摘" 要: 旨在分析豬源糞便樣本中攜帶tet(X4)基因大腸桿菌的分布及其耐藥性、消毒劑抗性和消毒劑抗性基因攜帶情況。采集浙江省杭州、諸暨、舟山生豬養(yǎng)殖場豬糞便樣本共計440份,通過PCR檢測tet(X4)基因、消毒劑基因和Enterobacterial repetitive intergenic consensus(ERIC)分型;通過16S rRNA序列鑒定細菌種屬,采用微量肉湯稀釋法測試菌株的耐藥表型和消毒劑抗性表型。結(jié)果顯示,3個地區(qū)共分離到攜帶tet(X4)基因的大腸桿菌117株,不同地區(qū)的tet(X4)大腸桿菌分離率為24.0%~29.5%。所有菌株對氨芐西林、阿莫西林/克拉維酸、氟苯尼考、替加環(huán)素耐藥率均為100%,但均對黏菌素和美羅培南敏感。菌株對次氯酸鈉、過硫酸氫鉀的最小抑菌濃度(minimum inhibitory concentration,MIC)值較高,均為消毒劑工作濃度的1/2。與ATCC 25922相比,僅少量菌株對過氧化氫等5種消毒劑的MIC值高于標準菌株,但92.3%的菌株對苯扎溴銨的MIC值高于標準菌株。菌株所攜帶的消毒劑抗性基因以sugE(c)、qacF和qacEΔ1最常見,攜帶率分別為100%、25.6%和11.1%。ERIC分型顯示117株菌株主要分為9個類群,呈現(xiàn)多樣性。綜上,攜帶tet(X4)基因的大腸桿菌主要優(yōu)勢類群在浙江省杭州、諸暨、舟山地區(qū)均有分布且均呈現(xiàn)多重耐藥性,菌株有消毒劑抗性基因檢出但對所試消毒劑的工作濃度均不耐受,養(yǎng)殖場可根據(jù)消毒效果選用消毒劑阻斷場內(nèi)多重耐藥菌的傳播。
關(guān)鍵詞: tet(X4);大腸桿菌;耐藥性;消毒劑抗性
中圖分類號: S852.612
文獻標志碼:A
文章編號:0366-6964(2024)12-5880-06
doi: 10.11843/j.issn.0366-6964.2024.12.049
開放科學(資源服務)標識碼(OSID):
收稿日期:2023-10-24
基金項目:浙江省重點研發(fā)計劃(2021C02058);寧波市公益類科技項目(2022S006)
作者簡介:潘柄霖(1998-),男,四川達州人,碩士生,主要從事細菌耐藥性研究,E-mail:xianyuren@stu.zafu.edu.cn
*通信作者:程昌勇,主要從事食源性病原微生物污染防控研究,E-mail: Lamge@zafu.edu.cn;雷" 蕾,主要從事食源性病原微生物污染防控研究,E-mail: leilei910@zafu.edu.cn
Disinfectant Susceptibility Analysis of tet(X4)-Containing Porcine Escherichia coli
PAN" Binglin1, WANG" Sinan1, YAO" Guozhong2, ZHAI" Ruidong1, SONG" Houhui1, CHENG" Changyong1*, LEI" Lei1*
(1.China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection amp; Internet Technology, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology amp; College of Veterinary Medicine of Zhejiang Aamp;F University, Hangzhou 311300," China;
2.Yuhang Agricultural Bureau, Hangzhou 310023," China)
Abstract:" This study aimed to asseess the prevalence of tet(X4)-containing E. coli, along with their antimicrobial resistance and disinfectant susceptibility profiles, as well as the presence of disinfectant resistance genes, in E. coli strains isolated from pig farms. A total of 440 pig fecal samples were collected and analyzed from pig farms located in Hangzhou, Zhuji, Zhoushan, within Zhejiang province. The presence of tet(X4) and disinfectant resistance genes was determined by PCR. Strain clustering was performed through Enterobacterial repetitive intergenic consensus (ERIC)-PCR, and species identification was confirmed using Sanger sequencing of the 16S rRNA gene. The phenotype of antimicrobial susceptibility and disinfectant resistance were exanimated using microdilution broth method. The results revealed that 117 tet(X4)-positive E. coli strains were isolated from samples collected across the three cities in Zhejiang province, with proportions ranging from 24.0% to 29.5%. These strains exhibited 100% resistance to ampicillin, amoxicillin/clavulanate, florfenicol, tigecycline, but remained sensitive to colistin and meropenem. Notably, the minimum inhibitory concentration (MIC) of sodium hypochlorite and potassium hydrogen peroxymonosulfate were higher than other disinfectant, reacing half of their working concentrations. Compared to ATCC 25922, only a few strains displayed higher MICs for hydrogen peroxide, peracetic acid, chlorhexidine acetate, chlorhexidine, benzalkonium bromide solution than the standard strains. Of note, 92.3% of isolates showed higher MICs for benzalkonium bromide than ATCC 25922. The predominant disinfectant resistance genes in tet(X4)-carrying E. coli were sugE(c), qacF and qacEΔ1, with detection rates of 100%, 25.6%, 11.1%, respectively. ERIC clustering showed that the 117 strains were mainly divided in to 9 groups. The study underscore the multidrug resistance observed in tet(X4)-containing E. coli strains across the three cities. While many of these strains harbored disinfectant resistance genes, they were sensitive to working concentration of tested disinfectant. Consequently, pig farms can make informed decisions regarding disinfectant selection to mitigate the spread of multi-drug resistance bacteria.
Key words: tet(X4); E. coli; antimicrobial resistance; disinfectant resistance
*Corresponding authors: CHENG Changyong, E-mail: Lamge@zafu.edu.cn; LEI Lei, E-mail: leilei910@zafu.edu.cn
抗生素在畜牧養(yǎng)殖業(yè)的不合理使用,使得畜禽源細菌的耐藥性問題日益突出。2019年,He等[1]報道在豬源樣本中分離出攜帶可轉(zhuǎn)移高水平替加環(huán)素耐藥基因tet(X4)的菌株,后續(xù)研究發(fā)現(xiàn),其主要在豬源大腸桿菌中流行[2],并可通過食物鏈進行傳播[3],給公共衛(wèi)生安全帶來巨大威脅。消毒劑是養(yǎng)殖場阻止耐藥細菌傳播,減少動物感染的主要辦法。自非洲豬瘟疫情以來,畜牧養(yǎng)殖場常用過硫酸氫鉀復合鹽和二氧化氯、戊二醛等進行消毒[4],隨著養(yǎng)殖場的消毒劑使用量加大,使得耐藥細菌暴露于消毒劑環(huán)境中的時間變長,殘留的消毒劑也會誘導細菌通過表型適應、基因突變、水平基因轉(zhuǎn)移從而表現(xiàn)出對消毒劑的抗性[5]。消毒劑抗性基因中以質(zhì)粒介導的qac基因家族研究較多,其可編碼胍類、季銨鹽類消毒劑的外排蛋白,且與sul1共轉(zhuǎn)移,增加菌株對磺胺類藥物耐藥性[6]。有研究發(fā)現(xiàn),消毒劑的使用可促進tet(X4)基因的轉(zhuǎn)移[7],且細菌長期暴露于消毒劑下可導致細菌本身耐藥性的變化[8],但養(yǎng)殖場內(nèi)攜帶tet(X4)基因大腸桿菌的消毒劑抗性及其消毒劑抗性基因的攜帶情況是否與耐藥性存在相關(guān)性尚不明晰。本研究以豬源攜帶tet(X4)基因大腸桿菌為對象,分析其耐藥性、消毒劑抗性、ERIC-PCR分型研究和消毒劑基因攜帶情況,以期為后續(xù)養(yǎng)殖場阻斷多重耐藥細菌的傳播提供理論依據(jù)。
1" 材料與方法
1.1" 材料
采集豬糞便樣本合計440份(杭州200份、諸暨140份、舟山100份)。
1.2" 方法
1.2.1" 菌株分離和鑒定
吸取糞便拭子液至肉湯中培養(yǎng)6~8 h后涂布于含替加環(huán)素(2 μg·mL-1)的LB平板,培養(yǎng)24 h后刮取菌苔進行PCR,引物和條件參考文獻[1],對檢測到tet(X)基因的樣本再次純化,獲得菌株并保種。以16S rRNA引物對菌株進行PCR擴增,將獲得的產(chǎn)物送至擎科生物技術(shù)有限公司測序,通過與NCBI數(shù)據(jù)庫中序列比對,篩選出大腸桿菌。
1.2.2" 基因和分型檢測
根據(jù)對應文獻的引物和條件檢測tet(X)基因分型[9]及sugE(p)[10]、sugE(c)[10]、 qacE[10]、oqxA/B[11]、qacA/B[12]、qacG[12]、qacH[12]、qacEΔ1[10]、qacF[12]等消毒劑基因。根據(jù)文獻[13]中的引物和條件進行PCR、電泳和聚類分析,獲得菌株的ERIC分型。
1.2.3" 藥物敏感性試驗
使用肉湯稀釋法進行12種藥物的敏感性測試,參考美國臨床和實驗室標準協(xié)會(Clinical and Laboratory Standards Institute,CLSI)標準CLSI-M100-ED23和CLSI-VET08判定菌株的耐藥性。
1.2.4" 消毒劑抗性試驗
參照金虹等[14]建立的微量肉湯稀釋法,以ATCC 25922為質(zhì)控菌株,測定商品化消毒劑的MIC值,包括過氧乙酸(5g·L-1)、聚維酮碘(10g·dL-1)、洗必泰(0.2%)、新潔爾滅(3%±0.3%)、無水乙醇(100%)、84消毒液(2.5%~5%)、戊二醛(20%)、過氧化氫(30%);購買粉末自配消毒劑包括過硫酸氫鉀、苯扎溴銨、醋酸氯己定、次氯酸鈉、杜邦衛(wèi)可共13種消毒劑。
1.2.5" 統(tǒng)計分析
使用Graphpad Prism軟件對數(shù)據(jù)進行統(tǒng)計分析和處理,采用t 檢驗,Plt;0.05具有統(tǒng)計學意義。
2" 結(jié)" 果
2.1" 菌株的分離鑒定和tet(X)分型檢測
結(jié)果顯示,在163個樣本的菌苔中檢出tet(X)基因,檢出率為37.0%(95%CI:32.5%~41.7%),經(jīng)過分離純化和16S rRNA測序比對確定大腸桿菌117株(杭州59株、諸暨34株、舟山24株)(圖1A)。PCR結(jié)果顯示,所有菌株的分型均為tet(X4)。
2.2" 耐藥表型鑒定
藥敏試驗結(jié)果顯示,菌株對12種抗生素表現(xiàn)出不同程度的耐藥性,對4種藥物(氟苯尼考、氨芐西林、阿莫西林/克拉維酸鉀和替加環(huán)素)的耐藥率均為100%,對多西環(huán)素的耐藥率達到98%以上,但對美羅培南、黏菌素敏感。慶大霉素、阿米卡星、環(huán)丙沙星、頭孢噻呋和頭孢他啶的耐藥率在不同地區(qū)存在一定差異,其中杭州地區(qū)菌株的頭孢他啶MIC值顯著低于諸暨、舟山地區(qū)(Plt;0.05),但阿米卡星的MIC值卻顯著高于諸暨、舟山地區(qū)(圖1B)。受試的12種藥物來自8個抗菌藥物類別,所有菌株對至少3類抗菌藥物耐藥,均為多重耐藥株。
2.3" 消毒劑抗性基因攜帶情況與ERIC分型
攜帶tet(X4)基因的大腸桿菌共檢測到oqxA/B、qacEΔ1、qacF、 sugE(c) 4種基因,檢出率分別為3.4%(4/117)、11.1%(13/117)、25.6%(30/117)和100%(117/117)。運用NTsys2.10軟件使用非加權(quán)平均配對法(UPGMA)對ERIC-PCR的凝膠電泳圖譜進行聚類分析(圖2),根據(jù)聚類圖譜結(jié)果以相似度高于80%以上可認定為同一類群,117株大腸桿菌分離株可分為9個不同的類群,優(yōu)勢類群為Ⅱ(40/117)和Ⅶ(41/117)類群。根據(jù)聚類和消毒劑抗性基因的分析結(jié)果顯示,Ⅱ類和Ⅶ類優(yōu)勢群的菌株主要來源于杭州和諸暨,舟山地區(qū)占比較少,優(yōu)勢群的消毒劑抗性基因攜帶率高于其它群。
2.4" 消毒劑抗性表型鑒定
所有攜帶tet(X4)基因大腸桿菌對養(yǎng)殖場常用消毒劑的MIC值均低于消毒劑的工作濃度,且對戊二醛等7種消毒劑的MIC均小于或等于ATCC 25922的MIC。但對次氯酸鈉等4個消毒劑的MIC值多為1/2工作濃度,92.3%的菌株對苯扎溴銨的MIC高于ATCC 25922,與消毒劑抗性基因的攜帶情況相符,僅少量菌株菌對過氧乙酸等5種消毒劑的MIC值大于ATCC 25922的MIC值(圖3)。
3" 討" 論
消毒劑廣泛應用于畜牧養(yǎng)殖業(yè),使得菌株出現(xiàn)了對消毒劑的抗性。本研究中攜帶tet(X4)基因大腸桿菌中常見的消毒劑基因是qacEΔ1、qacF。與郭莉娟等[15]報道的大腸桿菌中qacEΔ1的檢出率33.3%,qacF檢出率13.3%;張?zhí)鹛鸬龋?6]報道的碳青霉烯耐藥腸桿菌中消毒劑抗性基因qacEΔ1的檢出率81.0%相比,本文中qacEΔ1基因檢出率較低,而qacF基因檢出率較高,可能為qacF基因更容易在攜帶tet(X4)基因的大腸桿菌中存在。本文中攜帶耐藥基因的菌株耐藥表型和消毒劑抗性表型差異不明顯,與廣燁蓉[17]報道的相比,本研究中苯扎溴銨的MIC值更高。從消毒劑抗性結(jié)果顯示,養(yǎng)殖場多重耐藥菌株對于季銨鹽類、含氯類消毒劑的抗性相對較高,這可能與這兩類消毒劑的長期使用有關(guān)。
細菌對抵抗消毒劑的機制與耐藥機制存在交叉,但這種交叉是否同時伴有抗生素耐藥性的變化尚無定論。本研究中雖然也檢測到與季銨鹽類相關(guān)的消毒劑基因,但攜帶菌株并未出現(xiàn)顯著的耐藥表型變化,這可能與多數(shù)的tet(X4)基因攜帶菌株為多重耐藥菌,其攜帶的耐藥基因較多,因此消毒劑基因的存在對此類菌株中耐藥表型的影響并不明顯,其次,本試驗檢測到的消毒劑基因有限,對結(jié)果也存在一定影響。對于耐藥菌株而言,消毒劑基因發(fā)揮的作用及消毒劑對耐藥菌株的影響尚需進一步探究。
4" 結(jié)" 論
菌株對本研究所試消毒劑的工作濃度均不耐受,但92.3%的菌株對苯扎溴銨MIC值大于ATCC 25922。攜帶tet(X4)基因大腸桿菌均攜帶sugE(c)基因,其次檢出率較高的消毒劑基因分別為qacF和qacEΔ1,基因qacF和qacEΔ1在三個地區(qū)的優(yōu)勢類群Ⅱ和Ⅶ中均有檢出。
參考文獻(References):
[1]" HE T,WANG R,LIU D J,et al.Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans[J].Nat Microbiol,2019,4(9):1450-1456.
[2]" LI R C,LU X Y,MUNIR A,et al.Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan[J].Sci Total Environ,2022,806(Pt 2):150689.
[3]" TORRES A N,CHAMORRO-VELOSO N,COSTA P,et al.Deciphering additional roles for the EF-Tu,l-asparaginase II and OmpT proteins of shiga toxin-producing Escherichia coli[J].Microorganisms,2020,8(8):1184.
[4]" 王" 娟,王貴平,賈愛卿.兩種化學消毒劑對豬流行性腹瀉病毒的滅活效果觀察[J].中國消毒學雜志,2021,38(7):491-493.
WANG J,WANG G P,JIA A Q.Observation on the inactivation effects of two kinds of chemical disinfectants on porcine epidemic diarrhea virus[J].Chinese Journal of Disinfection,2021,38(7):491-493.(in Chinese)
[5]" 劉新雷.4種消毒劑對豬源大腸桿菌和沙門氏菌的殺滅作用對比[J].豬業(yè)科學,2019,36(8):68-69.
LIU X L.Comparison of killing effects of 4 disinfectants on porcine E. coli and Salmonella[J].Swine Industry Science,2019,36(8):68-69.(in Chinese)
[6]" ABUZAID A A,AMYES S G B.The genetic environment of the antiseptic resistance genes qacEΔ1 and cepA in Klebsiella pneumoniae[J].J Chemother,2014,27(3):139-144.
[7]" ZHU S Y,YANG B Q,JIA Y Q,et al.Comprehensive analysis of disinfectants on the horizontal transfer of antibiotic resistance genes[J].J Hazard Mater,2023,453:131428.
[8]" MERCHEL PIOVESAN PEREIRA B,WANG X K,TAGKOPOULOS I.Biocide-induced emergence of antibiotic resistance in Escherichia coli[J].Front Microbiol,2021,12:640923.
[9]" JI K,XU Y C,SUN J,et al.Harnessing efficient multiplex PCR methods to detect the expanding Tet(X) family of tigecycline resistance genes[J].Virulence,2020,11(1):49-56.
[10]" 張亞萍,陳" 勇,王文英,等.臨床分離大腸埃希菌耐消毒劑基因攜帶情況及5種消毒劑最低抑菌濃度[J].中國感染控制雜志,2016,15(5):289-293.
ZHANG Y P,CHEN Y,WANG W Y,et al.Carriage of disinfectant resistance genes in clinically isolated Escherichia coli and minimal inhibitory concentration of five disinfectants[J].Chinese Journal of Infection Control,2016,15(5):289-293.(in Chinese)
[11]" 劉保光,孫華潤,翟亞軍,等.動物源金黃色葡萄球菌耐藥性、oqxAB和fexA基因流行性及spa分型研究[J].中國獸醫(yī)學報,2019,39(3):445-450.
LIU B G,SUN H R,ZHAI Y J,et al.Resistance,oqxAB and fexA genes and spa typing of Staphylococcus aureus isolated from animals[J].Chinese Journal of Veterinary Science,2019,39(3):445-450.(in Chinese)
[12]" ZOU L K,MENG J H,MCDERMOTT P F,et al.Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA[J].J Antimicrob Chemother,2014,69(10):2644-2649.
[13]" 何卓琳,唐敏嘉,張雪婧,等.奶牛養(yǎng)殖場環(huán)境大腸桿菌的ERIC-PCR分型和系統(tǒng)進化分群[J].畜牧獸醫(yī)學報,2021,52(7):2059-2064.
HE Z L,TANG M J,ZHANG X J,et al.ERIC-PCR genotyping and phylogenetic grouping of Escherichia coli from a dairy farm environment[J].Acta Veterinaria et Zootechnica Sinica,2021,52(7):2059-2064.(in Chinese)
[14]" 金" 虹,李海帥,帖金鳳,等.應用微量稀釋法測定消毒劑最小抑菌濃度方法的建立[J].中國消毒學雜志,2018,35(11):801-804,808.
JIN H,LI H S,TIE J F,et al.Establishment of a broth microdilution MIC testing method for disinfectants[J].Chinese Journal of Disinfection,2018,35(11):801-804,808.(in Chinese)
[15]" 郭莉娟,孫豐慧,張艷嬌,等.生牛奶中分離大腸桿菌對季銨鹽類消毒劑耐藥性研究[J].四川動物,2019,38(6):623-629,645.
GUO L J,SUN F H,ZHANG Y J,et al.Research on quaternary ammonium compounds disinfectant-resistance of Escherichia coli in raw milk[J].Sichuan Journal of Zoology,2019,38(6):623-629,645.(in Chinese)
[16]" 張?zhí)鹛?,劉志武,徐騰飛,等.某三甲醫(yī)院耐碳青霉烯類腸桿菌科細菌耐藥性和耐消毒劑基因分析[J].中華醫(yī)院感染學雜志,2023,33(3):325-329.
ZHANG T T,LIU Z W,XU T F,et al.Drug resistance and disinfectant-resistant genes in carbapenem-resistant Enterobacteriaceae in a three-A hospital[J].Chinese Journal of Nosocomiology,2023,33(3):325-329.(in Chinese)
[17]" 廣燁蓉.豬源致瀉性大腸埃希菌的分離鑒定及消毒劑殺菌效果評價研究[D].武漢:華中農(nóng)業(yè)大學,2022.
GUANG Y R.Isolation and identification of porcine diarrheagenic Escherichia coli and evaluation of the bactericidal effect of disinfectants[D].Wuhan:Huazhong Agricultural University,2022.(in Chinese)
(編輯" 范子娟)