【摘 要】細(xì)胞焦亡主要表現(xiàn)為細(xì)胞腫脹,形成缺乏離子選擇性的孔隙,引起“焦亡小體”樣泡狀突起,最終造成質(zhì)膜裂解,釋放炎癥因子。細(xì)胞焦亡主要由炎性半胱天冬酶(cysteinylaspartate specific proteinase,caspase)介導(dǎo),包括由caspase-1介導(dǎo)的經(jīng)典焦亡途徑和caspase-4/5/11介導(dǎo)的非經(jīng)典焦亡途徑,通過觸發(fā)下游的消皮素D(gasdermin,GSDMD),引起細(xì)胞膜穿孔,從而釋放細(xì)胞內(nèi)容物和大量的炎性細(xì)胞因子,誘發(fā)細(xì)胞焦亡。近年來,越來越多的證據(jù)表明細(xì)胞焦亡參與糖尿病腎臟疾?。╠iabetickidney disease,DKD)疾病進(jìn)展,可能成為DKD的潛在治療靶點(diǎn)。本文將對細(xì)胞焦亡在DKD疾病進(jìn)展的相關(guān)研究進(jìn)行綜述,總結(jié)現(xiàn)階段腎臟固有細(xì)胞焦亡在DKD發(fā)病機(jī)制中的作用及靶向細(xì)胞焦亡的相關(guān)藥物研究,以期為DKD疾病機(jī)制研究與治療策略的更新提供新的思路。
【關(guān)鍵詞】糖尿病腎臟疾??;細(xì)胞焦亡;NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3
【中圖分類號】R587.2 【文獻(xiàn)標(biāo)志碼】A 【收稿日期】2023-10-19
糖尿病腎臟疾?。╠iabetic kidney disease,DKD)是糖尿病最常見和最嚴(yán)重的微血管并發(fā)癥之一。隨著糖尿病患病率的不斷飆升[1-2],DKD正逐漸成為我國慢性腎臟病的主要病因[3]。然而,目前國際上對DKD 缺乏特效藥物和治療方案,除傳統(tǒng)的降糖、降壓、降脂及減少蛋白攝入外,主要是應(yīng)用腎素-血管緊張素-醛固酮系統(tǒng)抑制劑減少尿蛋白,但仍有部分患者繼續(xù)發(fā)展至終末期腎病。因此,針對DKD新的治療靶點(diǎn)革新和新藥研發(fā),具有重要的科學(xué)意義和社會效益。
DKD是一種由多種炎癥因子介導(dǎo)的具有復(fù)雜病理機(jī)制的代謝性疾病。高血糖、脂質(zhì)代謝紊亂、氧化應(yīng)激、晚期糖基化終產(chǎn)物(advanced glycation end products,AGEs)等多種因素貫穿于DKD疾病進(jìn)展的始終。值得注意的是,近期研究證實(shí),高血糖、脂肪酸等損傷相關(guān)分子可以通過細(xì)胞內(nèi)某些特定的模式識別受體(pattern recognition receptor,PRRs),誘導(dǎo)腎臟固有細(xì)胞發(fā)生焦亡,導(dǎo)致腎臟結(jié)構(gòu)損傷和功能下降,加速DKD疾病進(jìn)展。這提示細(xì)胞焦亡可能成為DKD潛在治療靶點(diǎn)[4]。焦亡作為近年來新被發(fā)現(xiàn)的一種裂解性的程序性壞死方式,其主要特征是細(xì)胞膨脹變圓及細(xì)胞膜鼓泡破裂,從而引起細(xì)胞內(nèi)容物釋放和強(qiáng)烈的炎癥反應(yīng)激活[5-6]。本文系統(tǒng)綜述了近年來有關(guān)細(xì)胞焦亡參與DKD疾病進(jìn)展的相關(guān)報道,為DKD疾病發(fā)病機(jī)制的研究與治療策略的更新提供新思路。
1 細(xì)胞焦亡的概述
細(xì)胞焦亡,是一種與炎癥反應(yīng)密切相關(guān)的程序性細(xì)胞死亡形式。除了焦亡,程序性細(xì)胞死亡形式還包括凋亡、鐵死亡、自噬、壞死等,它們的啟動取決于不同生化機(jī)制和信號傳導(dǎo)途徑[7-11]。焦亡具有細(xì)胞凋亡和壞死的特點(diǎn),包括核收縮、DNA斷裂和磷脂外翻等,此外,通過掃描電鏡觀察發(fā)現(xiàn),焦亡的細(xì)胞出現(xiàn)腫脹,并可以形成缺乏離子選擇性的孔隙,形成類似凋亡小體的“焦亡小體”樣泡狀突起,最終造成質(zhì)膜裂解,釋放炎癥因子。2001年,Cookson BT和Brennan MA[12]首先將這種依賴半胱氨酸天冬氨酸蛋白酶(cysteinylaspartatespecific proteinase-1,caspase-1)的凋亡信號通路命名為“細(xì)胞焦亡”。隨著研究的深入,人們發(fā)現(xiàn)caspase-4/5/11也能觸發(fā)細(xì)胞焦亡,被認(rèn)為是焦亡的非經(jīng)典通路。焦亡的核心是激活NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptorthermal protein domain associated protein 3,NLRP3)炎性小體,NLRP3觸發(fā)消皮素D(gasdermin,GSDMD),引起細(xì)胞膜上形成GSDMD膜孔,迅速造成細(xì)胞膜破裂和細(xì)胞內(nèi)容物釋放,如促炎因子白細(xì)胞介素-1β(interleukin-1β,IL-1β)和白細(xì)胞介素-18(interleukin-18,IL-18)從膜孔中流出,引起炎癥反應(yīng)激活。因此,GSDMD被稱為細(xì)胞焦亡的執(zhí)行者,是細(xì)胞焦亡的“殺手蛋白”,而細(xì)胞內(nèi)NLRP3炎癥小體活化是經(jīng)典細(xì)胞焦亡啟動的“開關(guān)”[13-14]。
2 DKD疾病進(jìn)展中細(xì)胞焦亡的信號通路
2.1 細(xì)胞焦亡的經(jīng)典途徑
在經(jīng)典的細(xì)胞焦亡途徑中,受病原相關(guān)與損傷相關(guān)分子模式的刺激,促進(jìn)了NLRP3炎性小體組裝激活[15-16]。NLRP3炎性小體作為位于細(xì)胞質(zhì)中的多蛋白復(fù)合物,由模式識別受體NLRP3、凋亡相關(guān)斑點(diǎn)樣蛋白(apoptosis-associated specklikeprotein containing a CARD,ASC)和caspase-1組成,當(dāng)其組裝激活后,可以引起caspase-1的前體形式pro-caspase-1切割成其激活形式cleaved caspase-1[17-18]。一方面,活化的casapase-1是NLRP3炎性體的功能單位,可將IL-1β和IL-18的前體pro-IL-1β和pro-IL-18切割成成熟形式,加劇炎癥反應(yīng)[19-20]。另一方面,caspase-1 激活并切割膜蛋白GSDMD,使激活的GSDMD釋放N段的結(jié)構(gòu)域,GSDMD的N末端具有成孔活性,破壞膜的完整性,從而觸發(fā)細(xì)胞內(nèi)容物和大量促炎細(xì)胞因子釋放,導(dǎo)致炎癥反應(yīng)擴(kuò)大,造成細(xì)胞焦亡(圖1)[19,21]。NLRP3/caspase-1 介導(dǎo)的焦亡經(jīng)典途徑在DKD的疾病進(jìn)展中發(fā)揮重要作用,如研究發(fā)現(xiàn),足細(xì)胞特異性表達(dá)NLRP3功能獲得性突變體(Nlrp3A350V)的高血糖小鼠中,腎臟病理損傷加重,主要表現(xiàn)為白蛋白尿增加、腎小球系膜擴(kuò)張和腎小球基底膜厚度增加。相比之下,足細(xì)胞特異性 NLRP3或caspase-1敲除的糖尿病小鼠模型表現(xiàn)腎保護(hù)作用。發(fā)人深思的是足細(xì)胞特異性NLRP3缺陷的小鼠具有完全保護(hù)性,而足細(xì)胞特異性caspase-1 缺陷僅具有部分保護(hù)性[22]。
2.2 細(xì)胞焦亡的非經(jīng)典途徑
2011 年,Kayagaki N 等[23]最先發(fā)現(xiàn)非經(jīng)典細(xì)胞焦亡途徑。非典型途徑是由人體內(nèi)caspase-4和caspase-5以及小鼠體內(nèi)的caspase-11介導(dǎo)[24]。研究證實(shí),caspase-4/5/11的激活是由于感知并識別脂多糖(lipopolysaccharide,LPS),繼而觸發(fā)其快速寡聚過程,活化的caspase-4/5/11作為四聚體,能夠裂解純化的重組GSDMD,從而促進(jìn)IL-1β和IL-18活化并形成成熟的IL-1β和IL-18[25]。同樣,GSDMD的N端結(jié)構(gòu)域被激活在細(xì)胞膜打孔,引起細(xì)胞內(nèi)IL-1β和IL-18的大量釋放,造成細(xì)胞焦亡(圖1)。非經(jīng)典的細(xì)胞焦亡途徑在DKD疾病進(jìn)展中也扮演重要角色。研究發(fā)現(xiàn)DKD 小鼠足細(xì)胞中caspase-11,GSDMD和IL-1β的表達(dá)增加,造成足細(xì)胞丟失,巨噬細(xì)胞浸潤、蛋白尿的增加,而高糖處理的人和小鼠足細(xì)胞中caspase-11 或caspase-4、GSDMD-N、IL-1β 及IL-18 的表達(dá)明顯增加,引起足細(xì)胞焦亡損傷,提示caspase-11/4介導(dǎo)的細(xì)胞焦亡加劇了DKD的病理損傷[26-27]。
綜上,雖然經(jīng)典與非經(jīng)典的細(xì)胞焦亡途徑由不同的信號傳導(dǎo)途徑介導(dǎo),但殊途同歸,均通過裂解GSDMD,促進(jìn)其釋放N 端的結(jié)構(gòu)域,然后導(dǎo)致細(xì)胞膜形成膜孔,從而釋放大量的促炎細(xì)胞因子,最終造成細(xì)胞焦亡,加速DKD 疾病進(jìn)展[28]。
3 DKD 疾病進(jìn)展中腎臟固有細(xì)胞焦亡
腎臟固有細(xì)胞作為糖尿病腎臟疾病損傷重要靶點(diǎn),主要包括腎小球系膜細(xì)胞、足細(xì)胞、內(nèi)皮細(xì)胞以及腎小管上皮細(xì)胞[29]。其中系膜細(xì)胞、足細(xì)胞以及內(nèi)皮細(xì)胞是構(gòu)成腎小球?yàn)V過膜結(jié)構(gòu)的基礎(chǔ),參與調(diào)節(jié)腎小球?yàn)V過功能。腎小管上皮細(xì)胞主要參與物質(zhì)的重吸收和分泌[30]。因此腎臟固有細(xì)胞焦亡,可以導(dǎo)致腎小球?yàn)V過功能下降,引起蛋白尿。此外,細(xì)胞焦亡引起的持續(xù)炎癥反應(yīng)易導(dǎo)致腎臟膠原沉積,細(xì)胞外基質(zhì)生成與降解失衡,造成腎實(shí)質(zhì)逐漸硬化,瘢痕形成,腎小球硬化與腎間質(zhì)纖維化形成,最終導(dǎo)致腎功能衰竭。故腎臟固有細(xì)胞的焦亡損傷在DKD疾病進(jìn)展中具有重要作用,下面將對DKD疾病進(jìn)展中腎臟固有細(xì)胞焦亡進(jìn)行分述:
3.1 DKD疾病進(jìn)程中的足細(xì)胞焦亡
足細(xì)胞作為附著在腎小球基底膜外高度分化的細(xì)胞,相鄰的足細(xì)胞之間足突相互交叉嵌合,構(gòu)成了腎小球?yàn)V過膜的最外層。最新研究發(fā)現(xiàn),通過高脂飲食聯(lián)合STZ注射制備的糖尿病模型小鼠的足細(xì)胞caspase-11和GSDMD-N 的表達(dá)水平明顯升高,伴隨著足細(xì)胞標(biāo)志蛋白podocin和nephrin的表達(dá)減少,足細(xì)胞表現(xiàn)出足突的丟失和融合,炎性細(xì)胞因子核因子κB(nuclear factor kappa-B,NF-κB)、IL-1β 和IL-18表達(dá)升高,并表現(xiàn)出巨噬細(xì)胞浸潤、腎小球基質(zhì)擴(kuò)張以及尿白蛋白肌酐比(urinary albumin to creatinine ratio,UACR)增加,而糖尿病模型小鼠的上述所有病理改變均因caspase-11或 GSDMD的敲除而減弱。此外,高糖(30 mmol/L)處理培養(yǎng)的人和小鼠足細(xì)胞,caspase-11 或caspase-4、GSDMD-N、NF-κB、IL-1β和IL-18的表達(dá)水平明顯增加,而通過siRNA將caspase-4或GS DMD敲低則降低了上述焦亡相關(guān)因子的表達(dá)水平[27]。且在DKD患者腎活檢組織中也發(fā)現(xiàn)caspase-1和GSDMD表達(dá)水平升高[31]。
3.2 DKD疾病進(jìn)程中的腎小管上皮細(xì)胞焦亡
腎小管上皮細(xì)胞(tubular epithelial cells,TECs)負(fù)責(zé)腎臟的重吸收,將部分或全部的水和幾種溶質(zhì)從腎小管轉(zhuǎn)移到血液中,保留有用物質(zhì),并有效地去除有害和多余物質(zhì)。在DKD 高糖狀態(tài)下,TECs容易發(fā)生代謝紊亂、炎癥反應(yīng)以及血流動力學(xué)改變,造成活性氧(reactive oxygen species,ROS)和多種炎癥因子釋放,繼而導(dǎo)致腎間質(zhì)的炎癥反應(yīng)和纖維化損傷。研究發(fā)現(xiàn),DKD模型小鼠腎小管及高糖誘導(dǎo)的人腎小管上皮細(xì)胞HK-2 中焦亡相關(guān)的NLRP3、caspase1、GSDMD表達(dá)上調(diào)。HK-2細(xì)胞焦亡也促進(jìn)Ⅳ型膠原和纖連蛋白產(chǎn)生,加速DKD 腎間質(zhì)纖維化損傷[32]。研究證實(shí),NLRP3在轉(zhuǎn)化生長因子-β1(transforming growth factor,TGF-β1)刺激下表達(dá)明顯升高,并與上皮-間充質(zhì)轉(zhuǎn)化(epithelialmesenchymaltransition,EMT)、α-平滑肌肌動蛋白(α-smoothmuscle actin,α-SMA)和基質(zhì)金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)的表達(dá)相關(guān)。在NLRP3敲除的小鼠腎小管上皮細(xì)胞中TGF-β1表達(dá)下調(diào),從而抑制了EMT,降低MMP-9和a-SMA的表達(dá),進(jìn)一步證實(shí)腎小管上皮細(xì)胞的焦亡損傷促進(jìn)DKD腎間質(zhì)纖維化[33]。
3.3 DKD疾病進(jìn)程中的腎小球內(nèi)皮細(xì)胞焦亡
在DKD狀態(tài)下,腎小球內(nèi)皮細(xì)胞(glomerular endothelialcells,GECs)損傷通常發(fā)生在早期。內(nèi)皮細(xì)胞始終暴露在血液的環(huán)境中,極易受到血流中異常成分的干擾,故血液的高糖狀態(tài)和過量的炎癥因子表達(dá)極易對內(nèi)皮細(xì)胞造成影響。既往研究發(fā)現(xiàn)糖尿病患者和小鼠的腎臟組織切片中GECs可出現(xiàn)NLRP3炎癥小體和活化的caspase-1共定位,提示糖尿病狀態(tài)下,GECs發(fā)生焦亡損傷[34]。研究證實(shí),在高糖誘導(dǎo)的人GECs中發(fā)現(xiàn)激活的硫氧還蛋白互作蛋白(thioredoxininteractingprotein,TXNIP)/NLRP3信號通路,造成了GECs的細(xì)胞焦亡[35]。此外,在DKD狀態(tài)下,中性粒細(xì)胞胞外誘捕網(wǎng)(neutrophil extracellular traps,NETs)誘導(dǎo)GECs 膜上的孔洞形成,參與細(xì)胞膜功能的多個基因表達(dá)失調(diào),焦亡相關(guān)蛋白NLRP3,ASC表達(dá)增加[36]。內(nèi)皮細(xì)胞是腎小球?yàn)V過屏障的關(guān)鍵組成部分,故研究證實(shí)內(nèi)皮細(xì)胞焦亡損傷會導(dǎo)致腎小球?yàn)V過功能破壞,UACR增加,加速DKD疾病進(jìn)展[36]。
4 靶向細(xì)胞焦亡延緩DKD疾病進(jìn)展的藥物研究
最新研究顯示,胰高糖素樣肽-1受體激動劑(glucagonlikepeptide-1 receptor agonist,GLP-1RA)降糖藥利拉魯肽和索馬魯肽的腎臟保護(hù)作用可能是通過調(diào)節(jié)NLRP3炎性小體表達(dá),抑制足細(xì)胞焦亡來實(shí)現(xiàn)的,且利拉魯肽和索馬魯肽在抑制細(xì)胞焦亡方面無明顯差異[37]。此外,研究發(fā)現(xiàn)具有降低腎臟結(jié)局事件的一線推薦降糖藥鈉-葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋 白2(sodium-dependent glucose transporters 2,SGLT-2)抑制劑達(dá)格列凈可以通過調(diào)控血紅素氧合酶1(heme oxygenase-1,HO-1)/NLRP3軸,抑制caspase-1的激活,減少IL-18和IL-1β表達(dá),對抗足細(xì)胞焦亡,從而發(fā)揮降低DKD腎臟結(jié)局事件的藥效[38]。DPP4抑制劑沙格列汀也表現(xiàn)出降低NLRP3/ASC活性,從而發(fā)揮延緩DKD疾病進(jìn)展的效應(yīng)機(jī)制[39-40]。上述降糖藥物通過靶向調(diào)控細(xì)胞焦亡關(guān)鍵節(jié)點(diǎn)而發(fā)揮延緩DKD的作用,且獨(dú)立于其降糖活性,提示細(xì)胞焦亡可能是干預(yù)DKD潛在靶點(diǎn)。中醫(yī)藥在靶向調(diào)控細(xì)胞焦亡,延緩DKD進(jìn)展中也發(fā)揮重要作用,既往研究發(fā)現(xiàn)中藥黃葵膠囊可以改善蛋白尿,改善腎功能,抑制EMT,其效應(yīng)機(jī)制與調(diào)控Toll樣受體4(Toll-like receptor 4,TLR4)/NF-κB 信號通路,抑制NLRP3炎性小體活化有關(guān)[41]。中醫(yī)復(fù)方如糖腎方、益腎排毒方等干預(yù)DKD疾病進(jìn)展也與調(diào)控細(xì)胞焦亡密切相關(guān)[42-43]。中藥的單體成分也在靶向調(diào)控細(xì)胞焦亡中有明顯療效。中藥海藻的主要成分巖藻多糖可以通過調(diào)節(jié)AMP 依賴的蛋白激酶[Adenosine 5’-monophosphate(AMP)-activated protein kinase,AMPK]/雷帕霉素靶蛋白C1(mammalian target of rapamycin1,mTORC1)/NLRP3信號軸,抑制NLRP3炎性小體激活,減弱足細(xì)胞焦亡損傷[44]。中藥丹參的根莖中分離出來的二萜醌類親脂性成分丹參酮Ⅱa可減輕腎損傷,改善db/db小鼠腎功能,降低蛋白尿,其效應(yīng)機(jī)制與降低腎小球內(nèi)皮的NLRP3、cleaved IL-1β、cleaved caspase-1和Txnip表達(dá),抑制腎小球內(nèi)皮細(xì)胞焦亡損傷有關(guān)[45]。
綜上所述,細(xì)胞焦亡是參與DKD疾病進(jìn)展的重要機(jī)制之一,本文從細(xì)胞焦亡的概述、細(xì)胞焦亡的經(jīng)典途徑、非經(jīng)典途徑對細(xì)胞焦亡進(jìn)行闡釋。系統(tǒng)分析了腎臟固有細(xì)胞(足細(xì)胞、腎小管上皮細(xì)胞以及內(nèi)皮細(xì)胞)焦亡在DKD疾病進(jìn)展中作用。隨著DKD疾病進(jìn)展過程中焦亡的研究不斷深入,細(xì)胞焦亡更像一把雙刃劍:一方面,適度的細(xì)胞焦亡有利于保護(hù)腎臟免受外來刺激的損傷,另一方面,大量的腎臟固有細(xì)胞焦亡導(dǎo)致嚴(yán)重的炎癥反應(yīng),成為加速DKD進(jìn)展的主要因素。然而,DKD的發(fā)病機(jī)制復(fù)雜,細(xì)胞焦亡的發(fā)生機(jī)制也尚未完全被揭示[46-47]。僅DKD疾病進(jìn)展中細(xì)胞焦亡的機(jī)制還有待完善,①未來可利用更多分子生物學(xué)方法探索caspase-1和GSDMD下游靶點(diǎn)參與DKD調(diào)控的具體機(jī)制。②腎臟固有細(xì)胞,腎小球系膜細(xì)胞的焦亡在DKD疾病進(jìn)展中的機(jī)制仍不清楚,還有待結(jié)合在體與離體實(shí)驗(yàn)進(jìn)行系統(tǒng)闡釋。③基于NLRP3/caspase-1經(jīng)典細(xì)胞焦亡通路,發(fā)現(xiàn)很多靶向細(xì)胞焦亡相關(guān)因子的藥物及小分子阻斷劑可以通過抑制焦亡,干預(yù)DKD 疾病進(jìn)展,未來可通過高通量篩選、多組學(xué)技術(shù)聯(lián)合,篩選出更多可能藥物或抑制劑,為DKD發(fā)病機(jī)制的探索及防治提供更多思路。④目前針對細(xì)胞焦亡的上游刺激因素尚未完全揭示,未來研究可更多地關(guān)注DKD的病理表現(xiàn),深入挖掘造成腎固有細(xì)胞焦亡的不同上游因素,可能為DKD的發(fā)病機(jī)制和臨床防治提供新的見解。
參考文獻(xiàn)
[1] International Diabetes Foundation. IDF Diabetes Atlas 2021(9th),
[EB/OL].[2023-10-18]. https://www.diabetesatlas.org.
[2] Hu QC,Jiang L,Yan Q,et al. A natural products solution to diabetic
nephropathy therapy[J]. Pharmacol Ther,2023,241:108314.
[3] Zhang LX,Long JY,Jiang WS,et al. Trends in chronic kidney disease
in China[J]. N Engl J Med,2016,375(9):905-906.
[4] Hutton HL,Ooi JD,Holdsworth SR,et al. The NLRP3 inflammasome
in kidney disease and autoimmunity[J]. Nephrology,2016,2(9):
736-744.
[5] 陳麗香,李 順,周曉輝. 程序性細(xì)胞壞死及細(xì)胞焦亡信號通路
研究進(jìn)展概述[J]. 中華微生物學(xué)和免疫學(xué)雜志,2020,40(3):231-
237.
Chen LX,Li S,Zhou XH. Overview of necroptosis and pyroptosis signaling
pathways[J]. Chin J Microbiol Immunol,2020,40(3):231-237.
[6] Shi JJ,Gao WQ,Shao F. Pyroptosis:gasdermin-mediated programmed
necrotic cell death[J]. Trends Biochem Sci,2017,42(4):245-
254.
[7] Strowig T,Henao-Mejia J,Elinav E,et al. Inflammasomes in
health and disease[J]. Nature,2012,481(7381):278-286.
[8] Fleisher TA: Apoptosis. Annals of allergy,asthma amp; immunology:
official publication of the American College of Allergy[J]. Asthma amp; Immunology
1997,78(3):245-250.
[9] Glick D,Barth S,MacLeod KF. Autophagy:cellular and molecular
mechanisms[J]. J Pathol,2010,221(1):3-12.
[10] Hirschhorn T,Stockwell BR. The development of the concept of
ferroptosis[J]. Free Radic Biol Med,2019,133:130-143.
[11] Christgen S,Tweedell RE,Kanneganti TD. Programming inflammatory
cell death for therapy[J]. Pharmacol Ther,2022,232:108010.
[12] Cookson BT,Brennan MA. Pro-inflammatory programmed cell
death[J]. Trends Microbiol,2001,9(3):113-114.
[13] Zhu B,Cheng XB,Jiang YL,et al. Silencing of KCNQ1OT1 decreases
oxidative stress and pyroptosis of renal tubular epithelial cells
[J]. Diabetes Metab Syndr Obes,2020,13:365-375.
[14] Xie CS,Wu WL,Tang AN,et al. lncRNA GAS5/miR-452-5p reduces
oxidative stress and pyropto‐ sis of high-glucose-stimulated renal
tubular cells[J]. Diabetes Metab Syndr Obes,2019,12:2609-2617.
[15] Wu XX,Zhang HY,Qi W,et al. Nicotine promotes atherosclerosis
via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell Death
Dis,2018,9(2):171.
[16] Liu C,Yao Q,Hu TT,et al. Cathepsin B deteriorates diabetic cardiomyopathy
induced by streptozotocin via promoting NLRP3-mediated
pyroptosis[J]. Mol Ther Nucleic Acids,2022,30:198-207.
[17] Jo EK,Kim JK,Shin DM,et al. Molecular mechanisms regulating
NLRP3 inflammasome activation[J]. Cell Mol Immunol,2016,13(2):
148-159.
[18] Wu M,Han WX,Song S,et al. NLRP3 deficiency ameliorates renal
inflammation and fibrosis in diabetic mice[J]. Mol Cell Endocrinol,
2018,478:115-125.
[19] He WT,Wan HQ,Hu LC,et al. Gasdermin D is an executor of pyroptosis
and required for interleukin-1β secretion[J]. Cell Res,2015,25
(12):1285-1298.
[20] 王石健,徐蒙娜,汪佳兵. gasdermin D和gasdermin E介導(dǎo)的細(xì)
胞焦亡在腫瘤中的研究進(jìn)展[J]. 中國臨床藥理學(xué)與治療學(xué),2020,25
(3):352-360.
Wang SJ,Xu MN,Wang JB. Research progress of gasdermin D and gas‐
dermin E-mediated pyroptosis in tumors[J]. Chin J Clin Pharmacol
Ther,2020,25(3):352-360.
[21] Sborgi L,Rühl S,Mulvihill E,et al. GSDMD membrane pore formation
constitutes the mechanism of pyroptotic cell death[J]. EMBO J,
2016,35(16):1766-1778.
[22] Shahzad K,F(xiàn)atima S,Khawaja H,et al. Podocyte-specific Nlrp3
inflammasome activation promotes diabetic kidney disease[J]. Kidney
Int,2022,102(4):766-779.
[23] Kayagaki N,Warming S,Lamkanfi M,et al. Non-canonical inflammasome
activation targets caspase-11[J]. Nature,2011,479(7371):
117-121.
[24] Shi JJ,Zhao Y,Wang YP,et al. Inflammatory caspases are innate
immune receptors for intracellular LPS[J]. Nature,2014,514(7521):
187-192.
[25] Al Mamun A,Ara Mimi A,Wu YQ,et al. Pyroptosis in diabetic
nephropathy[J]. Clin Chim Acta,2021,523:131-143.
[26] Ito M,Ducasa GM,Molina JD,et al. ABCA1 deficiency contributes
to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic
kidney disease[J]. Sci Rep,2023,13(1):9616.
[27] Cheng Q,Pan J,Zhou ZL,et al. Caspase-11/4 and gasdermin Dmediated
pyroptosis contributes to podocyte injury in mouse diabetic nephropathy[
J]. Acta Pharmacol Sin,2021,42(6):954-963.
[28] Han YC,Xu XX,Tang CY,et al. Reactive oxygen species promote
tubular injury in diabetic nephropathy:the role of the mitochondrial
ros-txnip-nlrp3 biological axis[J]. Redox Biol,2018,16:32-46.
[29] 黃衍恒,葉霖,黃小榮,等. 腎臟固有細(xì)胞自噬對腎纖維化作
用的研究進(jìn)展[J]. 中華腎臟病雜志,2022,38(3):247-253.
Huang YH,Ye L,Huang XR,et al. Research progress on the effect of renal
resident cells autophagy on renal fibrosis[J]. Chin J Nephrol,2022,
38(3):247-253.
[30] 高聰普,白壽軍. 自噬與糖尿病腎病腎臟固有細(xì)胞的損傷[J].
腎臟病與透析腎移植雜志,2017,26(1):68-71.
Gao CP,Bai SJ. Autophgy in diabetic nephropathy intrinsic cell injury
[J]. Chin J Nephrol Dial Transplant,2017,26(1):68-71.
[31] Zhu W,Li YY,Zeng HX,et al. Carnosine alleviates podocyte injury
in diabetic nephropathy by targeting caspase-1-mediated pyroptosis[
J]. Int Immunopharmacol,2021,101(Pt B):108236.
[32] Wen S,Li SL,Li LL,et al. circACTR2:a novel mechanism regulating
high glucose-induced fibrosis in renal tubular cells via pyroptosis
[J]. Biol Pharm Bull,2020,43(3):558-564.
[33] Wang WJ,Wang XY,Chun J,et al. Inflammasome-independent
NLRP3 augments TGF-β signaling in kidney epithelium[J]. J Immunol,
2013,190(3):1239-1249.
[34] Han JR,Zuo ZK,Shi XJ,et al. Hirudin ameliorates diabetic nephropathy
by inhibiting Gsdmd-mediated pyroptosis[J]. Cell Biol Toxicol,
2023,39(3):573-589.
[35] Wang XH,Li Q,Sui BZ,et al. Schisandrin A from Schisandra chi?
nensis attenuates ferroptosis and NLRP3 inflammasome-mediated pyroptosis
in diabetic nephropathy through mitochondrial damage by AdipoR1
ubiquitination[J]. Oxid Med Cell Longev,2022,2022:5411462.
[36] Zheng FF,Ma LQ,Li X,et al. Neutrophil extracellular traps induce
glomerular endothelial cell dysfunction and pyroptosis in diabetic
kidney disease[J]. Diabetes,2022,71(12):2739-2750.
[37] Li X,Jiang X,Jiang M,et al. GLP-1RAs inhibit the activation of
the NLRP3 inflammasome signaling pathway to regulate mouse renal
podocyte pyroptosis[J/OL]. Acta Diabetol,2023[epub ahead of print].
DOI:10.1007/s00592-023-02184-y.
[38] Zhang ZW,Ni P,Tang MQ,et al. Dapagliflozin alleviates renal
podocyte pyroptosis via regulation of the HO-1/NLRP3 axis[J]. Mol Med
Rep,2023,28(5):200.
[39] Birnbaum Y,Bajaj M,Yang HC,et al. Combined SGLT2 and
DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome
and attenuates the development of diabetic nephropathy in mice with
type 2 diabetes[J]. Cardiovasc Drugs Ther,2018,32(2):135-145.
[40] Birnbaum Y,Bajaj M,Qian JQ,et al. Dipeptidyl peptidase-4 inhibition
by Saxagliptin prevents inflammation and renal injury by targeting
the Nlrp3/ASC inflammasome[J]. BMJ Open Diabetes Res Care,
2016,4(1):e000227.
[41] Han WB,Ma Q,Liu YL,et al. Huangkui capsule alleviates renal
tubular epithelial-mesenchymal transition in diabetic nephropathy via
inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling
[J]. Phytomedicine,2019,57:203-214.
[42] Zhang QL,Liu XC,Sullivan MA,et al. Protective effect of yi Shen
Pai du formula against diabetic kidney injury via inhibition of oxidative
stress,inflammation,and epithelial-to-mesenchymal transition in db/db
mice[J]. Oxid Med Cell Longev,2021,2021:7958021.
[43] Li N,Zhao TT,Cao YT,et al. Tangshen formula attenuates diabetic
kidney injury by imparting anti-pyroptotic effects via the TXNIPNLRP3-
GSDMD axis[J]. Front Pharmacol,2020,11:623489.
[44] Wang MZ,Wang J,Cao DW,et al. Fucoidan alleviates renal fibrosis
in diabetic kidney disease via inhibition of NLRP3 inflammasomemediated
podocyte pyroptosis[J]. Front Pharmacol,2022,13:790937.
[45] Wu Q,Guan YB,Zhang KJ,et al. Tanshinone IIA mediates protection
from diabetes kidney disease by inhibiting oxidative stress induced
pyroptosis[J]. J Ethnopharmacol,2023,316:116667.
[46] Lin JW,Cheng A,Cheng K,et al. New insights into the mechanisms
of pyroptosis and implications for diabetic kidney disease[J]. Int J
Mol Sci,2020,21(19):7057.
[47] Liu P,Zhang ZD,Li Y. Relevance of the pyroptosis-related inflammasome
pathway in the pathogenesis of diabetic kidney disease[J].
Front Immunol,2021,12:603416.
(責(zé)任編輯:曾 玲)