摘" 要: 氧化應(yīng)激是細(xì)胞內(nèi)外環(huán)境變化導(dǎo)致產(chǎn)生過多活性氧的狀態(tài),在調(diào)控子宮功能中發(fā)揮著重要作用。近年來,研究表明氧化應(yīng)激可以通過影響子宮內(nèi)生殖激素、免疫反應(yīng)、調(diào)節(jié)子宮環(huán)境和細(xì)胞信號傳導(dǎo)等途徑調(diào)控母畜子宮功能。此外,過度氧化應(yīng)激會損害母體和胎盤功能,與子宮內(nèi)膜癌、先兆子癇、妊娠期糖尿病和宮內(nèi)生長受限等生殖疾病的形成關(guān)系密切。本文綜述了近年來關(guān)于氧化應(yīng)激調(diào)控母畜子宮功能的研究進(jìn)展,旨在深入了解氧化應(yīng)激對母畜子宮功能的影響,為提高母畜繁殖效率提供理論指導(dǎo)和實踐應(yīng)用。
關(guān)鍵詞: 氧化應(yīng)激;母畜;子宮;激素;炎癥;生殖疾病
中圖分類號:S814.1
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)12-5368-11
doi: 10.11843/j.issn.0366-6964.2024.12.004
開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
收稿日期:2024-05-20
基金項目:國家自然科學(xué)基金(31972575);北京市農(nóng)林科學(xué)院課題(CZZJ202205)
作者簡介:孟亞軒(2000-),女,甘肅金昌人,碩士生,主要從事繁殖營養(yǎng)調(diào)控研究,E-mail:18793606358@163.com
*通信作者:陳國順,主要從事家畜營養(yǎng)調(diào)控研究,E-mail:chengs@gsau.edu.cn;馮" 濤,主要從事動物繁殖調(diào)控研究,E-mail:fengtao@baafs.net.cn
Research Progress in the Effect of Oxidative Stress on Uterus and Pregnancy in Female Livestock
MENG" Yaxuan1,2,3, LIU" Yan2,3, WEI" Xingru4, CHEN" Guoshun1*, FENG" Tao1,2,3*
(1.College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070,
China;
2.Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097," China;
3.Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097," China;
4.Beijing Feed Industry Association, Beijing 100107," China)
Abstract:" Oxidative stress is a state of excessive reactive oxygen species produced by changes of intracellular and extracellular environment, which plays an important role in the regulation of uterine function. In recent years, studies have shown that oxidative stress can regulate the function of the uterus by affecting reproductive hormones, immune responses, regulating uterine environment and cell signaling. In addition, excessive oxidative stress can impair maternal and placental function, closely related to reproductive diseases such as endometrial carcinoma, pre-eclampsia, gestational diabetes mellitus, and intrauterine growth retardation. This paper reviewed the research progress on the regulation of oxidative stress on the uterine function of female livestock in recent years, in order to better understanding the effect of oxidative stress on the uterine function of female animals, providing new theoretical guidance and practical application for improving the reproduction efficiency of female livestock.
Key words: oxidative stress; female livestock; uterus; hormone; inflammation; reproductive disease
*Corresponding authors:" CHEN Guoshun, E-mail:chengs@gsau.edu.cn; FENG Tao, E-mail:fengtao@baafs.net.cn
子宮是哺乳動物中負(fù)責(zé)胚胎著床和胚胎發(fā)育的重要器官。其功能障礙會導(dǎo)致生殖進(jìn)程受阻或生殖效率降低。氧化應(yīng)激是一種破壞細(xì)胞中氧化還原平衡的異常狀態(tài),已被證實與多種疾病和生物過程的發(fā)生發(fā)展相關(guān)。各種細(xì)胞類型都能夠持久的積累活性氧(reactive oxygen species,ROS),例如子宮內(nèi)膜上皮細(xì)胞、基質(zhì)細(xì)胞、卵母細(xì)胞和血管內(nèi)皮細(xì)胞[1]。細(xì)胞完整性是通過酶和非酶抗氧化系統(tǒng)的平衡來維持的。當(dāng)氧化應(yīng)激增加時,兩個抗氧化系統(tǒng)都會耗盡,ROS控制信號通路以及細(xì)胞和生理過程,ROS過量直接或間接損害細(xì)胞和組織,導(dǎo)致雌性生殖系統(tǒng)出現(xiàn)各種問題[2]。近年來,越來越多的研究發(fā)現(xiàn),子宮內(nèi)膜蛻膜化也與氧化應(yīng)激有關(guān)[3-4]。為了更全面地了解氧化應(yīng)激對子宮的影響,本文結(jié)合相關(guān)調(diào)控分子對子宮內(nèi)生殖激素的調(diào)節(jié)、子宮結(jié)構(gòu)與功能的變化以及子宮內(nèi)各種疾病的影響進(jìn)行綜述,以期引起人們對氧化應(yīng)激重要性的思考,為了解子宮病變的病因提供更多的理論依據(jù)。
1" 氧化應(yīng)激調(diào)控母畜體內(nèi)激素水平
氧化應(yīng)激可以改變激素的合成、活性和代謝。ROS被認(rèn)為是各種器官和組織微環(huán)境中健康和疾病狀態(tài)的關(guān)鍵參與者[5]。在女性生殖系統(tǒng)中,ROS在調(diào)節(jié)卵巢周期和促進(jìn)月經(jīng)期間子宮內(nèi)膜脫落方面發(fā)揮重要作用[6-7]。在子宮內(nèi)膜中,ROS和超氧化物歧化酶(superoxide dismutase,SOD)升高是子宮內(nèi)膜破裂的主要原因,其水平在子宮內(nèi)膜周期的不同階段有所不同[8]。過量ROS會導(dǎo)致雌激素受體氧化損傷,影響雌激素受體的表達(dá)和功能,從而降低其對雌激素的親和性和活性,雌激素信號通路異常,最終影響生殖激素信號的傳導(dǎo)[9]。在妊娠期間,母體循環(huán)會發(fā)生顯著的生理變化,以滿足胎兒生長中增加的代謝需求和母體的健康[10]。當(dāng)ROS的產(chǎn)生超過抗氧化物的清除能力時,就會發(fā)生氧化應(yīng)激并對畜體內(nèi)雌二醇、孕酮以及甲狀腺激素產(chǎn)生負(fù)面影響[11],進(jìn)而對子宮造成一定損害,并誘發(fā)一些生殖疾病。如子宮內(nèi)膜異位癥、宮內(nèi)生長受限、先兆子癇和妊娠期糖尿病等。
1.1" 雌二醇(estrogen,E2)
最近的研究發(fā)現(xiàn)類固醇激素,特別是E2參與氧化應(yīng)激[12-13]。E2對氧自由基產(chǎn)生的影響取決于其結(jié)構(gòu)和添加量或所研究的器官,E2可能具有抗氧化或促氧化作用[14-16]。E2在腎、子宮或乳房中發(fā)揮促氧化作用并產(chǎn)生氧自由基,其機制是通過自身代謝產(chǎn)物兒茶酚雌激素途徑發(fā)生促氧化作用[17-18]。Liehr[19]研究表明:兒茶酚雌激素是E2的代謝產(chǎn)物之一,其能誘導(dǎo)細(xì)胞色素中P450自由基的形成,這種機制受SOD和過氧化氫酶(catalase,CAT)及某些金屬離子還原作用的調(diào)節(jié)[16],從而引發(fā)級聯(lián)反應(yīng),導(dǎo)致產(chǎn)生更多的羥基自由基,CAT活性也隨之增加,最終會加重對子宮內(nèi)膜不飽和脂肪酸的損傷[17]。早期研究表明:大鼠子宮丙二醛(malondialdehyde,MDA)、血漿E2和子宮CAT活性之間存在高度相關(guān),MDA含量與血漿E2呈正相關(guān),與CAT活性呈負(fù)相關(guān)[20]。子宮中的E2作為促氧化劑分子誘導(dǎo)氧化應(yīng)激增加,可能途徑之一是E2本身的代謝導(dǎo)致氧自由基產(chǎn)生增加,如果這些ROS不被中和,將誘導(dǎo)脂質(zhì)過氧化、MDA濃度升高和DNA堿基突變[21]。
E2的抗氧化作用也已在多個試驗中被證實。ROS在人子宮內(nèi)膜中產(chǎn)生,并在月經(jīng)分泌期的晚期增加[22],ROS水平升高可能有助于人類子宮內(nèi)膜的脫落。據(jù)報道,E2以劑量依賴性方式刺激卵巢切除大鼠子宮上清液產(chǎn)生過氧化氫(H2O2),而孕酮(progesterone,P4)對此無顯著影響[23]。E2濃度的自然變化影響內(nèi)源性H2O2的產(chǎn)生,E2可通過降低切除卵巢小鼠子宮中的SOD活性來調(diào)節(jié)超氧陰離子自由基(O2·-)的產(chǎn)生[24]。另外,在綿羊和山羊不同大小的卵泡中,卵泡內(nèi)SOD活性與E2濃度含量之間呈反比關(guān)系[23],E2可能在綿羊發(fā)情周期的后期下調(diào)子宮抗氧化酶活性來發(fā)揮生理作用,這種作用可能與未妊娠綿羊子宮內(nèi)膜的ROS生成和生理功能有關(guān)[25]。總之,E2通過調(diào)節(jié)抗氧化防御,在平衡各種組織中的氧化應(yīng)激發(fā)揮著重要作用,其抗氧化作用是E2發(fā)揮子宮保護等功能的重要組成部分。
1.2" 孕酮
P4是一種類固醇激素,由卵巢黃體和胎盤產(chǎn)生,促進(jìn)子宮內(nèi)膜的分泌分化,并通過抑制整個孕期的子宮收縮來維持妊娠。與E2不同,P4不具備抗氧化劑特有的化學(xué)結(jié)構(gòu),但高水平P4可以減少氧化損傷[26]。此外,在不同類型的體外自由基生成系統(tǒng)中,P4處理后以劑量依賴的方式減少了脂質(zhì)過氧化[26]。當(dāng)子宮內(nèi)膜處于氧化應(yīng)激狀態(tài),E2調(diào)節(jié)孕酮受體轉(zhuǎn)錄和子宮內(nèi)膜微環(huán)境,使其在分泌期適應(yīng)P4的調(diào)節(jié)[27-28]。P4激活其受體,維持子宮內(nèi)膜穩(wěn)態(tài),為妊娠做準(zhǔn)備,并有助于妊娠的精確起始、胚胎的著床和妊娠的維持。Laloraya等[29]在研究大鼠子宮時發(fā)現(xiàn):在胚胎植入時(第5天和第8天),P4處理的動物子宮中SOD水平較高,氧自由基水平較低;相反,E2和P4聯(lián)合注射引起氧自由基產(chǎn)生和SOD下降增加。這表明E2和P4都能通過SOD活性調(diào)節(jié)超氧自由基的產(chǎn)生。可見,P4可以減少子宮內(nèi)脂質(zhì)過氧化和氧化應(yīng)激,很可能是通過減少自由基的產(chǎn)生和增強內(nèi)源性自由基清除系統(tǒng)實現(xiàn)的。
1.3" 甲狀腺激素(thyroid hormones,TH)
在影響氧化還原平衡的各種激素中,TH在細(xì)胞代謝和氧消耗中發(fā)揮重要作用。內(nèi)分泌系統(tǒng)中的負(fù)反饋機制調(diào)節(jié)TH的合成和分泌,使其保持在適當(dāng)?shù)乃?。TH水平的變化可能會通過改變線粒體呼吸鏈組分的數(shù)量和活性來改變氧化還原環(huán)境,導(dǎo)致ROS生成增加,而ROS生成通常受到抗氧化劑的限制[30]。ROS的過量產(chǎn)生會誘導(dǎo)TH消耗更多的氧氣,導(dǎo)致氧化應(yīng)激和細(xì)胞結(jié)構(gòu)、脂質(zhì)和蛋白質(zhì)的損傷。
TH是細(xì)胞代謝的關(guān)鍵調(diào)節(jié)因子,能調(diào)節(jié)細(xì)胞中的抗氧化劑水平。多項研究發(fā)現(xiàn),在甲狀腺功能亢進(jìn)癥中,增加的代謝需求通過線粒體氧化還原反應(yīng)促進(jìn)化學(xué)能的合成,從而增加細(xì)胞中的抗氧化劑水平并減少氧化損傷[31-32]。TH受體在人類子宮內(nèi)膜[33]、獼猴子宮[34]、大鼠子宮[35]和輸卵管[36]等雌性生殖器官表達(dá)。之前的研究已經(jīng)證明,在TH的誘導(dǎo)下,甲狀腺機能減退或亢進(jìn)大鼠的T-SOD活性顯著降低[37]。T-SOD活性的降低可能是由于ROS的內(nèi)源性產(chǎn)生增加。此外,維持母體甲狀腺穩(wěn)態(tài)對妊娠期間胎兒的生長和發(fā)育至關(guān)重要[38],孕婦的甲狀腺功能亢進(jìn)和甲狀腺功能減退與不良出生結(jié)果相關(guān),如早產(chǎn)和低初生重[39-40],可能是因為TH導(dǎo)致子宮SOD活性下調(diào),最終損害子宮發(fā)育和功能。
2" 氧化應(yīng)激引起子宮功能改變
妊娠的每個階段幾乎都會受到ROS的影響。ROS是母畜細(xì)胞活性的重要調(diào)節(jié)因子[41]。在氧化應(yīng)激影響下,子宮內(nèi)膜功能關(guān)鍵調(diào)節(jié)因子的表達(dá)水平會發(fā)生周期性的變化。子宮內(nèi)膜中存在多種潛在的ROS生成源,基質(zhì)細(xì)胞內(nèi)ROS的來源包括線粒體電子傳遞系統(tǒng)、內(nèi)質(zhì)網(wǎng)、核膜電子傳遞系統(tǒng)和質(zhì)膜,另外,SOD在子宮內(nèi)膜的腺上皮細(xì)胞和基質(zhì)細(xì)胞中高表達(dá),表明ROS和SOD在子宮功能的調(diào)節(jié)中發(fā)揮著重要作用[42]。研究證實,基礎(chǔ)水平的ROS控制子宮內(nèi)膜的血管生成活動,并使每個周期中的子宮內(nèi)膜再生。ROS過多,會導(dǎo)致子宮內(nèi)膜上皮細(xì)胞增殖和凋亡失衡,引起炎癥因子的變化,進(jìn)而導(dǎo)致子宮內(nèi)膜厚度減少[43],引起子宮功能改變,最終導(dǎo)致子宮內(nèi)膜脫落。因此,適當(dāng)?shù)腞OS濃度對于母畜子宮穩(wěn)態(tài)是至關(guān)重要的。
2.1" 子宮內(nèi)膜容受性降低
子宮內(nèi)膜容受性指的是子宮內(nèi)膜經(jīng)過一系列生理變化為胚胎定位、黏附、侵襲和著床提供最佳環(huán)境的狀態(tài)[44]。妊娠開始后,在E2和P4的共同作用下子宮內(nèi)膜開始增生,子宮內(nèi)膜腺體數(shù)量及在子宮內(nèi)膜中的深度開始增加,從而分泌各種營養(yǎng)物質(zhì)及生長因子維持妊娠。有研究發(fā)現(xiàn)多囊卵巢綜合征(polycystic ovary syndrome,PCOS)患者子宮內(nèi)膜容受性降低可能是因為子宮腺體減少[45]。PCOS患者常伴有雄激素水平升高和胰島素抵抗等情況,同時下調(diào)促炎細(xì)胞因子白細(xì)胞介素-1(interleukin 1,IL-1)和腫瘤壞死因子-α(tumor necrosis factor α,TNF-α)的表達(dá),這些激素水平的異??赡軙绊懽訉m內(nèi)膜細(xì)胞的功能和炎癥反應(yīng)[46]。更重要的是,這些細(xì)胞因子大多參與類固醇激素合成、炎癥和氧化應(yīng)激過程,可見,氧化應(yīng)激對于建立子宮內(nèi)膜容受性是至關(guān)重要的。
Nrf2是調(diào)節(jié)細(xì)胞氧化還原穩(wěn)態(tài)的關(guān)鍵轉(zhuǎn)錄因子,并與一系列以氧化應(yīng)激為特征的毒性和慢性疾病有關(guān)[47]。Nrf2在PCOS妊娠大鼠的子宮中受到抑制,Nrf2缺失小鼠會增加氧化應(yīng)激并表現(xiàn)出胎兒發(fā)育和胎盤功能受損[48]。Nrf2在妊娠中發(fā)揮重要作用,保護胎兒免受子宮內(nèi)氧化應(yīng)激的影響[49]。在動物模型研究中證實,由于動物體內(nèi)氧化與抗氧化的不平衡引發(fā)氧化應(yīng)激,子宮胚胎植入數(shù)量減少,子宮內(nèi)膜增厚,從而造成子宮內(nèi)膜容受性下降[50]。此外,細(xì)胞周期的不平衡與子宮內(nèi)膜細(xì)胞中干擾素的分泌增加有關(guān),氧化應(yīng)激導(dǎo)致子宮內(nèi)膜處于促炎環(huán)境,從而使子宮內(nèi)膜對干擾素tau的反應(yīng)降低,激活炎癥細(xì)胞,導(dǎo)致IL-1β和IL-6等細(xì)胞因子的表達(dá)增加,導(dǎo)致子宮內(nèi)膜的炎癥現(xiàn)象[51]。先前的研究還證明,氧化應(yīng)激和炎性細(xì)胞因子的增加增強了大鼠子宮的毒性[52],氧化損傷產(chǎn)生的幾種分子,如異前列腺素、醛類、修飾蛋白和MDA加合物,會激活炎癥介質(zhì),最終導(dǎo)致子宮內(nèi)膜容受性降低。另一項研究表明,ROS誘導(dǎo)子宮內(nèi)膜炎性細(xì)胞浸潤增加、纖維化水平升高和子宮內(nèi)膜腺密度降低,炎癥介質(zhì)可通過激活氧化還原敏感轉(zhuǎn)錄因子AP-1、p53和NF-κB來調(diào)節(jié)細(xì)胞因子表達(dá)和緩解氧化應(yīng)激[53]。促炎細(xì)胞因子IL-1β和TNF-α的增加激活凋亡級聯(lián)反應(yīng),導(dǎo)致細(xì)胞死亡[53],進(jìn)而完全導(dǎo)致妊娠率降低、流產(chǎn)和子宮功能障礙發(fā)生率增加[54]。氧化應(yīng)激是導(dǎo)致子宮內(nèi)膜容受性降低的原因之一,還通過調(diào)控不同的信號通路導(dǎo)致子宮內(nèi)膜氧化應(yīng)激失衡。
2.2" 子宮內(nèi)膜免疫調(diào)節(jié)紊亂
過度氧化應(yīng)激不僅會損害細(xì)胞,它還會影響到母畜子宮免疫系統(tǒng)的正常功能[55]。在子宮免疫系統(tǒng)中,當(dāng)氧化應(yīng)激大量產(chǎn)生時,白細(xì)胞的ROS水平會顯著升高,激活白細(xì)胞使其釋放自由基和氧化物質(zhì),從而對自身和子宮內(nèi)膜細(xì)胞產(chǎn)生毒性作用。子宮內(nèi)膜中的免疫細(xì)胞數(shù)量在卵泡周期中發(fā)生變化,參與子宮內(nèi)膜的修復(fù)和重塑[56]。此外,免疫細(xì)胞釋放促炎細(xì)胞因子和趨化因子,造成子宮內(nèi)膜免疫系統(tǒng)紊亂[57]。
在氧化應(yīng)激下,糖皮質(zhì)激素通過抗炎和促炎途徑對子宮的免疫系統(tǒng)起著重要作用,受氧化應(yīng)激影響免疫系統(tǒng)會逐漸失調(diào),增加雌性動物的疾病易感性,進(jìn)而導(dǎo)致子宮炎癥的增加[58]。氧化應(yīng)激誘導(dǎo)的子宮毒性與炎癥相關(guān),過量ROS的產(chǎn)生導(dǎo)致炎癥細(xì)胞浸潤和細(xì)胞因子(如IL-1β和IL-6)過度表達(dá),最終導(dǎo)致子宮損傷[59]。TNF-α、IL-1β、IL-6、IL-8和C-反應(yīng)蛋白是臨床研究最多的促炎因子,可誘發(fā)機體炎癥級聯(lián)反應(yīng),損傷子宮功能[60]。在子宮中,抗氧化劑 Mn-SOD可中和細(xì)胞因子TNF-α產(chǎn)生的SOD陰離子,發(fā)揮保護作用并緩解氧化應(yīng)激。此外,炎癥因子還可刺激血管內(nèi)皮細(xì)胞產(chǎn)生ROS,增加脂質(zhì)過氧化產(chǎn)物的釋放,損害內(nèi)皮細(xì)胞功能,對子宮內(nèi)膜產(chǎn)生影響[61-62]。一些抗氧化劑通過抑制NF-κB途徑的激活,產(chǎn)生抑菌物質(zhì)、誘導(dǎo)腸上皮細(xì)胞產(chǎn)生熱休克蛋白,從而增加IL-10、細(xì)胞因子信號轉(zhuǎn)導(dǎo)抑制蛋白等抗炎因子的生成,降低干擾素-γ、TNF-α等促炎因子的分泌和表達(dá),并減少炎癥因子對子宮的影響,進(jìn)而改善患者體內(nèi)氧化應(yīng)激損傷[63]。此外,胎盤缺氧和缺血引起的子宮再次損傷,導(dǎo)致胎盤功能不良,細(xì)胞因子和前列腺素產(chǎn)生使得ROS增加,從而導(dǎo)致子宮內(nèi)膜細(xì)胞損傷引發(fā)一些其他疾病。
3" 氧化應(yīng)激引起子宮結(jié)構(gòu)改變
氧化應(yīng)激和胎兒胎盤中ROS和一氧化氮(nitric oxide,NO)的產(chǎn)生會導(dǎo)致妊娠期各種生理過程的變化。細(xì)胞正常運作需要少量的ROS,ROS與其他調(diào)節(jié)因子一起是負(fù)責(zé)維持正常妊娠穩(wěn)態(tài)的主要成分之一。然而,ROS的過量產(chǎn)生會破壞抗氧化防御系統(tǒng),破壞脂質(zhì)、蛋白質(zhì)和DNA,從而導(dǎo)致細(xì)胞損傷,組織功能失調(diào),引起子宮結(jié)構(gòu)改變。
3.1" 子宮形態(tài)學(xué)變化
子宮為早期胚胎發(fā)育、著床、胎盤和胎兒發(fā)育提供了環(huán)境。子宮發(fā)育過程中發(fā)生的變化很大程度上與炎癥過程相對應(yīng)。許多參與調(diào)節(jié)急性炎癥反應(yīng)的介質(zhì)和酶也參與子宮發(fā)育過程的調(diào)節(jié)[64]。NO是一種活性氮自由基,是細(xì)胞凋亡的重要生物調(diào)節(jié)劑[65]。雌激素調(diào)節(jié)子宮動脈血流增加內(nèi)皮細(xì)胞NO釋放和刺激子宮內(nèi)皮細(xì)胞一氧化氮合酶(nitric oxide synthase,NOS)的活性[66]。多核白細(xì)胞和巨噬細(xì)胞的活化導(dǎo)致ROS的產(chǎn)生增加[67],巨噬細(xì)胞數(shù)量和活性的增加伴隨著更多細(xì)胞因子和其他免疫介質(zhì)(如NO)的釋放,影響子宮內(nèi)膜的破裂和修復(fù)。氧化應(yīng)激導(dǎo)致子宮組織中的抗氧化能力逐漸下降,ROS水平升高,引起子宮內(nèi)膜損傷和衰老加速。內(nèi)分泌水平紊亂、脂質(zhì)過氧化和氧化還原反應(yīng)失衡可能介導(dǎo)衰老小鼠模型子宮的形態(tài)改變[68]。在氧化應(yīng)激條件下,巨噬細(xì)胞釋放的細(xì)胞因子會影響子宮內(nèi)膜異位癥患者子宮內(nèi)膜的氧化還原狀態(tài),受損的紅細(xì)胞和凋亡的子宮內(nèi)膜細(xì)胞可能會激活子宮內(nèi)膜單核吞噬細(xì)胞[69]。另外,微塑料污染觸發(fā)TLR4/ NOX2信號軸誘導(dǎo)小鼠子宮氧化應(yīng)激,進(jìn)而激活Notch和TGF-β信號通路,導(dǎo)致雌性小鼠子宮內(nèi)膜變薄和嚴(yán)重的膠原纖維沉積,最終導(dǎo)致小鼠子宮纖維化[70]。可見,體內(nèi)氧化與抗氧化失衡可能引起炎癥介質(zhì)的積累,使得子宮組織中的膠原沉積,對子宮造成損害。
3.2" 子宮內(nèi)膜蛻膜化和著床
子宮內(nèi)膜是最內(nèi)層的子宮層,也是胚胎植入的部位。此外,子宮內(nèi)膜被認(rèn)為在識別和去除有缺陷的胚胎方面起著重要作用[70]。研究表明,細(xì)胞周期蛋白依賴性激酶抑制劑p21對于正常子宮內(nèi)膜基質(zhì)細(xì)胞(endometrial stromal cell,ESC)蛻膜化是必要的[71]。然而,ESC蛻膜化過程也可能受到氧化應(yīng)激的負(fù)面影響[72],細(xì)胞蛻膜中ROS積累會發(fā)生氧化應(yīng)激,從而損害蛻膜化。
在整個妊娠期間,母體和胎兒處于氧化應(yīng)激的急劇變化中,并誘導(dǎo)產(chǎn)生大量ROS[73]。與未分化的ESC相比,蛻膜ESC對氧化應(yīng)激具有顯著的抗性,從而保護細(xì)胞免受氧化損傷[74]。由氧化應(yīng)激產(chǎn)生的ROS被抗氧化酶如SOD、CAT和谷胱甘肽過氧化物酶(glutathione peroxidase,GPx)拮抗。妊娠早期蛻膜ESCs的免疫組織化學(xué)染色顯示,Cu、Zn-SOD和Mn-SOD分別通過清除細(xì)胞質(zhì)和線粒體中的自由基保護ESCs免受氧化應(yīng)激[75]。ROS和SOD反應(yīng)產(chǎn)生的H2O2通過CAT和GPx等抗氧化酶進(jìn)一步降解為O2和H2O[76]。CAT和GPx通過對抗自由基恢復(fù)受損的蛻膜化過程[77]。這些結(jié)果表明,子宮內(nèi)膜蛻膜化抑制調(diào)節(jié)胚胎植入和母體耐受之間的平衡,并對抗和緩解氧化應(yīng)激。在病理狀態(tài)和衰老過程中,由于氧化應(yīng)激,子宮殺傷細(xì)胞的衰老細(xì)胞清除受到損害,慢性衰老相關(guān)分泌表型導(dǎo)致子宮內(nèi)膜中長期的無菌性炎癥和周圍細(xì)胞的旁分泌衰老[78]。由于子宮殺傷細(xì)胞無法去除日益積累的衰老蛻膜細(xì)胞,子宮內(nèi)膜炎癥加劇,最終導(dǎo)致功能和容受性缺陷,以及胚胎識別和植入不準(zhǔn)確。
4" 氧化應(yīng)激引起子宮及妊娠相關(guān)疾病
母畜在不斷的新陳代謝過程中會產(chǎn)生自由基[79],自由基極其不穩(wěn)定且高度活躍,它們通過從附近的分子中(例如脂質(zhì)、蛋白質(zhì)或碳水化合物)獲取電子來達(dá)到穩(wěn)定狀態(tài)[80]。這個過程會引起連鎖反應(yīng),從而導(dǎo)致相關(guān)的細(xì)胞損傷。氧化應(yīng)激源于促氧化劑(自由基種類)和身體清除能力(抗氧化劑)之間的不平衡。ROS影響從卵母細(xì)胞成熟到受精、胚胎發(fā)育和妊娠的多個生理過程,以及女性的更年期甚至整個生殖壽命。過量的ROS會誘發(fā)炎癥反應(yīng)并損害細(xì)胞系統(tǒng),甚至在DNA和RNA水平上,導(dǎo)致胎盤過早老化[81]。胎盤的過早老化和變性可能會降低其功能并導(dǎo)致異常妊娠結(jié)局,如子宮內(nèi)膜癌、先兆子癇、妊娠期糖尿病和宮內(nèi)生長受限等。
4.1" 子宮內(nèi)膜癌(endometrial carcinoma,EC)
氧化應(yīng)激產(chǎn)生過量的ROS會導(dǎo)致細(xì)胞死亡和組織損傷,從而引發(fā)癌癥[82]。EC是最常見的婦科惡性腫瘤。在EC中,通常出現(xiàn)不規(guī)則陰道出血的典型癥狀,導(dǎo)致血紅素的大量釋放,而氧化應(yīng)激可以通過血紅素的降解產(chǎn)物介導(dǎo),加速腫瘤的發(fā)生[83]。關(guān)于ROS在腫瘤發(fā)生中作用的初步試驗認(rèn)為,直接的DNA損傷因子會誘發(fā)致癌作用[84]。然而,最近的證據(jù)表明,ROS通過激活某些信號通路(如NF-κB)參與慢性炎癥和癌癥之間的聯(lián)系[85]。氧化應(yīng)激和慢性炎癥是相互關(guān)聯(lián)的,并建立了一個維持腫瘤發(fā)展的惡性循環(huán),從而增加EC死亡風(fēng)險[86]。Punnonen等[87]發(fā)現(xiàn)EC癌組織中的SOD活性明顯低于正常子宮內(nèi)膜,這表明EC與酶抗氧化防御系統(tǒng)受損有關(guān)。Monge等[88]證明了對氧化應(yīng)激的調(diào)節(jié)反應(yīng)通過轉(zhuǎn)錄因子ETV5促進(jìn)了EC的侵襲。此外,氧化應(yīng)激已被證明在子宮內(nèi)膜異位癥(endometriosis,EMT)的發(fā)病機制和進(jìn)展中起重要作用。EMT患者的氧化相關(guān)標(biāo)志物水平顯著升高[89],但增加抗氧化功能能夠恢復(fù)細(xì)胞存活和抑制后續(xù)的惡性轉(zhuǎn)化[90]。因此氧化應(yīng)激在子宮內(nèi)膜病癥的發(fā)病機制和進(jìn)展中起重要作用。
4.2" 先兆子癇(preeclampsia,PE)
PE是一種血管性妊娠疾病,通常涉及胎盤發(fā)育受損。因氧化應(yīng)激會導(dǎo)致絲裂原活化蛋白激酶的催化活性降低,進(jìn)而引發(fā)內(nèi)皮細(xì)胞功能障礙、滋養(yǎng)細(xì)胞遷移和侵襲異常,導(dǎo)致PE[91]。在PE前期中性粒細(xì)胞可通過呼吸爆發(fā)釋放細(xì)胞毒性活性氧簇發(fā)揮其效應(yīng),導(dǎo)致SOD陰離子產(chǎn)生增加和NO水平降低,最終導(dǎo)致PE患者的內(nèi)皮細(xì)胞損傷[92]。氧是細(xì)胞代謝活動中產(chǎn)生電子的最終受體,這些活性主要包括黃嘌呤氧化還原酶、NADPH氧化酶、NOS和線粒體氧化磷酸化的活性[93]。在病理條件下,氧不完全還原從而變成ROS。已觀察到PE患者的自身免疫性抗體可促進(jìn)胚胎滋養(yǎng)層細(xì)胞和平滑肌細(xì)胞中SOD陰離子的產(chǎn)生和NADPH的過度表達(dá)。因此,早期胎盤發(fā)育可能受到NADPH介導(dǎo)的基因表達(dá)改變,進(jìn)而影響血管發(fā)育和功能[94]。PE前期病患產(chǎn)生ROS,NADPH表達(dá)高于未患病患者[95]。更具體地說,早發(fā)性PE前期病患比晚發(fā)性病患產(chǎn)生更多的SOD陰離子[96]。這些結(jié)果表明,消耗抗氧化劑來抵消氧化應(yīng)激的增加會損害血管內(nèi)皮,并與PE前期的發(fā)病機制有關(guān)[97]。換言之,PE前期的病理事件是胎盤ROS升高或抗氧化活性降低導(dǎo)致血管內(nèi)皮氧化應(yīng)激和損傷。因此,孕期補充多種維生素可降低正?;蝮w重不足孕婦發(fā)生子癇前期的風(fēng)險。
4.3" 妊娠期糖尿?。╣estational diabetes mellitus,GDM)
高血糖環(huán)境與氧化應(yīng)激有關(guān)。通過在大鼠中利用高血糖誘導(dǎo)的GDM來研究自由基產(chǎn)生增加的不同機制,發(fā)現(xiàn)葡萄糖代謝是ROS的主要來源[98],高血糖誘導(dǎo)的脂質(zhì)過氧化及其糖基化終產(chǎn)物通過其細(xì)胞受體修飾和滅活酶,刺激ROS的產(chǎn)生以及增加NF-κB的轉(zhuǎn)錄活性,這是一種經(jīng)典的炎癥途徑[99-100]。因此,慢性高血糖通過氧化應(yīng)激損害細(xì)胞蛋白、MDA的形成和核酸的功能最終導(dǎo)致子宮病變。與正常妊娠相比,伴有GDM的妊娠與氧化應(yīng)激水平增加相關(guān),GDM病患的ROS會過量產(chǎn)生,自由基消除機制受損。這種有缺陷的抗氧化系統(tǒng)會導(dǎo)致胚胎和胎兒處于氧化應(yīng)激的有害影響。它還與胎盤蛻膜發(fā)育不全有關(guān)[101],GDM患者后代先天性畸形的發(fā)生率較高,GDM期間控制血脂可以使抗氧化酶活性增加以維持氧化還原穩(wěn)態(tài),防止胎兒胎盤內(nèi)皮功能受損[101]。因此,減少妊娠期母體氧化應(yīng)激對于GDM患者胎兒正常發(fā)育至關(guān)重要。
4.4" 宮內(nèi)生長受限(intrauterine growth retardation,IUGR)
IUGR是指胎兒未能達(dá)到其遺傳生長潛力。IUGR最常見的病因是子宮胎盤功能障礙,這會導(dǎo)致母體子宮胎盤血流量減少[102]。胎盤形成過程中氧化應(yīng)激影響胎盤功能。有研究認(rèn)為,胎盤功能不全起源于妊娠早期,滋養(yǎng)層侵入胎盤床螺旋動脈的過程產(chǎn)生了ROS和氧化應(yīng)激,胎盤形成期間螺旋動脈異常重塑繼發(fā)的輕度缺血再灌注損傷也可能導(dǎo)致氧化應(yīng)激[103]。IUGR妊娠患者母體血漿、臍帶血漿和胎盤組織中的MDA水平高于健康妊娠患者[104]。此外,IUGR患者胎盤顯示出衰老標(biāo)志物的跡象,包括端??s短以及端粒酶活性缺失或降低[105],胎盤中抗凋亡蛋白Bcl-2的水平降低[106],以及氧化應(yīng)激標(biāo)志物的增加和抗氧化能力的降低[107]??梢?,氧化應(yīng)激導(dǎo)致胎盤衰老和IUGR,進(jìn)而影響母畜正常繁殖性能。
5" 展" 望
大量研究表明,氧化應(yīng)激是多種妊娠并發(fā)癥的主要致病因素。氧化應(yīng)激對母畜子宮功能的影響機制,包括氧自由基對子宮組織的直接損傷、氧化應(yīng)激對子宮形態(tài)和結(jié)構(gòu)的改變、氧化應(yīng)激引起的子宮內(nèi)膜炎癥等。ROS的過度刺激可在妊娠的所有階段引起子宮內(nèi)膜癌、先兆子癇、妊娠期糖尿病和宮內(nèi)生長受限等疾病。ROS在母畜子宮以及生殖過程中的作用具有兩面性,高水平ROS引起的氧化應(yīng)激對母畜生殖系統(tǒng)可造成不可逆的損傷,繼而導(dǎo)致生殖功能降低,影響繁殖生產(chǎn)效率。有效緩解氧化應(yīng)激、維持并改善子宮功能是提高母畜繁殖效率的有效措施之一,借助組學(xué)等信息技術(shù)有助于解釋妊娠期子宮氧化應(yīng)激的形成機制。近年來對于植物提取物和天然產(chǎn)物抗氧化活性的挖掘,有望將其應(yīng)用于妊娠期緩解氧化應(yīng)激,提高母畜生殖健康水平并促進(jìn)畜牧業(yè)可持續(xù)發(fā)展。
參考文獻(xiàn)(References):
[1]" YOSHIKAWA T,YOU F.Oxidative stress and bio-regulation[J].Int J Mol Sci,2024,25(6):3360.
[2]" ZHANG Y H,ZHAO W,XU H F,et al.Hyperandrogenism and insulin resistance-induced fetal loss:evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome[J].J Physiol,2019,597(15):3927-3950.
[3]" SANG Y F,LI Y H,XU L,et al.Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases[J].Acta Biochim Biophys Sin (Shanghai),2020,52(2):105-115.
[4]" KAJIHARA T,JONES M,F(xiàn)USI L,et al.Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization[J].Mol Endocrinol,2006,20(10):2444-2455.
[5]" SHAITO A,ARAMOUNI K,ASSAF R,et al.Oxidative stress-induced endothelial dysfunction in cardiovascular diseases[J].Front Biosci (Landmark Ed),2022,27(3):105.
[6]" YAN F,ZHAO Q,LI Y,et al.The role of oxidative stress in ovarian aging:a review[J].J Ovarian Res,2022,15(1):100.
[7]" BATG G,DOOTO A,BA′K E,et al.The interplay of oxidative stress and immune dysfunction in Hashimoto’s thyroiditis and polycystic ovary syndrome:a comprehensive review[J].Front Immunol,2023,14:1211231.
[8]" SUGINO N,SHIMAMURA K,TAKIGUCHI S,et al.Changes in activity of superoxide dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy[J].Hum Reprod,1996,11(5):1073-1078.
[9]" FRANCO C,SCIATTI E,F(xiàn)AVERO G,et al.Essential hypertension and oxidative stress:novel future perspectives[J].Int J Mol Sci,2022,23(22):14489.
[10]" ALBRAHIM T,ALANGRY R,ALOTAIBI R,et al.Effects of regular exercise and intermittent fasting on neurotransmitters, inflammation,oxidative stress,and brain-derived neurotrophic factor in cortex of ovariectomized rats[J].Nutrients, 2023,15(19):4270.
[11]" DEMIRCI-EKI S,ZKAN G,AVAN A N,et al.Biomarkers of oxidative stress and antioxidant defense[J].J Pharm Biomed Anal,2022,209:114477.
[12]" ZHOU K,XIAO J,WANG H,et al.Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway[J].Heliyon,2023,9(3):e14305.
[13]" GUO Y S,CAI X S,LU H W,et al.17β-estradiol promotes apoptosis of HepG2 cells caused by oxidative stress by increasing Foxo3a phosphorylation[J].Front Pharmacol,2021,12:607379.
[14]" DOMAZETOVIC V,F(xiàn)ALSETTI I,CIUFFI S,et al.Effect of oxidative stress-induced apoptosis on active FGF23 levels in MLO-Y4 cells:the protective role of 17-β-estradiol[J].Int J Mol Sci,2022,23(4):2103.
[15]" GALMS-PASCUAL B M,MARTNEZ-CIGNONI M R,MORN-COSTOYA A,et al.17β-estradiol ameliorates lipotoxicity-induced hepatic mitochondrial oxidative stress and insulin resistance[J].Free Radic Biol Med,2020,150:148-160.
[16]" TIAN X,GAO Z L,YIN D Y,et al.17beta-estradiol alleviates contusion-induced skeletal muscle injury by decreasing oxidative stress via SIRT1/PGC-1α/Nrf2 pathway[J].Steroids,2023,191:109160.
[17]" HAJIALIZADEH Z,KHAKSARI M.The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy:a review[J]. Heart Fail Rev,2022,27(2):725-738.
[18]" XU Y Y,XU H,YIN X P,et al.17 β-Estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway[J].J Biosci,2021,46(4):113.
[19]" LIEHR J G.Genotoxic effects of estrogens[J].Mutat Res/Rev Genet Toxicol,1990,238(3):269-276.
[20]" NASIADEK M,SKRZYPIN′SKA-GAWRYSIAK M,DARAG A,et al.Involvement of oxidative stress in the mechanism of cadmium-induced toxicity on rat uterus[J].Environ Toxicol Pharmacol,2014,38(2):364-373.
[21]" JUN Y W,ALBARRAN E,WILSON D L,et al.Fluorescence imaging of mitochondrial DNA base excision repair reveals dynamics of oxidative stress responses[J].Angew Chem Int Ed,2022,61(6):e202111829.
[22]" AL-GUBORY K H,BOLIFRAUD P,GARREL C.Regulation of key antioxidant enzymatic systems in the sheep endometrium by ovarian steroids[J].Endocrinology,2008,149(9):4428-4434.
[23]" SINGH D,SHARMA M K,PANDEY R S.Changes in superoxide dismutase activity and estradiol-17 beta content in follicles of different sizes from ruminants[J].Indian J Exp Biol,1998,36(4):358-360.
[24]" LALORAYA M,JAIN S,THOMAS M,et al.Estrogen surge:a regulatory switch for superoxide radical generation at implantation[J].IUBMB Life,1996,39(5):933-940.
[25]" VELUTHAKAL R,ESPARZA D,HOOLACHAN J M,et al.Mitochondrial dysfunction,oxidative stress,and inter-organ miscommunications in T2D progression[J].Int J Mol Sci,2024,25(3):1504.
[26]" DURANTI G.Oxidative stress and skeletal muscle function[J].Int J Mol Sci,2023,24(12):10227.
[27]" ALESE M O,BAMISI O D,ALESE O O.Progesterone modulates cadmium-induced oxidative stress and inflammation in hepatic tissues of Wistar rats[J].Int J Clin Exp Pathol,2021,14(10):1048-1055.
[28]" FENG L P,ALLEN T K,MARINELLO W P,et al.Roles of progesterone receptor membrane component 1 in oxidative stress-induced aging in chorion cells[J].Reprod Sci,2019,26(3):394-403.
[29]" LALORAYA M,KUMAR G P,LALORAYA M M.Histochemical study of superoxide dismutase in the ovary of the rat during the oestrous cycle[J].J Reprod Fert,1989,86(2):583-587.
[30]" MANCINI A,DI SEGNI C,RAIMONDO S,et al.Thyroid hormones,oxidative stress,and inflammation[J].Mediators Inflamm, 2016, 2016: 6757154.
[31]" HUANG P S,WANG C S,YEH C T,et al.Roles of thyroid hormone-associated microRNAs affecting oxidative stress in human hepatocellular carcinoma[J].Int J Mol Sci,2019,20(20):5220.
[32]" BUCZYN′SKA A,SIDORKIEWICZ I,ROGUCKI M,et al.Oxidative stress and radioiodine treatment of differentiated thyroid cancer[J].Sci Rep,2021,11(1):17126.
[33]" AGHAJANOVA L,STAVREUS-EVERS A,LINDEBERG M,et al.Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology[J].Fertil Steril,2011,95(1):230-237.e2.
[34]" HULCHIY M,ZHANG H,CLINE J M,et al.Receptors for thyrotropin-releasing hormone,thyroid-stimulating hormone,and thyroid hormones in the macaque uterus:effects of long-term sex hormone treatment[J].Menopause,2012,19(11):1253-1259.
[35]" FEDAIL J S,ZHENG K Z,WEI Q W,et al.Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats[J].Endocrine,2014,46(3):594-604.
[36]" NER J,NER H.Immunodetection of thyroid hormone receptor (alpha1/alpha2) in the rat uterus and oviduct[J].Acta Histochem Cytochem,2007,40(3):77-81.
[37]" KONG L F,WEI Q W,F(xiàn)EDAIL J S,et al.Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats[J].J Reprod Dev,2015,61(3):219-227.
[38]" STAVREUS EVERS A.Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility[J].Front Endocrinol (Lausanne),2012,3:50.
[39]" VILLANUEVA I,ALVA-SNCHEZ C,PACHECO-ROSADO J.The role of thyroid hormones as inductors of oxidative stress and neurodegeneration[J].Oxid Med Cell Longev,2013,2013:218145.
[40]" REHMAN R,RAJPAR H I,ASHRAF M,et al.Role of oxidative stress and altered thyroid hormones in unexplained infertility[J].J Pak Med Assoc,2020,70(8):1345-1349.
[41]" KRAVCHENKO V,ZAKHARCHENKO T.Thyroid hormones and minerals in immunocorrection of disorders in autoimmune thyroid diseases[J].Front Endocrinol (Lausanne),2023,14:1225494.
[42]" SUGINO N.The role of oxygen radical-mediated signaling pathways in endometrial function[J].Placenta,2007,28 Suppl 1:S133-S136.
[43]" DAS A,ROYCHOUDHURY S.Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles[J].Adv Exp Med Biol,2022,1358:9-40.
[44]" RUDER E H,HARTMAN T J,BLUMBERG J,et al.Oxidative stress and antioxidants:exposure and impact on female fertility[J].Hum Reprod Update,2008,14(4):345-357.
[45]" BAI X C,ZHENG L W,LI D D,et al.Research progress of endometrial receptivity in patients with polycystic ovary syndrome:a systematic review[J].Reprod Biol Endocrinol,2021,19(1):122.
[46]" JIANG N X,LI X L.The disorders of endometrial receptivity in PCOS and its mechanisms[J].Reprod Sci,2022,29(9):2465-2476.
[47]" HU M,ZHANG Y,LU L,et al.Overactivation of the androgen receptor exacerbates gravid uterine ferroptosis via interaction with and suppression of the NRF2 defense signaling pathway[J].FEBS Lett,2022,596(6):806-825.
[48]" SONG P,LIU C,SUN M,et al.Transcription Factor Nrf2 Modulates Lipopolysaccharide-Induced Injury in Bovine Endometrial Epithelial Cells[J].Int J Mol Sci,2023,24(13):11221.
[49]" CHEN M X,LI J,ZHANG B,et al.Uterine insulin sensitivity defects induced embryo implantation loss associated with mitochondrial dysfunction-triggered oxidative stress[J].Oxid Med Cell Longev,2021,2021:6655685.
[50]" BELLEZZA I,GIAMBANCO I,MINELLI A,et al.Nrf2-Keap1 signaling in oxidative and reductive stress[J].Biochim Biophys Acta Mol Cell Res,2018,1865(5):721-733.
[51]" TANIKAWA N,OHTSU A,KAWAHARA-MIKI R,et al.Age-associated mRNA expression changes in bovine endometrial cells in vitro[J].Reprod Biol Endocrinol,2017,15(1):63.
[52]" TEKLENBURG G,SALKER M,MOLOKHIA M,et al.Natural selection of human embryos:decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation[J].PLoS One,2010,5(4):e10258.
[53]" ZHANG H Q,DAVIES K J A,F(xiàn)ORMAN H J.Oxidative stress response and Nrf2 signaling in aging[J].Free Radic Biol Med,2015,88:314-336.
[54]" LI Z Q,ZHENG C N,LIU H T,et al.A novel oxidative stress-related gene signature as an indicator of prognosis and immunotherapy responses in HNSCC[J].Aging (Albany NY),2023,15(24):14957-14984.
[55]" CARNEVALE E M,GINTHER O J.Relationships of age to uterine function and reproductive efficiency in mares[J].Theriogenology,1992,37(5):1101-1115.
[56]" AKIYAMA Y,IVANOV P.Oxidative stress,transfer RNA metabolism,and protein synthesis[J].Antioxid Redox Signal,2024,40(10-12):715-735.
[57]" SALAMONSEN L A,LATHBURY L J.Endometrial leukocytes and menstruation[J].Hum Reprod Update,2000,6(1):16-27.
[58]" KWAK-KIM J,BAO S H,LEE S K,et al.Immunological modes of pregnancy loss:inflammation,immune effectors,and stress[J].Am J Reprod Immunol,2014,72(2):129-140.
[59]" DYMANOWSKA-DYJAK I,TERPIOWSKA B,MORAWSKA-MICHALSKA I,et al.Immune dysregulation in endometriomas: implications for inflammation[J].Int J Mol Sci,2024,25(9):4802.
[60]" VALENZUELA-MELGAREJO F J,LAGUNAS C,CARMONA-PASTN F,et al.Supraphysiological role of melatonin over vascular dysfunction of pregnancy,a new therapeutic agent?[J].Front Physiol,2021,12:767684.
[61]" RUDNICKA E,SUCHTA K,GRYMOWICZ M,et al.Chronic low grade inflammation in pathogenesis of PCOS[J].Int J Mol Sci,2021,22(7):3789.
[62]" FALOMO M E,DEL RE B,ROSSI M,et al.Relationship between postpartum uterine involution and biomarkers of inflammation and oxidative stress in clinically healthy mares (Equus caballus)[J].Heliyon,2020,6(4):e03691.
[63]" IBRAHIM M A,ALBAHLOL I A,WANI F A,et al.Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress,inflammation and apoptosis[J].Chem Biol Interact,2021,338:109402.
[64]" TANTENGCO O A G,VINK J,MEDINA P M B,et al.Oxidative stress promotes cellular damages in the cervix:implications for normal and pathologic cervical function in human pregnancy[J].Biol Reprod,2021,105(1):204-216.
[65]" LI X,WU H S,XING W W,et al.Short-term association of fine particulate matter and its constituents with oxidative stress,symptoms and quality of life in patients with allergic rhinitis:a panel study[J].Environ Int,2023,182:108319.
[66]" ZULFIQAR F,NAFEES M,CHEN J J,et al.Chemical priming enhances plant tolerance to salt stress[J].Front Plant Sci,2022,13:946922.
[67]" HU X Q,SONG R,ZHANG L B.Effect of oxidative stress on the estrogen-NOS-NO-KCa channel pathway in uteroplacental dysfunction:its implication in pregnancy complications[J].Oxid Med Cell Longev,2019,2019:9194269.
[68]" WU Y,LI M,ZHANG J,et al.Unveiling uterine aging: Much more to learn[J].Ageing Res Rev,2023,86:101879.
[69]" NER-YIDOGˇAN Y,KOAK H,GRDL F,et al.Indices of oxidative stress in eutopic and ectopic endometria of women with endometriosis[J].Gynecol Obstet Invest,2004,57(4):214-217.
[70]" WU H,XU T,CHEN T,et al.Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice[J].Sci Total Environ,2022,838:155825.
[71]" NELSON W,ADU-GYAMFI E A,CZIKA A,et al.Bisphenol A-induced mechanistic impairment of decidualization[J].Mol Reprod Dev,2020,87(8):837-842.
[72]" TAMARU S,KAJIHARA T,MIZUNO Y,et al.Heparin prevents oxidative stress-induced apoptosis in human decidualized endometrial stromal cells[J].Med Mol Morphol,2019,52(4):209-216.
[73]" LEITAO B,JONES M C,F(xiàn)USI L,et al.Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals[J].FASEB J,2010,24(5):1541-1551.
[74]" LIU A X,HE W H,YIN L J,et al.Sustained endoplasmic reticulum stress as a cofactor of oxidative stress in decidual cells from patients with early pregnancy loss[J].J Clin Endocrinol Metab,2011,96(3):E493-E497.
[75]" ZHANG S,LIN H Y,KONG S B,et al.Physiological and molecular determinants of embryo implantation[J].Mol Aspects Med,2013,34(5):939-980.
[76]" ZHENG H T,ZHANG H Y,CHEN S T,et al.The detrimental effects of stress-induced glucocorticoid exposure on mouse uterine receptivity and decidualization[J].FASEB J,2020,34(11):14200-14216.
[77]" LI Y,CHEN S T,HE Y Y,et al.The regulation and function of acetylated high-mobility group box 1 during implantation and decidualization[J].Front Immunol,2023,14:1024706.
[78]" TAKEZAWA Y,IWAI M,F(xiàn)UJIKI Y,et al.Embryonic β-catenin is required for priming of the uterus to implantation[J].Lab Invest,2023,103(3):100026.
[79]" DEER E,HERROCK O,CAMPBELL N,et al.The role of immune cells and mediators in preeclampsia[J].Nat Rev Nephrol,2023,19(4):257-270.
[80]" MATSUBARA K,HIGAKI T,MATSUBARA Y,et al.Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia[J].Int J Mol Sci,2015,16(3):4600-4614.
[81]" NEHA K,HAIDER R,PATHAK A,et al.Medicinal prospects of antioxidants:a review[J].Eur J Med Chem,2019,178:687-704.
[82]" MICHALAK M.Plant-derived antioxidants:significance in skin health and the ageing process[J].Int J Mol Sci,2022,23(2):585.
[83]" BURTON G J,CINDROVA-DAVIES T,YUNG H W,et al.HYPOXIA AND REPRODUCTIVE HEALTH:oxygen and development of the human placenta[J].Reproduction,2021,161(1):F53-F65.
[84]" JELIC M D,MANDIC A D,MARICIC S M,et al.Oxidative stress and its role in cancer[J].J Cancer Res Ther,2021,17(1):22-28.
[85]" LIU Q,YU M H,ZHANG T.Construction of oxidative stress-related genes risk model predicts the prognosis of uterine corpus endometrial cancer patients[J].Cancers (Basel),2022,14(22):5572.
[86]" BUKATO K,KOSTRZEWA T,GAMMAZZA A M,et al.Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers[J].Cell Commun Signal,2024,22(1):205.
[87]" PUNNONEN R,KUDO R,PUNNONEN K,et al.Activities of antioxidant enzymes and lipid peroxidation in endometrial cancer[J].Eur J Cancer,1993,29A(2):266-269.
[88]" MONGE M,COLAS E,DOLL A,et al.Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress[J].Carcinogenesis,2009,30(8):1288-1297.
[89]" CROSBIE EJ,KITSON SJ,MCALPINE JN,et al.Endometrial cancer[J].Lancet,2022,399(10333):1412-1428.
[90]" BAKHTIYAROV K,IVANTSOVA M,KUKES I,et al.Metabolomic markers of endometriosis: Prospects[J].Georgian Med News,2023,(340-341):275-279.
[91]" CLOWER L,F(xiàn)LESHMAN T,GELDENHUYS WJ,et al. Targeting Oxidative Stress Involved in Endometriosis and Its Pain[J].Biomolecules,2022,12(8):1055.
[92]" BARDEN A E,SHINDE S,PHILLIPS M,et al.Mediators of inflammation resolution and vasoactive eicosanoids in gestational diabetes and preeclampsia[J].J Hypertens,2022,40(11):2236-2244.
[93]" LIU G H,DONG Y L,WANG Z X,et al.Restraint stress delays endometrial adaptive remodeling during mouse embryo implantation[J].Stress,2015,18(6):699-709.
[94]" KATERJI M,F(xiàn)ILIPPOVA M,DUERKSEN-HUGHES P.Approaches and methods to measure oxidative stress in clinical samples:research applications in the cancer field[J].Oxid Med Cell Longev,2019,2019:1279250.
[95]" GRIENDLING K K,SORESCU D,LASSEGUE B,et al.Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology[J].Arterioscler Thromb Vasc Biol,2000,20(10):2175-2183.
[96]" TRUJILLO M,ODLE A K,AYKIN-BURNS N,et al.Chemotherapy induced oxidative stress in the ovary:drug-dependent mechanisms and potential interventions[J].Biol Reprod,2023,108(4):522-537.
[97]" WANG Y W,QI H,LIU Y,et al.The double-edged roles of ROS in cancer prevention and therapy[J].Theranostics,2021,11(10):4839-4857.
[98]" HUANG X J,JIA L Y,JIA Y H,et al.sFlt-1-enriched exosomes induced endothelial cell dysfunction and a preeclampsia-like phenotype in mice[J].Cytokine,2023,166:156190.
[99]" LI H M,REN J,LI Y S,et al.Oxidative stress:the nexus of obesity and cognitive dysfunction in diabetes[J].Front Endocrinol (Lausanne),2023,14:1134025.
[100]" OGUNTIBEJU O O.Type 2 diabetes mellitus,oxidative stress and inflammation:examining the links[J].Int J Physiol Pathophysiol Pharmacol,2019,11(3):45-63.
[101]" CONTRERAS-DUARTE S,CARVAJAL L,GARCHITORENA M J,et al.Gestational diabetes mellitus treatment schemes modify maternal plasma cholesterol levels dependent to women’s weight:possible impact on feto-placental vascular function[J].Nutrients,2020,12(2):506.
[102]" BURTON G J,JAUNIAUX E.Pathophysiology of placental-derived fetal growth restriction[J].Am J Obstet Gynecol,2018,218(2S):S745-S761.
[103]" MAND C,DE PALMA C,STAMPALIJA T,et al.Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia[J].Am J Physiol Endocrinol Metab,2014,306(4):E404-E413.
[104]" CHANDRAHARAN E,GHI T,F(xiàn)IENI S,et al.Optimizing the management of acute,prolonged decelerations and fetal bradycardia based on the understanding of fetal pathophysiology[J].Am J Obstet Gynecol,2023,228(6):645-656.
[105]" OKE S L,HARDY D B.The role of cellular stress in intrauterine growth restriction and postnatal dysmetabolism[J].Int J Mol Sci,2021,22(13):6986.
[106]" DAVY P,NAGATA M,BULLARD P,et al.Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta[J].Placenta,2009,30(6):539-542.
[107]" ZHANG H,ZHENG Y,LIU X,et al.Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes[J].Environ Int,2023,173:107806.
(編輯" 郭云雁)