/2信號(hào)通路能調(diào)控細(xì)胞外基質(zhì)沉積,細(xì)胞外基質(zhì)作為卵巢基質(zhì)的一部分,在卵泡發(fā)生中發(fā)揮重要作用(Sun et al.,2013);Wnt/β-catenin信號(hào)通路能增加顆粒細(xì)胞凋亡水平,抑制卵泡類固醇生成,進(jìn)而抑制卵泡發(fā)育(Li etal.,2014)。本研究篩選出的DEGs主要富集在PI3K-AKT、Wnt、MEK1/2-ERK1/2和MEK-ERK信號(hào)通路,提示這些DEGs可能是通過(guò)PI3K-AKT、Wnt、MEK1/2-ERK1/2和MEK-ERK信號(hào)通路影響生殖細(xì)胞的增殖、分化和凋亡,進(jìn)而調(diào)節(jié)雛雞卵泡的形成。

4結(jié)論

FSH可能是通過(guò)影響顆粒細(xì)胞增殖、類固醇生成和血管生成等多條卵泡發(fā)育相關(guān)信號(hào)通路來(lái)促進(jìn)雛雞原始卵泡的形成,其對(duì)CYP17A1、SMAD2和ZP1等基因的調(diào)控可能是其促進(jìn)原始卵泡生成的主要分子機(jī)制之一。

參考文獻(xiàn)(References):

蘇嘉庚.2014.基于Hadoop平臺(tái)的分布式EM聚類算法[D].保定:河北師范大學(xué).[Su J G.2014.Distributed EM clus-tering algorithm based on hadoop platform[D].Baoding:Hebei Normal University.]doi:10.7666/d.Y2563693.

Akhtar M,Wright J N,Lee-Robichaud P.2011.A review of mechanistic studies on aromatase(CYP19)and 17α-hydroxylase-17,20-lyase(CYP17)[J].The Journal of Ste-roid Biochemistry and Molecular Biology,125(1-2):2-12.doi:10.1016/j.jsbmb.2010.11.003.

Bi Y L,Yang S Y,Wang H Y,Chang G B,Chen G H.2021.Follicle-stimulating hormone is expressed in ovarian fo-llicles of chickens and promotes ovarian granulosa cell pro-liferation[J].Journal of Integrative Agriculture,20(10):2749-2757.doi:10.1016/S2095-3119(21)63606-7.

Chakraborty P,Roy S K.2017.Stimulation of primordial fo-llicle assembly by estradiol-17βrequires the action of bone morphogenetic protein-2(BMP2)[J].Scientific Reports,7(1):15581.doi:10.1038/s41598-017-15833-4.

Chen R,Chang G B,Dai A Q,Ma T,Zhai F,Xia M X,Liu L,Li J C,Hua D K,Chen G H.2013.Cloning and expression characterization of the chicken Piwil1 gene[J].Molecular Biology Reports,40(12):7083-7091.doi:10.1007/s 11033-013-2831-9.

Chen Y,Jefferson W N,Newbold R R,Padilla-Banks E,Pep-ling M E.2007.Estradiol,progesterone,and genisteininhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo[J].Endocrinology,148(8):3580-3590.doi:10.1210/en.2007-0088.

Gong G W,Zheng Y Z,Kong X P,Wen Z.2021.Anti-angiogenesis function of Ononin via suppressing the MEK/ERK signaling pathway[J].Journal of Natural Products,84(6):1755-1762.doi:10.1021/acs.jnatprod.1c00008.

González-Morán M G.2011.Histological and stereological changes in growing and regressing chicken ovaries during development[J].Anatomical Record,294(5):893-904.doi:10.1002/ar.21364.

Guillén-Casla V,Rosales-Conrado N,León-González M E,Pérez-Arribas LV,Polo-Díez L M.2011.Principal compo-nent analysis(PCA)and multiple linesr regression(MLR)statistical tools to evaluate the effect of E-beam irradiationon ready-to-eat food[J].Journal of Food Composition andAnalysis,24(3):456-464.doi:10.1016/j.jfca.2010.11.010.Guo C Q,Liu G,Zhao Z,Mi YL,Zhang C Q,Li J.2019.Interac-tion of follicle-stimulating hormone and stem cell factor to promote primordial follicle assembly in the chicken[J].Frontiers in Endocrinology,10:91.doi:10.3389/fendo.2019.00091.

Guo C Q,Zhang G L,Lin X,Zhao D,Zhang C Q,Mi Y L,2019.Reciprocal stimulating effects of bFGF and FSH on chicken primordial follicle activation through AKT and ERK pathway[J].Theriogenology,132:27-35.doi:10.1016/j.theriogenology.2019.04.005.

Hughes G C.1963.The population of germ cells in the develo-ping female chick[J].Journal of Embryology and Experi-mental Morphology,11(3):513-536.doi:10.1242/dev.11.3.513.

Iwasaki Y W,Siomi M C,Siomi H.2015.PIWI-interacting RNA:Its biogenesis and functions[J].Annual Review of Biochemistry,84:405-433.doi:10.1146/annurev-biochem-060614-034258.

Ku H Y,Lin H F.2014.PIWI proteins and their interactors in piRNAbiogenesis,germline development and gene expres-sion[J].National Science Review,1(2):205-218.doi:10.1093/nsr/nwu014.

Lapointe E,Boyer A,Rico C,Paquet M,F(xiàn)ranco H L,Gossen J,DeMayo F J,Richards J S,Boerboom D.2012.FZD1 regu-lates cumulus expansion genes and is required for normalfemale fertility in mice[J].Biology of Reproduction,87(5):104.doi:10.1095/biolreprod.112.102608.

Lei L,Jin S Y,Mayo K E,Woodruff T K.2010.The interac-tions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis[J].Biology of Reproduction,82(1):13-22.doi:10.1095/biolreprod.109.077404.

Lei L,Spradling A C.2016.Mouse oocytes differentiatethrough organelle enrichment from sister cyst germ cells[J].Science,352(6281):95-99.doi:10.1126/science.aad 2156.

Li J,Wang G W,Wang C Y,Zhao Y,Zhang H,Tan Z J,Song Z H,Ding M X,Deng H K.2007.MEK/ERK signaling con-tributes to the maintenance of human embryonic stem cell self-renewal[J].Differentiation,75(4):299-307.doi:10.1111/j.1432-0436.2006.00143.x.

Li J,Zhao D,Guo C Q,Li J,Mi Y L,Zhang C Q.2016.Involvement of Notch signaling in early chick ovarian fol-licle development[J].Cell Biology International,40(1):65-73.doi:10.1002/cbin.10538.

Li L,Ji S Y,Yang J L,Li X X,Zhang J,Zhang Y,Hu Z Y,Liu Y X.2014.Wnt/β-catenin signaling regulates follicular development by modulating the expression of Foxo3a sig-naling components[J].Molecular and Cellular Endocrino-logy,382(2):915-925.doi:10.1016/j.mce.2013.11.007.

Li M,Chen W J,Wang J X,Wu F X,Pan Y.2014.Identifyingdynamic protein complexes based on gene expression pro-files and PPI networks[J].Biomed Research International,2014:375262.doi:10.1155/2014/375262.

Li Q L,Pangas S A,Jorgez C J,GraffJ M,Weinstein M,Mat-zuk M M.2008.Redundant roles of SMAD2 and SMAD3 in ovarian granulosa cells in vivo[J].Molecular and Cellu-lar Biology,28(23):7001-7011.doi:10.1128/MCB.00732-08.

Méndez-Herrera M C,Tamez L,Cándido A,Reyes-Esparza J A,Pedernera E.1998.Follicle stimulating hormone increa-ses somatic and germ cell number in the ovary du-ring chick embryo development[J].General and Comparative Endocrinology,111(2):207-215.doi:10.1006/gcen.1998.7108.

Nie H T,Xu Y L,Zhang Y Q,Wen Y,Zhan J X,Xia Y,Zhou Y K,Wang R P,Wu X B.2023.The effects of endogenous FSH and its receptor on oogenesis and folliculogenesis in female Alligator sinensis[J].BMC Zoology,8(1):8.doi:10.1186/s40850-023-00170-z.

O’Connell J M,Pepling M E.2021.Primordial follicle formation-some assembly required[J].Current Opinion in Endocrine and Metabolic Research,18:118-127.doi:10.1016/j.coemr.2021.03.005.

Rangel P L,Rodríguez A,Gutierrez C G.2007.Testosterone directly induces progesterone production and interacts with physiological concentrations of LH to increase granulosa cell progesterone production inlaying hens(Gallus domes-ticus)[J].Animal Reproduction Science,102(1-2):56-65.doi:10.1016/j.anireprosci.2006.09.029.

Recchia K,Jorge A S,Pess?a L V F,Botigelli R C,Zugaib V C,de Souza A F,Martins D D S,Ambrósio C E,Bressan F F,Pieri N C G.2021.Actions and roles ofFSH ingermi-native cells[J].International Journal of Molecular Scien-ces,22(18):10110.doi:10.3390/ijms221810110.

Roy S K,Albee L.2000.Requirement for follicle-stimulating hormone action in the formation of primordial follicles du-ring perinatal ovarian development in the hamster[J].Endo-crinology,141(12):4449-4456.doi:10.1210/endo.141.12.7805.

Sharum I B,Granados-Aparici S,Warrander F C,Tournant,F(xiàn) P,F(xiàn)enwick M A.2017.Serine threonine kinase receptor associated protein regulates early follicle development in the mouse ovary[J].Reproduction,153(2):221-231.doi:10.1530/REP-16-0612.

Skinner M K.2005.Regulation of primordial follicle assembly and development[J].Human Reproduction Update,11(5):461-471.doi:10.1093/humupd/dmi020.

Sun D,Zhang Y,Wang C,Hua X,Zhang X A,Yan J.2013.Sox9-related signaling controls zebrafish juvenile ovary-testis transformation[J].Cell Deathamp;Disease,4(11):e930.doi:10.1038/cddis.2013.456.

Tanimoto R,Sekii K,Morohaku K,Li J Z,Pépin D,Obata Y.2021.Blocking estrogen-induced AMH expression is cru-cial for normal follicle formation[J].Development,148(6):dev197459.doi:10.1242/DEV.197459.

Wang C,Roy S K.2007.Development of primordial follicles inthe hamster:Role of estradiol-17β[J].Endocrinology,148(4):1707-1716.doi:10.1210/en.2006-1193.

Wang J J,Ge W,Zhai Q Y,Liu J C,Sun X W,Liu W X,Li L,Lei C Z,W.Dyce P W,De Felici M,Shen Wei.2020.Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice[J].PLoS Biology,18(12):e3001025.doi:10.1371/journal.pbio.3001025.

Wang J R,K.Roy S K.2004.Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster:Modulation by follicle-Stimulating hor-mone[J].Biology of Reproduction,70(3):577-585.doi:10.1095/biolreprod.103.023234.

Zachos N C,Billiar R B,Albrecht E D,Pepe G J.2002.Deve-lopmental regulation of baboon fetal ovarian maturation by estrogen[J].Biology of Reproduction,67(4):1148-1156.doi:10.1095/biolreprod67.4.1148.

Zhao Z H,Li CY,Meng T G,Wang Y,Liu W B,LiA,Cai Y J,Hou Y,Schatten H,Wang Z B,Sun Q Y,Sun Q.2020.Single-cell RNA sequencing reveals regulation of fetal ovary development in the monkey(Macaca fascicularis)[J].Cell Discovery,6(1):97.doi:10.1038/s41421-020-00219-0.

(責(zé)任編輯 蘭宗寶)

猜你喜歡
卵巢
保養(yǎng)卵巢吃這些
卵巢多囊表現(xiàn)不一定是疾病
卵巢惡性Brenner瘤CT表現(xiàn)3例
如果卵巢、子宮可以說(shuō)話,會(huì)說(shuō)什么
卵巢甲狀腺腫的多層螺旋CT表現(xiàn)
卵巢惡性腫瘤合并妊娠的治療及預(yù)后
永川市| 桂东县| 玛沁县| 且末县| 西宁市| 曲靖市| 祁门县| 华池县| 白水县| 马鞍山市| 保德县| 修水县| 永善县| 兴化市| 扬州市| 新余市| 南丰县| 祁阳县| 平顶山市| 渝中区| 瓦房店市| 义马市| 衡东县| 化州市| 汕尾市| 北安市| 明水县| 周至县| 花垣县| 吉水县| 民乐县| 固始县| 丁青县| 汤原县| 巧家县| 青海省| 柳河县| 霍邱县| 漳浦县| 如皋市| 佳木斯市|