【摘 要】膿毒癥是一種危及生命的器官功能障礙,由宿主對(duì)感染反應(yīng)失調(diào)引起的,是重癥監(jiān)護(hù)室患者死亡的重要原因之一,近年來(lái),大量研究表明膿毒癥的發(fā)生發(fā)展與細(xì)胞焦亡密切相關(guān)。miRNA執(zhí)行多種重要的細(xì)胞功能,包括調(diào)節(jié)細(xì)胞周期、凋亡和分化等。最近的研究表明,miRNA在調(diào)節(jié)細(xì)胞焦亡中發(fā)揮了重要功能,細(xì)胞焦亡是一種與炎癥反應(yīng)相關(guān)的程序性細(xì)胞死亡,在許多疾病中起著關(guān)鍵作用,miRNA通過(guò)直接或間接作用于焦亡相關(guān)信號(hào)通路的蛋白質(zhì)參與膿毒癥的調(diào)控。本文就miRNA在膿毒癥細(xì)胞焦亡中的調(diào)控和功能進(jìn)行總結(jié),為膿毒癥細(xì)胞焦亡的研究提供新的研究方向和思路。
【關(guān)鍵詞】膿毒癥;細(xì)胞焦亡;miRNA
【中圖分類號(hào)】R392 【文獻(xiàn)標(biāo)志碼】A 【收稿日期】2023-08-31
膿毒癥是由宿主對(duì)感染反應(yīng)失調(diào)引起的危及生命的器官功能障礙,是感染、手術(shù)、嚴(yán)重?zé)齻?、中毒和心肺?fù)蘇后的常見并發(fā)癥,是多器官功能障礙綜合征和感染性休克的重要原因[1]。任何人都可能被感染,幾乎任何的感染,都有可能導(dǎo)致膿毒癥[2]。膿毒癥具有發(fā)病率高、疾病進(jìn)展快和治愈困難的特點(diǎn),由于其致病因素和宿主因素的變化逐漸成為全球公共衛(wèi)生問(wèn)題之一[3]。
膿毒癥機(jī)體炎癥反應(yīng)的失調(diào)最終會(huì)導(dǎo)致致命的重大炎癥爆發(fā),研究發(fā)現(xiàn)細(xì)胞焦亡在膿毒癥的發(fā)生發(fā)展過(guò)程中起著重要作用[4-5]。在焦亡過(guò)程中,免疫細(xì)胞釋放促炎細(xì)胞因子,募集其他免疫細(xì)胞對(duì)抗感染,增強(qiáng)宿主的防御反應(yīng),促進(jìn)消滅入侵的病原體,而細(xì)胞焦亡的失衡則會(huì)引起強(qiáng)烈的炎癥風(fēng)暴導(dǎo)致器官功能障礙,同時(shí)免疫細(xì)胞衰竭[6]。miRNA是非編碼小RNA分子,自發(fā)現(xiàn)以來(lái),miRNA一直被認(rèn)為是無(wú)數(shù)細(xì)胞和生物體功能的關(guān)鍵參與者,研究表明miRNA已成為膿毒癥發(fā)病機(jī)制的關(guān)鍵參與者[7-8]。細(xì)胞焦亡的調(diào)控機(jī)制涉及多種分子機(jī)制和信號(hào)通路,最近的研究表明miRNA在調(diào)節(jié)細(xì)胞焦亡中發(fā)揮了重要功能,為治療膿毒癥提供了新的靶點(diǎn)。
1 細(xì)胞焦亡與膿毒癥
1.1 細(xì)胞焦亡在膿毒癥中的作用
細(xì)胞焦亡是繼細(xì)胞凋亡和細(xì)胞壞死后發(fā)現(xiàn)依賴炎性半胱氨酸天冬氨酸特異性蛋白酶(cysteinyl aspartate specificproteinase,caspase-1 和caspase-4/5/11)激活由gasdermin 蛋白(gsdmd protein,GSDMD)介導(dǎo)的一種程序性細(xì)胞死亡形式。研究發(fā)現(xiàn)細(xì)胞焦亡是膿毒癥細(xì)胞死亡的主要方式,在膿毒癥的發(fā)生和發(fā)展中起著重要作用[9]。細(xì)胞焦亡在膿毒癥中起著“雙刃劍”的作用,膿毒癥早期,焦亡可抑制宿主內(nèi)病原體的復(fù)制并加速其清除,若感染得不到及時(shí)的控制,大量病原體侵入血液和細(xì)胞,逃避免疫系統(tǒng)的識(shí)別和清除,在此過(guò)程中,宿主細(xì)胞釋放病原體相關(guān)分子模式(pathogenassociatedmolecular patterns,PAMPs)和損傷相關(guān)分子模式(damage associated molecular patterns,DAMPs)誘導(dǎo)大量焦亡,從而增加白細(xì)胞介素-18(interleukin-18,IL-18)和白細(xì)胞介素-1β(interleukin-1β,IL-1β)水平以加重炎癥反應(yīng),最終導(dǎo)致器官衰竭。
研究發(fā)現(xiàn)中藥八寶丹可通過(guò)減少炎癥因子的釋放,改善器官損傷來(lái)提高膿毒癥小鼠的存活率,進(jìn)一步的實(shí)驗(yàn)證明,八寶丹通過(guò)抑制核轉(zhuǎn)錄因子-κB(nuclear factor-κB,NF-κB)通路和炎性小體NOD 樣受體熱休克蛋白結(jié)構(gòu)域3(NODlikereceptor pyrin domain containing 3,NLRP3)的合成抑制了細(xì)胞焦亡,表明抑制細(xì)胞焦亡可能有助于治療膿毒癥[10]。另一研究報(bào)道了無(wú)藥茶多酚納米顆粒(tea polyphenols nanoparticles,TPNs)通過(guò)阻斷GSDMD-N的寡聚化從而抑制細(xì)胞焦亡,在膿毒癥小鼠模型中表現(xiàn)出良好的治療效果[11]。在關(guān)于膿毒癥相關(guān)彌散性血管內(nèi)凝血(disseminated intravascularcoagulation,DIC)的研究發(fā)現(xiàn),細(xì)菌內(nèi)毒素激活的外源性凝血途徑的組織因子受到caspase-11的刺激,而血小板內(nèi)皮細(xì)胞黏附分子-1可通過(guò)抑制巨噬細(xì)胞焦亡來(lái)預(yù)防膿毒癥相關(guān)DIC[12-13]。在盲腸結(jié)扎穿孔術(shù)(cecal ligation-peferation,CLP)誘導(dǎo)的膿毒癥模型中,抑制高遷移率族蛋白B1(high mobilitygroup protein 1,HMGB1)表達(dá)后肺組織中caspase-11依賴性焦亡減弱,從而改善了膿毒癥相關(guān)肺損傷[14]。亦有研究發(fā)現(xiàn),通過(guò)阻斷GSDMD通道的形成也可抑制焦亡并減輕膿毒癥相關(guān)肺損傷[15]。
1.2 細(xì)胞焦亡在膿毒癥中的發(fā)生機(jī)制
細(xì)胞焦亡分為經(jīng)典炎癥小體途徑、非經(jīng)典炎癥小體途徑、由caspase-3/8介導(dǎo)的焦亡途徑和顆粒酶介導(dǎo)的焦亡途徑。在膿毒癥中細(xì)胞焦亡發(fā)生機(jī)制為經(jīng)典途徑和非經(jīng)典途徑。
1.2.1 經(jīng)典焦亡途徑 經(jīng)典焦亡途徑是由炎性小體介導(dǎo),依賴于caspase-1活化的死亡方式。在經(jīng)典途徑中,最常見的炎性小體是NLRP3。NLRP3 炎性小體由傳感器蛋白NLRP3、含有募集結(jié)構(gòu)域(caspase activation and recruitmentdomain,CARD)的凋亡相關(guān)斑點(diǎn)樣蛋白(apoptosis-associatedspeck-like protein,ASC)和pro-caspase-1 3部分組成。NLRP3可被多種PAMPs和DAMPs激活,激活后的NLRP3與ASC結(jié)合并招募caspase-1前體形成NLRP3炎性小體,其中caspase-1 前體被裂解成活性caspase-1?;罨腸aspase-1 切割GSDMD,產(chǎn)生的N 端結(jié)合到細(xì)胞質(zhì)膜上形成孔洞結(jié)構(gòu)[16]。并且活化的caspase-1可將pro-IL-18和pro-IL-1β裂解為成熟的IL-18和IL-1β,通過(guò)GSDMD-N孔洞結(jié)構(gòu)釋放到胞外,并募集更多的炎癥因子,形成炎癥級(jí)聯(lián)效應(yīng)[17]。激活NLRP3炎性小體需要2個(gè)步驟,第一步是在病原體的刺激下,NF-κB被激活,引起NLRP3、IL-1β和IL-18的轉(zhuǎn)錄增加;第二步則是NLRP3的激活與組裝。目前關(guān)于NLRP3炎性小體激活的確切分子機(jī)制尚不清楚,已知的有鉀(K+)外流、線粒體功能障礙、活性氧(reactive oxygen species,ROS)和線粒體DNA(mitochondrion DNA,mtDNA)的釋放、溶酶體破壞、氯(Cl-)外流和鈣(Ca2+)通量改變等[18-20]。研究報(bào)道硫氧環(huán)蛋白相互作用蛋白(thioredoxin-interacting protein,TXINP)、NIMA 相關(guān)蛋白激酶7(NIMA-related kinase 7,NEK7)、膜聯(lián)蛋白1(pannexin-1)和P2X 嘌呤受體7(P2X7R)可激活NLRP3,而一類抗氧化基因sestrin 2可抑制NLRP3的激活[21-22]。NEK7是K+外排時(shí)下游的一種必需蛋白,介導(dǎo)NLRP3的組裝和激活[23]。Pannexin-1 和P2X7R 與K+ 和ATP 水平變化相關(guān)(圖1)。
1.2.2 非經(jīng)典焦亡途徑 在非經(jīng)典焦亡途徑中,caspase-4/5/11可通過(guò)N端的CARD直接與細(xì)胞內(nèi)的脂多糖(lipopolysaccharides,LPS)結(jié)合而被激活?;罨腸aspase-4/5/11 可直接將GSDMD裂解為GSDMD-N,GSDMD-N寡聚化后轉(zhuǎn)移到細(xì)胞膜上,最終形成質(zhì)膜孔。與經(jīng)典焦亡途徑不同,caspase-4/5/11不能直接裂解pro-IL-1β 和IL-18,而是通過(guò)激活NLRP3炎性小體通路間接誘導(dǎo)IL-1β和IL-18的成熟和釋放,潛在機(jī)制可能與K+的外排有關(guān),GSDMD-N形成的質(zhì)膜孔導(dǎo)致K+外排,進(jìn)而誘導(dǎo)NLRP3炎性小體組裝,最終導(dǎo)致焦亡[24-26]。值得注意的是,pannexin-1是caspase-11誘導(dǎo)的非經(jīng)典焦亡途徑中誘導(dǎo)細(xì)胞焦亡的另一關(guān)鍵蛋白,在LPS的刺激下,活化的caspase-11可特異性剪切和修飾pannexin-1,引起胞內(nèi)ATP的釋放,從而誘導(dǎo)離子通道P2X7R介導(dǎo)的焦亡,與caspase-11 結(jié)合的pannexin-1 通道亦誘導(dǎo)K+的外排,進(jìn)而激活NLRP3 炎性小體[27]。LPS 的致死率主要是由caspase-11依賴性焦亡所驅(qū)動(dòng),而不是依靠caspase-1誘導(dǎo)IL-18和IL-1β的釋放,由于caspase-11可能是caspase-1的上游激活因子,因此可以合理地假設(shè)經(jīng)典焦亡途徑與非經(jīng)典焦亡途徑并非無(wú)關(guān),可能是通過(guò)相互作用形成一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò)[24-28](圖1)。
2 miRNA與膿毒癥
2.1 miRNA的生物合成及作用機(jī)制
miRNA是一種長(zhǎng)度約為21~26個(gè)核苷酸的內(nèi)源性非編碼RNA分子,1993年,Lee RC等[29]在秀麗隱桿線蟲中首次發(fā)現(xiàn)miRNA-lin-4。2001 年,Lagos-Quintana M 等[30] 將這類RNA分子命名為miRNA。miRNA作為轉(zhuǎn)錄后抑制因子調(diào)節(jié)基因表達(dá),通過(guò)與mRNA的3’-非編碼區(qū)(3’-UTR)結(jié)合來(lái)降解或抑制蛋白質(zhì)翻譯以影響基因表達(dá),此外,miRNA可以與基因啟動(dòng)子,5’-非翻譯區(qū)(5’-UTR)和編碼序列相互作用,并且可以在RNA激活的同時(shí)激活轉(zhuǎn)錄,最后,miRNA可以與蛋白質(zhì)相互作用以改變其活性[31]。miRNA在各種組織和細(xì)胞中表達(dá),miRNA作為生物調(diào)控因子,在細(xì)胞生長(zhǎng)、增殖、分化、凋亡、代謝和穩(wěn)態(tài)等生理過(guò)程中發(fā)揮重要作用[32- 33]。miRNA分子大量參與過(guò)度免疫反應(yīng)、免疫抑制,在膿毒癥發(fā)展的各個(gè)階段均發(fā)揮調(diào)控作用。
2.2 miRNA在膿毒癥中的作用
研究報(bào)道,在膿毒癥患者外周血miRNA篩查中發(fā)現(xiàn)大量差異表達(dá)的miRNA,且這些miRNA可加重或緩解膿毒癥病情及相關(guān)器官損傷[34-35]。在當(dāng)膿毒癥宿主的免疫系統(tǒng)處于嚴(yán)重的促炎狀態(tài)時(shí),多種細(xì)胞因子表達(dá)上調(diào),例如腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素-6(interleukin-6,IL-6)、IL-18和IL-1β[36]。在膿毒癥所致的腸屏障功能障礙模型中,抑制miR-155可有效降低TNF-α和IL-6的表達(dá),進(jìn)而緩解炎癥和腸屏障損傷[37]。在膿毒性肺損傷小鼠模型中miR-27a 的表達(dá)量上調(diào),當(dāng)敲低miR-27a 后NF-κB的磷酸化受到抑制,炎癥因子TNF-α和IL-6的表達(dá)水平下降,并且1項(xiàng)臨床研究報(bào)道m(xù)iR-27a可作為膿毒癥診斷和預(yù)后的生物標(biāo)志物[38-39]。在膿毒癥小鼠模型中,眾多研究發(fā)現(xiàn)miRNA 可對(duì)炎癥因子TNF-α、IL-6、IL-18 和IL-1β進(jìn)行負(fù)調(diào)控或正調(diào)控,當(dāng)改變miRNA的表達(dá)量時(shí),對(duì)膿毒癥的發(fā)展進(jìn)程起了一定的保護(hù)或者促進(jìn)作用。已有研究報(bào)道m(xù)iRNA 可作為膿毒癥的生物標(biāo)志物,如miR-15a、miR-16、miR-122、miR-146a、miR-223和miR-499-5p可作為膿毒癥診斷性生物指標(biāo)物,miR-93b、miR-483-5p 和miR-574-5p可作為預(yù)后標(biāo)志物[40-41]。最新研究發(fā)現(xiàn),miRNA還可通過(guò)調(diào)節(jié)細(xì)胞焦亡參與膿毒癥的調(diào)控[42]。
2.3 miRNA調(diào)控膿毒癥細(xì)胞焦亡
miRNA可通過(guò)直接靶向細(xì)胞焦亡途徑中的關(guān)鍵分子如NF-κB、NLRP3和GSDMD,或者靶向其上游信號(hào)分子調(diào)控細(xì)胞焦亡,從而參與膿毒癥的調(diào)控(圖1)。
2.3.1 miRNA作用于NF-κB參與細(xì)胞焦亡 NF-κB是炎癥通路上重要的信號(hào)分子,在調(diào)節(jié)促炎基因的表達(dá)中發(fā)揮重要作用,隨著焦亡研究的深入,發(fā)現(xiàn)NF-κB通路與細(xì)胞焦亡有著密切聯(lián)系。Ling H等[43]和Chen S等[44]發(fā)現(xiàn)miR-579-3p和miR-34a直接靶向NF-κB上游負(fù)調(diào)控分子煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)依賴性去乙?;福╯irtuin 1,SIRT1),并負(fù)調(diào)控SIRT1的表達(dá),研究發(fā)現(xiàn)在膿毒癥模型中miR-579-3p 和miR-34a 表達(dá)上調(diào),而SIRT1 mRNA表達(dá)下調(diào),當(dāng)敲低miR-579-3p和抑制miR-34a后,SIRT1 表達(dá)上調(diào),焦亡相關(guān)蛋白如炎性小體NLRP3、ASC、cleaved caspase-1和GSDMD-N的表達(dá)水平下降,說(shuō)明miR-579-3p和miR-34a可通過(guò)負(fù)調(diào)控SIRT1作用于NF-κB改善膿毒癥小鼠細(xì)胞焦亡。Jiao Y等[45]發(fā)現(xiàn)miR-30d-5p不僅直接靶向SIRT1還可以靶向NF-κB另一負(fù)調(diào)控因子細(xì)胞因子信號(hào)傳導(dǎo)抑制蛋白1(suppressor of cytokine signaling-1,SOCS-1),在膿毒癥肺損傷模型中miR-30d-5p表達(dá)上調(diào)后抑制SOCS-1和SIRT1激活NF-κB,NLRP3 mRNA表達(dá)增加,焦亡相關(guān)蛋白caspase-1和GSDMD-N 上調(diào),促進(jìn)細(xì)胞焦亡進(jìn)而加重肺損傷。Xue ZY等[46]發(fā)現(xiàn)miR-21直接靶向去泛素化酶鋅指蛋白A20,A20是NF-κB的負(fù)調(diào)控分子,在LPS與ATP誘導(dǎo)miR-21敲低的小鼠骨髓來(lái)源的巨噬細(xì)胞(bonemarrow-derived macrophages,BMDM)體外實(shí)驗(yàn)中,NF-κB表達(dá)下降并抑制焦亡,NLRP3、ASC、cleaved caspase-1 和GSDMD-N的表達(dá)水平下降,當(dāng)抑制miR-21后,上述現(xiàn)象在LPS與ATP誘導(dǎo)的THP-1細(xì)胞中也同樣存在。有研究報(bào)道m(xù)iR-155-5p 可直接靶向Toll 樣受體4(toll-like receptor 4,TLR4)上游負(fù)調(diào)控分子肌醇磷酸酶1(SH2-containing inositolphosphatase 1,SHIP1)并對(duì)其負(fù)調(diào)控,而TLR4 是NF-κB激活分子,在LPS 誘導(dǎo)的THP-1 細(xì)胞膿毒癥模型中miR-155-5p 過(guò)表達(dá)后,TLR4、NLRP3、ASC、cleaved caspase-1 和GSDMD的表達(dá)水平升高,說(shuō)明miR-155-5p對(duì)膿毒癥巨噬細(xì)胞焦亡具有正調(diào)控作用[47]。
2.3.2 miRNA作用于炎癥小體參與細(xì)胞焦亡 研究發(fā)現(xiàn)在膿毒癥腎損傷中miR-20a-5p、miR-30c-5p、miR-93-5p 和miR-223-3p表達(dá)水平明顯下調(diào),雙熒光素報(bào)告基因結(jié)果發(fā)現(xiàn)miR-20a-5p和miR-223-3p直接靶向NLRP3并對(duì)其負(fù)調(diào)控,而miR-30c-5p、miR-93-5p直接靶向NLRP3的上游激動(dòng)因子TXNIP并對(duì)其負(fù)調(diào)控,在LPS誘導(dǎo)HK-2人腎小管上皮細(xì)胞的體外膿毒癥模型中,抑制miR-20a-5p、miR-30c-5p、miR-93-5p和miR-223-3p后可加重細(xì)胞焦亡,焦亡相關(guān)蛋白NLRP3、ASC、cleaved caspase-1的表達(dá)水平升高[48-51]。另一研究發(fā)現(xiàn)miR-181a-5p 直接靶向NEK7 并對(duì)其負(fù)調(diào)控,NEK7是形成NLRP3-NEK7炎癥小體復(fù)合物的關(guān)鍵分子,過(guò)表達(dá)miR-181a-5p 可抑制焦亡相關(guān)蛋白NEK7、NLRP3、GSDMD-N、cleaved caspase-1 的表達(dá)水平[52]。在LPS 誘導(dǎo)RAW264.7巨噬細(xì)胞的體外膿毒癥模型中,miR-122-3p直接靶向NLRP3并對(duì)其負(fù)調(diào)控,過(guò)表達(dá)miR-122-3p有效地恢復(fù)了細(xì)胞活力,并減弱了caspase-1、pro-caspase-1、NLRP3、ASC和GSDMD的表達(dá)[53]。
在關(guān)于膿毒癥心肌損傷的研究中發(fā)現(xiàn),miR-96-5p、miR-150-5p 和miR-590-3p 的表達(dá)量明顯下調(diào),研究證實(shí)miR-96-5p直接靶向NLRP3并對(duì)其負(fù)調(diào)控,miR-150-5p則是通過(guò)直接靶向TXINP上游分子c-FOS進(jìn)而調(diào)控細(xì)胞焦亡,miR-590-3p則是通過(guò)AMPK/mTOR參與膿毒癥心肌細(xì)胞焦亡調(diào)控,當(dāng)抑制miR-96-5p 和miR-590-3p 之后,NLRP3、cleaved caspase-1和GSDMD-N的表達(dá)水平上升,抑制miR-150-5p之后焦亡相關(guān)蛋白NLRP3、ASC和cleaved caspase-1表達(dá)上升,說(shuō)明miR-96-5p、miR-150-5p 和miR-590-3p 可通過(guò)作用于NLRP3參與膿毒癥心肌細(xì)胞焦亡的調(diào)控[54-56]。而另一項(xiàng)關(guān)于膿毒癥心肌損傷的研究中發(fā)現(xiàn)miR-138-5p表達(dá)量明顯上調(diào),并通過(guò)直接靶向負(fù)調(diào)控SESN2,并抑制了心肌細(xì)胞焦亡的發(fā)生,對(duì)膿毒癥起保護(hù)作用[57]。在關(guān)于膿毒癥肺損傷的研究中發(fā)現(xiàn)miR-138-5p通過(guò)直接靶向NLRP3參與調(diào)控細(xì)胞焦亡,對(duì)細(xì)胞焦亡具有負(fù)調(diào)控作用[58]。而另一項(xiàng)關(guān)于膿毒癥肺損傷的研究發(fā)現(xiàn)miR-26a-5p可通過(guò)靶向負(fù)調(diào)控Rho激酶1(Rho kinase 1,ROCK1),過(guò)表達(dá)miR-26a-5p可降低NLRP3、ASC、cleaved caspase-1和GSDMD 的蛋白水平,從而減輕細(xì)胞焦亡[59]。在關(guān)于膿毒癥腸道屏障損傷的研究中發(fā)現(xiàn)miR-874-5p通過(guò)下調(diào)維生素D受體(Vitamin D receptor,VDR)的表達(dá),進(jìn)而促進(jìn)NLRP3和caspase-1的活化,誘導(dǎo)細(xì)胞焦亡的發(fā)生,從而導(dǎo)致腸黏膜屏障的損傷[60]。
2.3.3 miRNA作用于GSDMD參與細(xì)胞焦亡 GSDMD是細(xì)胞焦亡的關(guān)鍵蛋白,研究發(fā)現(xiàn)在CLP誘導(dǎo)的膿毒癥模型中miR-31-5p和miR-135b-5p表達(dá)量明顯下調(diào),并且miR-31-5p直接靶向GSDMD并對(duì)其負(fù)調(diào)控,在體外膿毒癥模型中,過(guò)表達(dá)miR-31-5p 和miR-135b-5p 后,焦亡相關(guān)蛋白GSDMD、caspase-1 和NLRP3 的表達(dá)水平下降,說(shuō)明miR-31-5p 和miR-135b-5p 能夠通過(guò)抑制GSDMD 緩解細(xì)胞焦亡[61-62]。另1 項(xiàng)研究發(fā)現(xiàn)miR-193a-5p 也可直接靶向GSDMD并對(duì)其負(fù)調(diào)控,抑制miR-193a-5p后加重了細(xì)胞焦亡,即焦亡相關(guān)蛋白GSDMD、caspase-1、caspase-11表達(dá)水平明顯升高[63]。
3 結(jié)論與展望
細(xì)胞焦亡在膿毒癥的發(fā)生發(fā)展過(guò)程中起著重要的作用,抑制細(xì)胞焦亡的發(fā)生可延緩膿毒癥的進(jìn)程,上述研究表明miRNA可通過(guò)靶向細(xì)胞焦亡途徑關(guān)鍵分子NF-κB及上游信號(hào)分子、NLRP3及上游信號(hào)分子和GSDMD參與膿毒癥的調(diào)控,對(duì)膿毒癥相關(guān)器官損傷具有保護(hù)或加重作用,為研究膿毒癥的發(fā)生機(jī)制提供新方向,并為膿毒癥的治療提供新靶點(diǎn)。自細(xì)胞焦亡發(fā)現(xiàn)以來(lái),對(duì)其的認(rèn)識(shí)日益全面和深刻。近年來(lái)許多研究表明焦亡參與多種疾病,包括膿毒癥,并且在膿毒癥中起著重要作用,在某些情況下,焦亡的宿主細(xì)胞會(huì)釋放細(xì)胞內(nèi)容物,從而提供啟動(dòng)炎癥級(jí)聯(lián)反應(yīng)的強(qiáng)大信號(hào)。然而細(xì)胞焦亡在膿毒癥中的具體分子機(jī)制仍不清楚,未來(lái)的研究應(yīng)重點(diǎn)研究在不同刺激下的各種細(xì)胞中,經(jīng)典或非經(jīng)典焦亡途徑是否占主導(dǎo)地位。隨著miRNA研究的深入,發(fā)現(xiàn)miRNA在膿毒癥患者外周血中表達(dá)上調(diào)或下調(diào)。值得注意的是,越來(lái)越多的證據(jù)表明miRNA在細(xì)胞焦亡起著關(guān)鍵作用,這為研究膿毒癥中細(xì)胞焦亡機(jī)制開辟了一條新的途徑,然而miRNA對(duì)膿毒癥細(xì)胞焦亡的影響是復(fù)雜的,特別是在不同的細(xì)胞中,如何準(zhǔn)確干預(yù)miRNA介導(dǎo)的焦亡,仍需要更多的實(shí)驗(yàn)研究。
參 考 文 獻(xiàn)
[1] Singer M,Deutschman CS,Seymour CW,et al. The third international
consensus definitions for sepsis and septic shock (sepsis-3)[J].
JAMA,2016,315(8):801-810.
[2] Coronado Munoz A,Nawaratne U,McMann D,et al. Late-onset
neonatal sepsis in a patient with covid-19[J]. N Engl J Med,2020,382
(19):e49.
[3] Fleischmann C,Scherag A,Adhikari NKJ,et al. Assessment of
global incidence and mortality of hospital-treated sepsis. current estimates
and limitations[J]. Am J Respir Crit Care Med,2016,193(3):
259-272.
[4] Song RY,He SJ,Wu YB,et al. Pyroptosis in sepsis induced organ
dysfunction[J]. Curr Res Transl Med,2023,72(2):103419.
[5] Miao EA,Leaf IA,Treuting PM,et al. Caspase-1-induced pyroptosis
is an innate immune effector mechanism against intracellular bacteria
[J]. Nat Immunol,2010,11(12):1136-1142.
[6] Zheng XT,Chen WW,Gong FC,et al. The role and mechanism of
pyroptosis and potential therapeutic targets in sepsis:a review[J]. Front
Immunol,2021,12:711939.
[7] Ivey KN,Srivastava D. microRNAs as developmental regulators[J].
Cold Spring Harb Perspect Biol,2015,7(7):a008144.
[8] Zhang YL,Kim MS,Jia BS,et al. Hypothalamic stem cells control
ageing speed partly through exosomal miRNAs[J]. Nature,2017,548
(7665):52-57.
[9] Shi JJ,Zhao Y,Wang YP,et al. Inflammatory caspases are innate
immune receptors for intracellular LPS[J]. Nature,2014,514(7521):
187-192.
[10] Li YF,Sheng HD,Qian J,et al. The Chinese medicine babaodan
suppresses LPS-induced sepsis by inhibiting NLRP3-mediated inflammasome
activation[J]. J Ethnopharmacol,2022,292:115205.
[11] Chen Y,Luo RH,Li J,et al. Intrinsic radical species scavenging
activities of tea polyphenols nanoparticles block pyroptosis in
endotoxin-induced sepsis[J]. ACS Nano,2022,16(2):2429-2441.
[12] Yang XY,Cheng XY,Tang YT,et al. Bacterial endotoxin activates
the coagulation cascade through gasdermin D-dependent phosphatidylserine
exposure[J]. Immunity,2019,51(6):983-996.
[13] Luo LL,Xu M,Liao DY,et al. PECAM-1 protects against DIC by
dampening inflammatory responses via inhibiting macrophage pyroptosis
and restoring vascular barrier integrity[J]. Transl Res,2020,222:
1-16.
[14] Deng MH,Tang YT,Li WB,et al. The endotoxin delivery protein
HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity,
2018,49(4):740-753.
[15] Liu XB,Wang D,Zhang XN,et al. Effect and mechanism of phospholipid
scramblase 4(PLSCR4) on lipopolysaccharide(LPS)-induced
injury to human pulmonary microvascular endothelial cells[J]. Ann
Transl Med,2021,9(2):159.
[16] Miao EA,Rajan JV,Aderem A. Caspase-1-induced pyroptotic
cell death[J]. Immunol Rev,2011,243(1):206-214.
[17] Shi JJ,Gao WQ,Shao F. Pyroptosis:gasdermin-mediated programmed
necrotic cell death[J]. Trends Biochem Sci,2017,42(4):245-
254.
[18] Lima H Jr,Jacobson LS,Goldberg MF,et al. Role of lysosome
rupture in controlling Nlrp3 signaling and necrotic cell death[J]. Cell
Cycle,2013,12(12):1868-1878.
[19] Gong T,Yang YQ,Jin TC,et al. Orchestration of NLRP3 inflammasome
activation by ion fluxes[J]. Trends Immunol,2018,39(5):393-
406.
[20] Swanson KV,Deng M,Ting JPY. The NLRP3 inflammasome:molecular
activation and regulation to therapeutics[J]. Nat Rev Immunol,
2019,19(8):477-489.
[21] Zhou RB,Tardivel A,Thorens B,et al. Thioredoxin-interacting
protein links oxidative stress to inflammasome activation[J]. Nat Immunol,
2010,11(2):136-140.
[22] Wen R,Liu YP,Tong XX,et al. Molecular mechanisms and functions
of pyroptosis in sepsis and sepsis-associated organ dysfunction[J].
Front Cell Infect Microbiol,2022,12:962139.
[23] Sharif H,Wang L,Wang WL,et al. Structural mechanism for
NEK7-licensed activation of NLRP3 inflammasome[J]. Nature,2019,
570(7761):338-343.
[24] Kayagaki N,Warming S,Lamkanfi M,et al. Non-canonical inflammasome
activation targets caspase-11[J]. Nature,2011,479(7371):
117-121.
[25] Kayagaki N,Stowe IB,Lee BL,et al. Caspase-11 cleaves gasdermin
D for non-canonical inflammasome signalling[J]. Nature,2015,526
(7575):666-671.
[26] Cohen H,Baram N,Edry-Botzer L,et al. Vibrio pore-forming leukocidin
activates pyroptotic cell death via the NLRP3 inflammasome[J].
Emerg Microbes Infect,2020,9(1):278-290.
[27] Yang DH,He Y,Mu?oz-Planillo R,et al. Caspase-11 requires
the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis
and endotoxic shock[J]. Immunity,2015,43(5):923-932.
[28] Wang S,Miura M,Jung YK,et al. Murine caspase-11,an ICEinteracting
protease,is essential for the activation of ICE[J]. Cell,1998,
92(4):501-509.
[29] Lee RC,F(xiàn)einbaum RL,Ambros V. The C. elegans heterochronic
gene Lin-4 encodes small RNAs with antisense complementarity to Lin-
14[J]. Cell,1993,75(5):843-854.
[30] Lagos-Quintana M,Rauhut R,Lendeckel W,et al. Identification
of novel genes coding for small expressed RNAs[J]. Science,2001,294
(5543):853-858.
[31] Ramchandran R,Chaluvally-Raghavan P. miRNA-mediated
RNA activation in mammalian cells[J]. Adv Exp Med Biol,2017,983:
81-89.
[32] Wang J,Chen JY,Sen S. MicroRNA as biomarkers and diagnostics[
J]. J Cell Physiol,2016,231(1):25-30.
[33] Huang ZT,Mou T,Luo YH,et al. Inhibition of miR-450b-5p
ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB[J].
Cell Death Dis,2020,11(6):455.
[34] Ho J,Chan H,Wong SH,et al. The involvement of regulatory
non-coding RNAs in sepsis:a systematic review[J]. Crit Care,2016,20
(1):383.
[35] Ghafouri-Fard S,Khoshbakht T,Hussen BM,et al. Regulatory
role of non-coding RNAs on immune responses during sepsis[J]. Front
Immunol,2021,12:798713.
[36] Li KL,Huang ZT,Tian SJ,et al. MicroRNA-877-5p alleviates
ARDS via enhancing PI3K/Akt path by targeting CDKN1B both in vivo
and in vitro[J]. Int Immunopharmacol,2021,95:107530.
[37] Cao YY,Wang Z,Wang ZH,et al. Inhibition of miR-155 alleviates
sepsis-induced inflammation and intestinal barrier dysfunction by inactivating
NF-κB signaling[J]. Int Immunopharmacol,2021,90:107218.
[38] Wang ZC,Ruan ZS,Mao YF,et al. miR-27a is up regulated and
promotes inflammatory response in sepsis[J]. Cell Immunol,2014,290
(2):190-195.
[39] Ou YW,An RC,Wang HC,et al. Oxidative stress-related circulating
miRNA-27a is a potential biomarker for diagnosis and prognosis
in patients with sepsis[J]. BMC Immunol,2022,23(1):14.
[40] Essandoh K,F(xiàn)an GC. Role of extracellular and intracellular
microRNAs in sepsis[J]. Biochim Biophys Acta,2014,1842(11):2155-
2162.
[41] Wang HJ,Zhang PJ,Chen WJ,et al. Four serum microRNAs
identified as diagnostic biomarkers of sepsis[J]. J Trauma Acute Care
Surg,2012,73(4):850-854.
[42] Li JH,Ma JM,Li MY,et al. GYY4137 alleviates sepsis-induced
acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3
pathway[J]. Life Sci,2021,271:119192.
[43] Ling H,Li Q,Duan ZP,et al. LncRNA GAS5 inhibits miR-579-
3p to activate SIRT1/PGC-1α/Nrf2 signaling pathway to reduce cell
pyroptosis in sepsis-associated renal injury[J]. Am J Physiol Cell
Physiol,2021,321(1):117-133.
[44] Chen S,Ding RY,Hu ZW,et al. MicroRNA-34a inhibition alleviates
lung injury in cecal ligation and puncture induced septic mice[J].
Front Immunol,2020,11:1829.
[45] Jiao Y,Zhang T,Zhang CM,et al. Exosomal miR-30d-5p of neutrophils
induces M1 macrophage polarization and primes macrophage
pyroptosis in sepsis-related acute lung injury[J]. Crit Care,2021,25
(1):356.
[46] Xue ZY,Xi Q,Liu HK,et al. miR-21 promotes NLRP3 inflammasome
activation to mediate pyroptosis and endotoxic shock[J]. Cell
Death Dis,2019,10(6):461.
[47] Yang DY,Zhao DY,Ji JL,et al. CircRNA_0075723 protects
against pneumonia-induced sepsis through inhibiting macrophage
pyroptosis by sponging miR-155-5p and regulating SHIP1 expression
[J]. Front Immunol,2023,14:1095457.
[48] Deng LT,Wang QL,Yu C,et al. lncRNA PVT1 modulates
NLRP3-mediated pyroptosis in septic acute kidney injury by targeting
miR-20a-5p[J]. Mol Med Rep,2021,23(4):271.
[49] Li X,Yao LY,Zeng XM,et al. miR-30c-5p alleviated pyroptosis
during sepsis-induced acute kidney injury via targeting TXNIP[J]. Inflammation,
2021,44(1):217-228.
[50] Juan CX,Mao Y,Cao Q,et al. Exosome-mediated pyroptosis of
miR-93-TXNIP-NLRP3 leads to functional difference between M1 and
M2 macrophages in sepsis-induced acute kidney injury[J]. J Cell Mol
Med,2021,25(10):4786-4799.
[51] Tan JX,F(xiàn)an J,He J,et al. Knockdown of LncRNA DLX6-AS1
inhibits HK-2 cell pyroptosis via regulating miR-223-3p/NLRP3 pathway
in lipopolysaccharide-induced acute kidney injury[J]. J Bioenerg
Biomembr,2020,52(5):367-376.
[52] Zhang M,Zhi DY,Lin J,et al. miR-181a-5p inhibits pyroptosis
in sepsis-induced acute kidney injury through downregulation of NEK7
[J]. J Immunol Res,2022,2022:1825490.
[53] Li M,Hu LH,Ke Q,et al. miR-122-3p alleviates LPS-induced
pyroptosis of macrophages via targeting NLRP1[J]. Ann Clin Lab Sci,
2023,53(4):578-586.
[54] Gong XR,Li Y,He Y,et al. USP7-SOX9-miR-96-5p-NLRP3
network regulates myocardial injury and cardiomyocyte pyroptosis in
sepsis[J]. Hum Gene Ther,2022,33(19/20):1073-1090.
[55] Wang X,Li XL,Qin LJ. The lncRNA XIST/miR-150-5p/c-Fos
axis regulates sepsis-induced myocardial injury via TXNIP-modulated
pyroptosis[J]. Lab Invest,2021,101(9):1118-1129.
[56] Liu JJ,Li Y,Yang MS,et al. SP1-induced ZFAS1 aggravates
sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated
autophagy and pyroptosis[J]. Arch Biochem Biophys,2020,695:108611.
[57] An L,Yang TY,Zhong Y,et al. Molecular pathways in sepsisinduced
cardiomyocyte pyroptosis:novel finding on long non-coding
RNA ZFAS1/miR-138-5p/SESN2 axis[J]. Immunol Lett,2021,238:
47-56.
[58] Liu F,Yang Y,Peng W,et al. Mitophagy-promoting miR-138-
5p promoter demethylation inhibits pyroptosis in sepsis-associated
acute lung injury[J]. Inflamm Res,2023,72(2):329-346.
[59] Fan XY,Ma ZX,Tang LB,et al. lncRNA NEAT1 mediates LPSinduced
pyroptosis of BEAS-2B cells via targeting miR-26a-5p/ROCK1
axis[J]. Kaohsiung J Med Sci,2023,39(7):665-674.
[60] Shang LR,Li JX,Zhou FY,et al. MiR-874-5p targets VDR/
NLRP3 to reduce intestinal pyroptosis and improve intestinal barrier
damage in sepsis[J]. Int Immunopharmacol,2023,121:110424.
[61] Kang K,Li NN,Gao Y,et al. Circ-Katnal1 enhances inflammatory
pyroptosis in sepsis-induced liver injury through the miR-31-5p/
GSDMD axis[J]. Mediators Inflamm,2022,2022:8950130.
[62] 臧賓賓,李 華,楊穎,等. miR-135b-5p抑制膿毒癥引起的
小鼠急性肺損傷(ALI)的作用及機(jī)制[J]. 中國(guó)應(yīng)用生理學(xué)雜志,
2022,38(4):366-372.
Zang BB,Li H,Yang Y,et al. The role of miR-135b-5p in inhibiting
mice acute lung injury (ALI) induced by sepsis and its mechanism[J].
Chin J Appl Physiol,2022,38(4):366-372.
[63] Wang JL,Li X,Liu YF,et al. CircHIPK3 promotes pyroptosis in
acinar cells through regulation of the miR-193a-5p/GSDMD axis[J].
Front Med,2020,7:88.
(責(zé)任編輯:周一青)
重慶醫(yī)科大學(xué)學(xué)報(bào)2024年8期