国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于全基因組重測(cè)序SNP分析寧蒗高原雞保種群的群體遺傳多樣性和群體遺傳結(jié)構(gòu)

2024-12-31 00:00:00徐擴(kuò)衛(wèi)李卓輝冷堂健熊寶周杰瓏郭盤江王禹陳粉粉
畜牧獸醫(yī)學(xué)報(bào) 2024年12期

摘" 要: 旨在分析寧蒗高原雞保種群的群體遺傳多樣性和群體遺傳結(jié)構(gòu),以期更好的保護(hù)和利用寧蒗高原雞這一種質(zhì)資源。本研究利用全基因組重測(cè)序技術(shù)檢測(cè)寧蒗高原雞(n=57)、大圍山微型雞(n=20)、尼西雞(n=11)和獨(dú)龍雞(n=10)群體的單核苷酸多態(tài)性(single-nucleotide polymorphism, SNP),以群體觀測(cè)雜合度(Ho)、期望雜合度(He)、多態(tài)性標(biāo)記比例(PN)、核苷酸多態(tài)性(Pi)、次等位基因頻率(Maf)以及連鎖不平衡(linkage disequilibrium, LD)衰減情況分析群體遺傳多樣性;使用主成分分析、系統(tǒng)發(fā)育樹(shù)、群體結(jié)構(gòu)分析探究不同品種的群體遺傳結(jié)構(gòu);以群體分化指數(shù)(Fst)評(píng)估品種間的分化程度,以狀態(tài)同源(identity by state, IBS)、G矩陣和群體近交系數(shù)(FROH)分析寧蒗高原雞保種群體的親緣關(guān)系。結(jié)果顯示,寧蒗高原雞群體的觀測(cè)雜合度(Ho)為0.212,小于其0.221的期望雜合度(He),而大圍山微型雞、獨(dú)龍雞和尼西雞的Ho均高于He,表明寧蒗高原雞群體遺傳多樣性較為豐富;LD衰減分析表明,4個(gè)品種的衰減速度由快到慢依次為寧蒗高原雞、大圍山微型雞、尼西雞、獨(dú)龍雞,說(shuō)明寧蒗高原雞群體遺傳多樣性最高,基因組受選擇程度最低;主成分分析和系統(tǒng)發(fā)育樹(shù)結(jié)果表明,寧蒗高原雞分為3個(gè)支系,大圍山微型雞與寧蒗高原雞、獨(dú)龍雞和尼西雞之間的遺傳背景差異較大;群體結(jié)構(gòu)分析顯示,當(dāng)K=2時(shí)為最優(yōu)分群數(shù),寧蒗高原雞血統(tǒng)較為復(fù)雜,獨(dú)龍雞和尼西雞血統(tǒng)較為相似;群體遺傳分化結(jié)果發(fā)現(xiàn),寧蒗高原雞與大圍山微型雞、尼西雞、獨(dú)龍雞之間均出現(xiàn)中等程度的分化,而獨(dú)龍雞和尼西雞之間的遺傳分化指數(shù)較??;IBS矩陣和G矩陣分析發(fā)現(xiàn),寧蒗高原雞保種群體間大部分個(gè)體親緣關(guān)系較遠(yuǎn),少數(shù)個(gè)體親緣關(guān)系較近。以上結(jié)果表明,寧蒗高原雞與大圍山微型雞、尼西雞、獨(dú)龍雞之間均存在中等程度的分化,寧蒗高原雞保種群體的遺傳多樣性較為豐富,但保種群體間存在一定的近交趨勢(shì),應(yīng)建立有效的育種方案,加強(qiáng)保種,避免近交衰退。

關(guān)鍵詞: 全基因組;寧蒗高原雞;群體遺傳多樣性;群體遺傳結(jié)構(gòu)

中圖分類號(hào):S831.2

文獻(xiàn)標(biāo)志碼: A

文章編號(hào):0366-6964(2024)12-5498-13

doi: 10.11843/j.issn.0366-6964.2024.12.016

開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

收稿日期:2024-05-22

基金項(xiàng)目:云南省農(nóng)業(yè)基礎(chǔ)研究聯(lián)合專項(xiàng)面上項(xiàng)目(202101BD070001-070)

作者簡(jiǎn)介:徐擴(kuò)衛(wèi)(1998-),男,云南曲靖人,碩士生,主要從事動(dòng)物遺傳資源保護(hù)及利用研究,E-mail: xukuowei@foxmail.com ;李卓輝(1996-),男,甘肅天水人,碩士生,主要從事家畜遺傳育種與繁殖研究,E-mail: lizhuohui2021@nwafu.edu.cn。徐擴(kuò)衛(wèi)和李卓輝為同等貢獻(xiàn)作者

*通信作者:王" 禹,主要從事反芻家畜復(fù)雜性狀遺傳基礎(chǔ)研究,E-mail: wang_yu@nwsuaf.edu.cn;陳粉粉,主要從事畜禽脂肪沉積機(jī)理研究,E-mail: ffchen03@sina.com

Analysis of Population Genetic Diversity and Population Genetic Structure of Conservation

Population in Ninglang Plateau Chickens Based on Whole-genome Resequencing SNP

XU" Kuowei1, LI" Zhuohui2, LENG" Tangjian1, XIONG" Bao3, ZHOU" Jielong1, GUO" Panjiang1, WANG" Yu2*, CHEN" Fenfen1*

(1.College of Biological Science and Food Engineering, Southwest Forestry University, Kunming

650224," China;

2.College of Animal Sciences and Technology, Northwest A amp; F University, Yangling 712100," China;

3.Ninglang Plateau Chickens Original Breed Conservation Farm, Labai Township, Ninglang Yi Autonomous County, Ninglang 674309," China)

Abstract:" In order to better protect and utilize the Ninglang Plateau chickens, the population genetic diversity and population genetic structure of Ninglang Plateau chickens conserved population were explored in this study. Whole-genome resequencing technology was used to detect single-nucleotide polymorphism (SNP) in Ninglang Plateau chickens(n=57), Daweishan Mini chickens(n=20), Dulong chickens(n=10) and Nixi chickens(n=11) populations, and population genetic diversity was analyzed by observing heterozygosity (Ho), expected heterozygosity (He), polymorphic nucleotide ratio (PN), nucleotide diversity (Pi), and minor allele frequency (Maf) , and linkage disequilibrium (LD) decay. Principal component analysis, phylogenetic tree, and population structure analysis were employed to examine the population genetic structure of different breeds. The degree of differentiation between breeds was evaluated using the fixation index (Fst). Additionally, the genetic relatedness within the conservation population of Ninglang Plateau chickens were analyzed using identity by state (IBS), G matrix, and the coefficient of inbreeding (FROH). The results showed that the observed heterozygosity (Ho) of the Ninglang Plateau chickens population was 0.212, which was lower than its expected heterozygosity (He) of 0.221, while the Ho values of Daweishan Mini chickens, Dulong chickens, and Nixi chickens were higher than their respective He values, indicating that the genetic diversity of the Ninglang Plateau chickens population was relatively high; LD decay analysis showed that the decay rates of the 4 breeds from fastest to slowest was Ninglang Plateau chickens, Daweishan Mini chickens, Nixi chickens, and Dulong chickens, indicating that Ninglang Plateau chickens population had the highest genetic diversity and the lowest degree of genome selection. The results of principal component analysis and phylogenetic tree showed that Ninglang Plateau chickens were divided into 3 branches. Daweishan Mini chickens exhibited significant genetic divergence from Ninglang Plateau chickens, Dulong chickens, and Nixi chickens. Population structure analysis revealed that the optimal number of clusters was K=2, with Ninglang Plateau chickens exhibiting a complex genetic background, while Dulong chickens and Nixi chickens had relatively similar genetic backgrounds. Population genetic differentiation analysis found moderate levels of differentiation between Ninglang Plateau chickens and Daweishan Mini chickens, Nixi chickens, and Dulong chickens, whereas the genetic differentiation index between Dulong chickens and Nixi chickens was lower; IBS matrix and G matrix analysis revealed that most individuals within the conservation population of Ninglang Plateau chickens were distantly related, with a few individuals showing closer relationships. The results showed that there was a moderate differentiation between Ninglang Plateau chickens and Daweishan Mini chickens, Nixi chickens, and Dulong chickens. The genetic diversity of the Ninglang Plateau chickens breeding population was relatively rich, but there was a trend of inbreeding within the conservation population. Therefore, effective breeding programs should be established, and conservation efforts should be strengthened to avoid inbreeding depression.

Key words: whole genome; Ninglang Plateau chickens; population genetic diversity; population genetic structure

*Corresponding authors: WANG Yu, E-mail: wang_yu@nwsuaf.edu.cn; CHEN Fenfen, E-mail: ffchen03@sina.com

群體遺傳多樣性是物種適應(yīng)環(huán)境變化的基礎(chǔ)[1],可作為評(píng)估種質(zhì)資源現(xiàn)狀的重要參考指標(biāo),群體的遺傳多樣性越高表明群體對(duì)環(huán)境變化的適應(yīng)能力就越強(qiáng)[2]。群體遺傳結(jié)構(gòu)能夠反映群體的祖先來(lái)源和進(jìn)化歷史[3],也代表著群體的遺傳特征,評(píng)估群體遺傳多樣性和群體遺傳結(jié)構(gòu)對(duì)物種種質(zhì)資源的保護(hù)和利用具有重要參考意義。群體遺傳多樣性和群體結(jié)構(gòu)分析的分子標(biāo)記方法有限制性片段長(zhǎng)度多態(tài)性(restriction fragment length polymorphism, RFLP)[4]、微衛(wèi)星DNA多態(tài)性[5]、線粒體DNA (mitochondral DNA, mtDNA)分子標(biāo)記[6]和單核苷酸多態(tài)性(SNP)[7]標(biāo)記。由于RFLP、微衛(wèi)星DNA多態(tài)性和mtDNA分子標(biāo)記方法檢測(cè)密度低且精度不高[8,9],目前較少采用;而SNP在全基因組中具有標(biāo)記密度高、代表性強(qiáng)、準(zhǔn)確性高等優(yōu)勢(shì),并隨著測(cè)序技術(shù)的不斷進(jìn)步和測(cè)序成本的降低,基于全基因組重測(cè)序(whole genome resequencing, WGS)的SNP分析技術(shù)被廣泛應(yīng)用于馬[10]、牛[11]、羊[12]、豬[13]、雞[14]等家畜的群體遺傳多樣性和群體結(jié)構(gòu)研究中。Sun等[15]通過(guò)全基因組序列獲得 SNPs,分析廣西8個(gè)地方雞品種的群體遺傳多樣性和群體遺傳結(jié)構(gòu),同時(shí)挖掘到與經(jīng)濟(jì)性狀相關(guān)的候選基因;Shi等[16]對(duì)生長(zhǎng)在不同溫度環(huán)境中的雞進(jìn)行全基因組測(cè)序,發(fā)現(xiàn)了與雞適應(yīng)熱帶和寒冷環(huán)境相關(guān)的新基因;Rachman等[17]通過(guò)全基因組SNPs揭示尼日利亞地方雞種的群體遺傳多樣性較豐富。通過(guò)對(duì)群體基因組水平的研究,能夠定位到大量與經(jīng)濟(jì)性狀、環(huán)境適應(yīng)和表型特征相關(guān)的候選基因,促進(jìn)人們對(duì)家養(yǎng)動(dòng)物起源和馴化的了解,同時(shí)為家養(yǎng)動(dòng)物的育種規(guī)劃制定和選種選配提供參考。

現(xiàn)代家雞的地方品種是由人類對(duì)原雞進(jìn)行長(zhǎng)期馴化進(jìn)化而來(lái),這些品種在自然選擇和人工選擇的壓力下積累了豐富的遺傳變異和表型變異[18],通過(guò)研究不同地方雞的群體遺傳多樣性和群體遺傳結(jié)構(gòu),有利于更好的保護(hù)和利用優(yōu)質(zhì)地方雞的遺傳資源[19,20]。云南省作為雞的起源和馴化中心之一[21],其復(fù)雜的氣候環(huán)境為云南地方雞品種的表型多樣性和遺傳特異性的形成提供了天然條件[22]。寧蒗高原雞、獨(dú)龍雞、尼西雞和大圍山微型雞作為云南優(yōu)質(zhì)地方雞種,均具有耐粗飼、抗逆性強(qiáng)、肉質(zhì)鮮嫩等特點(diǎn)[23],且均被列入國(guó)家畜禽遺傳資源品種名錄。寧蒗高原雞主要分布于云南省麗江市寧蒗彝族自治縣拉伯鄉(xiāng),其主要特征為腿脛?shì)^長(zhǎng),體型高大,經(jīng)普米族、彝族、摩梭人等當(dāng)?shù)厣贁?shù)民族長(zhǎng)期選育以及當(dāng)?shù)仫L(fēng)土馴化而成[22],能適應(yīng)本地的民族風(fēng)俗和當(dāng)?shù)氐母吆降丨h(huán)境,是一種肉蛋兼用型高原地方雞種[24]。目前,有關(guān)寧蒗高原雞的研究主要是基于線粒體DNA控制區(qū)序列分析其群體遺傳多樣性與起源分化,而有關(guān)全基因組SNP標(biāo)記分析寧蒗高原雞群體遺傳多樣性和群體遺傳結(jié)構(gòu)的研究還未見(jiàn)報(bào)道。本研究基于全基因組SNP分析寧蒗高原雞、獨(dú)龍雞、尼西雞和大圍山微型雞的群體遺傳多樣性和群體遺傳結(jié)構(gòu),為寧蒗高原雞的保種選育及開(kāi)發(fā)利用提供相應(yīng)參考。

1" 材料與方法

1.1" 試驗(yàn)材料

寧蒗高原雞樣本均采自云南省麗江市拉伯鄉(xiāng)寧蒗高原雞原種保種場(chǎng),對(duì)樣本翅下靜脈采血后保存于EDTA抗凝管,并立即置于低溫冰箱,用于提取DNA。本試驗(yàn)選取57只健康的成年寧蒗高原雞(30只公雞、27只母雞)用于研究。尼西雞(Nixi chickens, n=11)和獨(dú)龍雞(Dulong chickens, n=10)的全基因組重測(cè)序數(shù)據(jù)為 NCBI數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov)下載(NCBI檢索號(hào)分別為 PRJNA782225和PRJNA559932);大圍山微型雞(Daweishan Mini chickens, n=20)的全基因組重測(cè)序數(shù)據(jù)為國(guó)家生物信息中心(https://ngdc.cncb.ac.cn/)下載(檢索號(hào)為PRJCA004668)。

1.2" 試驗(yàn)方法

1.2.1" DNA提取及全基因組重測(cè)序

采用血液基因組DNA純化試劑盒(北京全式金生物技術(shù)股份有限公司)提取57只寧蒗高原雞的基因組DNA,使用Nanodrop 檢測(cè)基因組DNA的濃度,凝膠電泳檢測(cè)DNA完整性,檢測(cè)合格后送至武漢影子基因科技有限公司構(gòu)建文庫(kù)并進(jìn)行雙末端測(cè)序。

1.2.2" 數(shù)據(jù)質(zhì)控及比對(duì)

為保證后續(xù)分析結(jié)果的準(zhǔn)確性,使用Fastp(0.23.2)[25]軟件對(duì)原始測(cè)序數(shù)據(jù)(Raw Data)進(jìn)行質(zhì)控;使用BWA(0.7.17)[25]將過(guò)濾質(zhì)控后的數(shù)據(jù)(Clean Data)比對(duì)到雞GRCg6a(NCBI登錄號(hào):GCA_000002315.6)參考基因組,使用Samtools(1.10.2)[26]中的sort命令進(jìn)行排序,使用Picard(http://broadinstitute.github.io/picard)去除PCR重復(fù),GATK(4.2.0)[27]用于全基因組變異檢測(cè);群體SNPs過(guò)濾標(biāo)準(zhǔn):去除最小等位基因頻率小于1%(Maflt;0.01)的位點(diǎn)和缺失率大于 10% 的位點(diǎn)(genogt;0.1)。使用ANNOVAR[28]軟件注釋SNPs,并統(tǒng)計(jì)不同類型SNPs在染色體上的分布及其發(fā)生的比例。

1.2.3" 群體遺傳多樣性分析

群體觀測(cè)雜合度(Ho)、期望雜合度(He)、多態(tài)標(biāo)記比例(PN)和次等位基因頻率(Maf)參照王婷等[29]報(bào)道的方法使用PLINK v1.90軟件[30]計(jì)算,核苷酸多態(tài)性(Pi)參照張小鍵[31]報(bào)道的方法使用VCFtools軟件[32]計(jì)算。計(jì)算群體遺傳多樣性所用的數(shù)據(jù)集只保留雙等位基因位點(diǎn),使用PopLDdecay(Version 3.40)軟件[33]分析群體的LD衰減情況,用r2表示LD系數(shù),以r2下降到最大值的一半對(duì)應(yīng)的距離為L(zhǎng)D衰減距離[34]。

1.2.4" 群體遺傳結(jié)構(gòu)分析

使用PLINK v1.90進(jìn)行主成分分析,PHYLIP(V3.696)[35]構(gòu)建系統(tǒng)發(fā)育樹(shù),通過(guò)tvBOT[36]對(duì)構(gòu)建的發(fā)育樹(shù)進(jìn)行可視化,使用ADMIXTURE(Version 1.3.0)[37]分析群體結(jié)構(gòu)。

1.2.5" 群體分化指數(shù)分析

Fst值越大表明群體間分化程度越高,其取值范圍為0~1,當(dāng)Fst為0~0.05時(shí),說(shuō)明群體間分化程度較低,當(dāng)Fst為0.05~0.15時(shí),群體間存在中等程度的遺傳分化,當(dāng)Fst為0.15~0.25時(shí),群體間遺傳分化較大,當(dāng)Fst為0.25以上則認(rèn)為群體間有很大的遺傳分化[38]。本研究計(jì)算群體間Fst的滑動(dòng)窗口為100 kb ,步長(zhǎng)為10 kb。

1.2.6" 寧蒗高原雞保種群體親緣關(guān)系分析

使用PLINK v1.90構(gòu)建IBS矩陣,采用 GCTA(v1.94)軟件[39]計(jì)算個(gè)體間的親緣關(guān)系,構(gòu)建G 矩陣,并使用R腳本繪制矩陣熱圖。

1.2.7" 寧蒗高原雞保種群體近交系數(shù)分析

使用PLINK v1.90 -homozyg參數(shù)檢測(cè)每個(gè)群體中的連續(xù)純合性片段(runs of homozygosity, ROH),具體檢測(cè)參數(shù)為:50個(gè)SNPs的滑動(dòng)窗口沿染色體滑動(dòng),ROH長(zhǎng)度大于500 kb、每個(gè)ROH中至少包含50個(gè)SNPs,每個(gè)滑動(dòng)窗口允許存在1個(gè)雜合子,同時(shí)包含 SNP 的所有掃描窗口的命中率(滑動(dòng)窗口閾值)至少為 0.05,基于ROH計(jì)算近交系數(shù)(FROH)[40],計(jì)算公式如下:

FROH=∑LROHLauto

其中,∑LROH為常染色體上所有ROH片段長(zhǎng)度之和,Lauto為SNP覆蓋常染色體的物理總長(zhǎng)度,以上結(jié)果使用 GraphPadPrism 8.0進(jìn)行可視化。

2" 結(jié)" 果

2.1" 基因組DNA質(zhì)量檢測(cè)

寧蒗高原雞基因組DNA的瓊脂糖凝膠檢測(cè)結(jié)果如圖1所示,DNA條帶清晰可見(jiàn),無(wú)拖尾現(xiàn)象,表明DNA提取質(zhì)量較高,可用于后續(xù)試驗(yàn)。

2.2" 寧蒗高原雞群體SNP檢測(cè)及注釋

本研究中57只寧蒗高原雞平均測(cè)序深度為24.54×,4個(gè)云南地方雞品種中共檢測(cè)到24 253 880個(gè)常染色體SNPs,經(jīng)過(guò)質(zhì)控過(guò)濾后共保留16 362 811個(gè)有效SNPs用于后續(xù)分析。為研究寧蒗高原雞群體SNPs的分布和變異類型,保留57只寧蒗高原雞群體中10 666 468個(gè)常染色體的SNPs用于分析。結(jié)果表明,寧蒗高原雞群體SNPs在染色體上的分布相對(duì)均勻,1號(hào)染色體密度最高,16號(hào)染色體密度最低(圖2A);寧蒗高原雞群體SNPs注釋結(jié)果顯示,大多數(shù)SNPs位于內(nèi)含子(56.12%)和基因間區(qū)(33.77%),其余位于外顯子(1.68%)、基因上游(2.47%)、基因下游(2.59%)和剪切位點(diǎn)區(qū)域(0.004%);位于外顯子的SNPs同義突變占67.14%,非同義突變占31.88%(圖2B)。

2.3" 群體遺傳多樣性分析

4個(gè)品種的群體遺傳多樣性參數(shù)見(jiàn)表1,其中寧蒗高原雞群體的觀測(cè)雜合度(Ho)小于期望雜合度(He),而大圍山微型雞、獨(dú)龍雞和尼西雞的觀測(cè)雜合度(Ho)均高于期望雜合度(He),尼西雞的多態(tài)性標(biāo)記比例(PN)、核苷酸多態(tài)性(Pi)和次等位基因頻率(Maf)均為最低。LD衰減分析結(jié)果如圖3所示,4個(gè)品種的r2隨著位點(diǎn)距離的增加而降低,r2

A.SNPs密度圖;B.SNPs變異類型統(tǒng)計(jì)

A.SNPs density map; B.SNPs variation type statistics

由高到低依次為獨(dú)龍雞、尼西雞、大圍山微型雞和寧蒗高原雞,衰減速度由快到慢依次為寧蒗高原雞、大圍山微型雞、尼西雞、獨(dú)龍雞。

2.4" 群體遺傳結(jié)構(gòu)分析

主成分分析(principal component analysis, PCA)結(jié)果顯示,PC1和PC2的解釋度分別為31.82%和16.28%,4個(gè)群體間分層較明顯,其中大

橫坐標(biāo)是物理距離(kb),縱坐標(biāo)是LD系數(shù)(r2)

The horizontal axis is the physical distance (kb), and the vertical axis is the LD coefficient (r2)

圍山微型雞、獨(dú)龍雞和尼西雞群體相對(duì)集中,而寧蒗高原雞群體相對(duì)分散(圖4A),根據(jù)PC1可將大圍山微型雞、獨(dú)龍雞、寧蒗高原雞和尼西雞群體明顯區(qū)分開(kāi)。系統(tǒng)發(fā)育樹(shù)分析發(fā)現(xiàn),寧蒗高原雞、尼西雞、獨(dú)龍雞和大圍山微型雞均單獨(dú)聚在不同的分支上,其中大圍山微型雞分支較遠(yuǎn),尼西雞和獨(dú)龍雞的分支較近,寧蒗高原雞群體中存在3個(gè)小分支(圖4B)。

針對(duì)研究群體,設(shè)定亞群數(shù)目(K值)為1~6后進(jìn)行聚類,將最小交叉驗(yàn)證誤差值確定為最優(yōu)分群數(shù)。如圖5A所示,當(dāng)K=2時(shí)交叉驗(yàn)證錯(cuò)誤值最低,說(shuō)明4個(gè)云南地方雞群體最大概率來(lái)源于2個(gè)原始祖先。由圖5B可知,當(dāng)K=2時(shí),大圍山微型雞出現(xiàn)分離,獨(dú)龍雞和尼西雞血統(tǒng)較為相似,寧蒗高原雞群體中出現(xiàn)了血統(tǒng)混雜的個(gè)體;當(dāng)K=5時(shí),獨(dú)龍雞群體和尼西雞群體才出現(xiàn)分離。

2.5" 群體間遺傳分化指數(shù)

為了更好的分析4個(gè)地方雞群體間的遺傳分化程度,基于全基因組SNP分型數(shù)據(jù)計(jì)算群體間的遺傳分化指數(shù),本研究群體成對(duì)遺傳分化指數(shù)見(jiàn)圖6,寧蒗高原雞與大圍山微型雞、尼西雞、獨(dú)龍雞的遺傳分化指數(shù)分別為0.10、0.08、0.09,說(shuō)明寧蒗高原雞與大圍山微型雞、尼西雞、獨(dú)龍雞之間均出現(xiàn)中等程度的分化,獨(dú)龍雞和尼西雞之間的遺傳分化值最?。?.06)。

2.6" 寧蒗高原雞IBS分析

基于IBS值計(jì)算寧蒗高原雞個(gè)體間的遺傳距離,構(gòu)建遺傳距離矩陣并進(jìn)行可視化(圖7)。結(jié)果顯示寧蒗高原雞群體的IBS值在0.131 1~0.308 5之間,其平均遺傳距離為0.270 8±0.026 8,表明寧蒗高原雞群體中大部分個(gè)體遺傳差異較大(圖7中紅色較深的方格),且群體間存在較遠(yuǎn)的遺傳距離,但也出現(xiàn)少數(shù)個(gè)體間的遺傳距離較近(圖7中顏色較淺的方格)。

2.7" 寧蒗高原雞G矩陣分析

基于所檢測(cè)的SNPs位點(diǎn)構(gòu)建親緣關(guān)系G矩陣進(jìn)一步分析寧蒗高原雞群體的親緣關(guān)系,G矩陣結(jié)果如圖8所示,其中每一個(gè)小方格代表第一個(gè)到最后一個(gè)樣本兩兩之間的親緣關(guān)系值,該值越大越接近紅色,即兩個(gè)體親緣關(guān)系越近。由G矩陣分析結(jié)果顯示,寧蒗高原雞群體大部分個(gè)體間近交程度較低(圖8中顏色偏綠的方格),少部分個(gè)體之間親緣關(guān)系較近(圖8中顏色偏紅的方格)。親緣關(guān)系矩陣結(jié)果與 IBS 距離矩陣分析結(jié)果一致,表明寧蒗高

原雞群體存在近交趨勢(shì)。

2.8" 寧蒗高原雞ROH檢測(cè)

在57個(gè)寧蒗高原雞個(gè)體中,共檢測(cè)到2 541個(gè)ROH片段,0.50~1.00 Mb長(zhǎng)度的ROH數(shù)量最多,占89.33%;長(zhǎng)度為1~2 Mb的ROH數(shù)量共259個(gè),占10.19%;大于2 Mb的ROH占0.47%。其中最短的ROH長(zhǎng)度為0.50 Mb,位于11號(hào)染色體;最長(zhǎng)的ROH長(zhǎng)度為2.76 Mb,位于15號(hào)染色體。寧蒗高原雞基因組上ROH數(shù)量分布及所占染色體長(zhǎng)度百分比如圖9A所示,其中位于3號(hào)染色體上的ROH數(shù)量最多,共有269個(gè);在第16、25、30、31、32、33號(hào)染色體上均未檢測(cè)出長(zhǎng)度大于0.5 Mb的ROH。ROH總長(zhǎng)度所占常染色體長(zhǎng)度比例表明(圖9A),22號(hào)染色體上ROH的覆蓋度最高,占到37.70%;單個(gè)個(gè)體的ROH總長(zhǎng)度從

橫、縱坐標(biāo)為寧蒗高原雞個(gè)體,每一個(gè)小方格代表兩個(gè)個(gè)體間的遺傳距離值,顏色越接近紅色表明兩個(gè)個(gè)體間的遺傳距離越大,反之亦然

The horizontal and vertical coordinates represent the Ninglang Plateau chickens individuals in this study. Each small square represents the genetic distance value between two individuals. The closer the color is to red, the greater the genetic distance between the two individuals, and vice versa

6.54 Mb到95.82 Mb不等,平均長(zhǎng)度為31.99 Mb,ROH總長(zhǎng)度在20~40 Mb內(nèi)的個(gè)體數(shù)量最多。

不同個(gè)體檢測(cè)到的ROH數(shù)量變化較大(圖9B),寧蒗高原雞群體中最少的ROH數(shù)量為10個(gè),最多的ROH數(shù)量為124個(gè),平均每個(gè)個(gè)體中檢測(cè)的ROH數(shù)量為44.58個(gè)。通過(guò)對(duì)群體中各樣本的ROH統(tǒng)計(jì),獲得每個(gè)個(gè)體基于ROH的近交系數(shù)值(圖9C),寧蒗高原雞群體的平均近交系數(shù)(FROH)為0.013 2±0.002 9。

3" 討" 論

畜禽遺傳多樣性與人類生產(chǎn)生活緊密相關(guān),保護(hù)畜禽遺傳多樣性就是保護(hù)人類所擁有的全部可遺傳變異材料,有助于人類挖掘畜禽優(yōu)良基因,實(shí)現(xiàn)畜牧業(yè)可持續(xù)發(fā)展[41]。Sartika等[42]利用微衛(wèi)星標(biāo)記研究印度尼西亞地方雞的群體多樣性和群體遺傳結(jié)構(gòu),發(fā)現(xiàn)印度尼西亞地方雞與阿拉伯雞的遺傳差異較大,同時(shí)發(fā)現(xiàn)8個(gè)印度尼西亞地方雞群體均沒(méi)有出現(xiàn)近親繁殖。Tian等[43] 通過(guò)全基因組重測(cè)序數(shù)據(jù)分析文昌雞的群體遺傳多樣性,結(jié)果發(fā)現(xiàn)文昌雞相對(duì)于中國(guó)其他8個(gè)地方雞品種具有較高的群體遺傳多樣性,且與其他幾個(gè)地方雞品種均出現(xiàn)較大程度的分化。Xu等[44]利用全基因組重測(cè)序研究8個(gè)貴州地方雞品種的群體遺傳多樣性和群體遺傳結(jié)構(gòu),結(jié)果表明貴州地方雞品種相對(duì)于商業(yè)雞品種具有較高的核苷酸多態(tài)性,同時(shí)發(fā)現(xiàn)貴州地方雞品種內(nèi)部存在基因漸滲。隨著測(cè)序技術(shù)的不斷完善,全基因組重測(cè)序技術(shù)逐漸取代微衛(wèi)星標(biāo)記技術(shù)[45],該技術(shù)能精確地評(píng)估群體遺傳多樣性和群體遺傳結(jié)構(gòu),對(duì)制定家畜動(dòng)物育種計(jì)劃以及科學(xué)留種選配具有重要意義。

本研究基于所檢測(cè)的SNPs數(shù)據(jù)評(píng)估群體遺傳多樣性指數(shù),雜合度是反映群體遺傳變異的指標(biāo)之一,當(dāng)期望雜合度高于觀測(cè)雜合度時(shí),表明該群體可

橫、縱坐標(biāo)為57只寧蒗高原雞個(gè)體,每一個(gè)小方格代表兩個(gè)個(gè)體間的親緣關(guān)系,顏色越接近紅色表明兩個(gè)個(gè)體間的親緣關(guān)系越近,反之亦然

The horizontal and vertical coordinates are 57 Ninglang Plateau chickens individuals. Each small square represents the genetic relationship between two individuals. The closer the color is to red, the closer the genetic relationship between the two individuals, and vice versa

能存在近交或雜合子缺失,而當(dāng)期望雜合度低于觀測(cè)雜合度時(shí),表明該群體歷史上可能出現(xiàn)了分化或者有外來(lái)個(gè)體補(bǔ)充,群體遺傳多樣性較豐富[46]。Bortoluzzi等[47]通過(guò)60K SNP芯片分析育種偏好對(duì)荷蘭地方雞基因組多樣性的影響,發(fā)現(xiàn)大部分荷蘭地方雞的觀測(cè)雜合度均低于期望雜合度,而這些品種的近交系數(shù)估計(jì)值均較高,表明荷蘭地方雞的近交程度較高。Zhang等[34]通過(guò)全基因組SNP分析白耳黃雞、北京油雞和狼山雞保種群的基因組多樣性,發(fā)現(xiàn)3個(gè)保種群體的觀測(cè)雜合度均高于期望雜合度,表明白耳黃雞、北京油雞和狼山雞保種群體具有較豐富的群體遺傳多樣性。本研究發(fā)現(xiàn),寧蒗高原雞群體的觀測(cè)雜合度略低于期望雜合度,而尼西雞、獨(dú)龍雞和大圍山微型雞的觀測(cè)雜合度均高于期望雜合度,表明寧蒗高原雞群體雖存在近交趨勢(shì),但具有較豐富的遺傳多樣性。核苷酸多樣性(Pi)是衡量特定群體多態(tài)性高低的參數(shù),是指在同一群體中隨機(jī)挑選的兩條DNA序列在各個(gè)核酸位點(diǎn)上核苷酸差異的均值[48]。本研究中,寧蒗高原雞、大圍山微型雞、尼西雞和獨(dú)龍雞的核苷酸多態(tài)性水平較高(Pigt;0.003),均高于貴州地方雞的核苷酸多態(tài)性[44],而與廣西地方雞的核苷酸多態(tài)性水平相近[15]。多態(tài)性標(biāo)記比例(PN)值越高說(shuō)明群體的遺傳信息越豐富[49]。本研究發(fā)現(xiàn),寧蒗高原雞群體的多態(tài)性標(biāo)記比例為0.868 3,均高于大圍山微型雞(0.819 0)、尼西雞(0.730 6)、獨(dú)龍雞(0.736 7)、新浦東雞(0.780 0)[50]、絲雨烏骨雞(0.800 3)[51]、太行雞(0.844 5)[52]和北京油雞(0.789 1)[53],說(shuō)明寧蒗高原雞的群體遺傳變異信息相對(duì)豐富。LD衰減可以用于判斷群體的多樣性差異,LD 衰減越快,說(shuō)明群體受選擇程度越低,基因組多樣性越高[54]。本研究群體中衰減速度由快到慢依次為寧蒗高原雞、大圍山微型雞、尼西雞、獨(dú)龍雞,說(shuō)明寧蒗高原雞群體遺傳多樣性較高,基因組受選擇程度較低,該結(jié)果與多態(tài)性標(biāo)記比例結(jié)果一致。

研究不同品種之間的群體遺傳結(jié)構(gòu)對(duì)了解品種間的親緣關(guān)系和遺傳演化歷史具有重要意義[55]。本研究中,PCA和系統(tǒng)發(fā)育樹(shù)分析表明,大圍山微型雞與其他3個(gè)品種的遺傳背景差異較大,寧蒗高原雞群體相對(duì)分散,被聚為3個(gè)不同的群體,該結(jié)果與王欣等[22]研究結(jié)果高度一致,其利用線粒體DNA D-loop序列構(gòu)建系統(tǒng)進(jìn)化樹(shù)將寧蒗高原雞聚為3大支,表明寧蒗高原雞可能存在多個(gè)世系。Fst值越大表明群體間分化程度越高,本研究發(fā)現(xiàn)寧蒗高原雞與大圍山微型雞、尼西雞、獨(dú)龍雞之間均出現(xiàn)中等程度的分化,而獨(dú)龍雞和尼西雞之間的遺傳分化指數(shù)最小,該結(jié)果與群體結(jié)構(gòu)分析結(jié)果一致,當(dāng)K=2以及更高時(shí),尼西雞和獨(dú)龍雞的血統(tǒng)均表現(xiàn)出較高的相似性,表明獨(dú)龍雞和尼西雞可能在近期由1個(gè)共同祖先分化而來(lái)。IBS值可用于評(píng)估群體中個(gè)體間的遺傳距離[56],研究結(jié)果顯示寧蒗高原雞保種群體的IBS值在0.131 1~0.308 5之間,其平均遺傳距離為0.270 8±0.026 8,表明寧蒗高原雞群體中大部分個(gè)體遺傳距離較遠(yuǎn),只有少部分個(gè)體間遺傳距離較近。通過(guò)構(gòu)建G矩陣分析寧蒗高原雞群體間個(gè)體的親緣關(guān)系,結(jié)果顯示寧蒗高原雞群體中少部分個(gè)體親緣關(guān)系較近。基于ROH計(jì)算寧蒗高原雞群體的近交系數(shù)(FROH)為0.013 2±0.002 9,近交系數(shù)偏低。以上結(jié)果表明,獨(dú)龍雞和尼西雞之間的親緣關(guān)系較近,寧蒗高原雞保種群的群體遺傳多樣性較豐富,但存在一定的近交趨勢(shì),應(yīng)建立合理有效的育種方案,避免因群體近交引起群體遺傳多樣性減少[57],導(dǎo)致寧蒗高原雞的優(yōu)良性狀丟失。

4" 結(jié)" 論

本研究基于全基因組重測(cè)序數(shù)據(jù)分析寧蒗高原雞保種群的群體遺傳多樣性、親緣關(guān)系和近交系數(shù),發(fā)現(xiàn)寧蒗高原雞群體遺傳多樣性較豐富,且與大圍山微型雞、尼西雞、獨(dú)龍雞之間均出現(xiàn)中等程度的分化;同時(shí)發(fā)現(xiàn)寧蒗高原雞保種群體間少數(shù)個(gè)體存在近交風(fēng)險(xiǎn),應(yīng)建立有效的育種方案,加強(qiáng)保種,避免近交衰退。研究結(jié)果為寧蒗高原雞保種群體的保種和選育工作提供一定的科學(xué)依據(jù)。

參考文獻(xiàn)(References):

[1]" TAO W K,ANIWAR L,ZULIPICAR A,et al.Analysis of genetic diversity and population structure of Tarim and Junggar Bactrian camels based on simplified GBS genome sequencing[J].Animals (Basel),2023,13(14):2349.

[2]" CHEN J,ZHANG L L,GAO L T,et al.Population structure and genetic diversity of Yunling cattle determined by whole-genome resequencing[J].Genes (Basel),2023,14(12):2141.

[3]" SUN Q X,WANG M G,LU T,et al.Differentiated adaptative genetic architecture and language-related demographical history in South China inferred from 619 genomes from 56 populations[J].BMC Biol,2024,22(1):55.

[4]" DEMENTIEVA N V,SHCHERBAKOV Y S,TYSHCHENKO V I,et al.Comparative analysis of molecular RFLP and SNP markers in assessing and understanding the genetic diversity of various chicken breeds[J].Genes (Basel),2022,13(10):1876.

[5]" HUO J L,WU G S,CHEN T,et al.Genetic diversity of local Yunnan chicken breeds and their relationships with Red Junglefowl[J].Genet Mol Res,2014,13(2):3371-3383.

[6]" ISLAM M A,OSMAN S A M,NISHIBORI M.Genetic diversity of Bangladeshi native chickens based on complete sequence of mitochondrial DNA D-loop region[J].Br Poult Sci,2019,60(6):628-637.

[7]" WANG M S,THAKUR M,PENG M S,et al.863 genomes reveal the origin and domestication of chicken[J].Cell Res,2020,30(8):693-701.

[8]" ISHENGOMA D S,MANDARA C I,MADEBE R A,et al.Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania[J].Malar J,2024,23(1):79.

[9]" NEALE D B,KREMER A.Forest tree genomics:growing resources and applications[J].Nat Rev Genet,2011,12(2):111-122.

[10]" GU J J,LI S,ZHU B,et al.Genetic variation and domestication of horses revealed by 10 chromosome-level genomes and whole-genome resequencing[J].Mol Ecol Resour,2023,23(7):1656-1672.

[11]" TEREFE E,BELAY G,TIJJANI A,et al.Whole genome resequencing reveals genetic diversity and selection signatures of Ethiopian indigenous cattle adapted to local environments[J].Diversity,2023,15(4):540.

[12]" XIONG J K,BAO J J,HU W P,et al.Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat[J].Front Genet,2022,13:1044017.

[13]" WANG F F,ZHA Z L,HE Y Z,et al.Genome-wide re-sequencing data reveals the population structure and selection signatures of Tunchang pigs in China[J].Animals (Basel),2023,13(11):1835.

[14]" CHO Y,KIM J Y,KIM N.Comparative genomics and selection analysis of Yeonsan Ogye black chicken with whole-genome sequencing[J].Genomics,2022,114(2):110298.

[15]" SUN J L,CHEN T,ZHU M,et al.Whole-genome sequencing revealed genetic diversity and selection of Guangxi indigenous chickens[J].PLoS One,2022,17(3):e0250392.

[16]" SHI S R,SHAO D,YANG L Y,et al.Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments[J].J Adv Res,2023,47:13-25.

[17]" RACHMAN M P,BAMIDELE O,DESSIE T,et al.Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress[J].Sci Rep,2024,14(1):2209.

[18]" WU S W,DOU T F,WANG K,et al.Artificial selection footprints in indigenous and commercial chicken genomes[J].BMC Genomics,2024,25(1):428.

[19]" WILKINSON S,WIENER P,TEVERSON D,et al.Characterization of the genetic diversity,structure and admixture of British chicken breeds[J].Anim Genet,2012,43(5):552-563.

[20]" ZHU W Q,LI H F,WANG J Y,et al.Molecular genetic diversity and maternal origin of Chinese black-bone chicken breeds[J].Genet Mol Res,2014,13(2):3275-3282.

[21]" PENG M S,HAN J L,ZHANG Y P.Missing puzzle piece for the origins of domestic chickens[J].Proc Natl Acad Sci U S A,2022,119(44):e2210996119.

[22]" 王" 欣,羅成峰,陶清海,等.拉伯高腳雞線粒體DNA D-loop序列變異與起源分化研究[J].中國(guó)家禽,2016,38(11):14-18.

WANG X,LUO C F,TAO Q H,et al.Sequence variation of mtDNA D-loop and origin of Labai high-leg chicken[J].China Poultry,2016,38(11):14-18.(in Chinese)

[23]" 許文坤,劉藝端,孫利民,等.云南省地方家禽遺傳資源介紹[J].云南農(nóng)業(yè),2021(4):87-89.

XU W K,LIU Y D,SUN L M,et al.Introduction to local poultry genetic resources in Yunnan Province[J].Yunnan Agriculture,2021(4):87-89.(in Chinese)

[24]" 鄧紹志.拉伯高腳雞簡(jiǎn)介與展望[J].中國(guó)畜禽種業(yè),2017,13(3):133-135.

DENG S Z.Introduction and prospects of Labai high-leg chicken[J].The Chinese Livestock and Poultry Breeding,2017,13(3):133-135.(in Chinese)

[25]" LI H,DURBIN R.Fast and accurate long-read alignment with Burrows-Wheeler transform[J].Bioinformatics,2010,26(5):589-595.

[26]" LI H,HANDSAKER B,WYSOKER A,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.

[27]" MCKENNA A,HANNA M,BANKS E,et al.The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Res,2010,20(9):1297-1303.

[28]" WANG K,LI M,HAKONARSON H.ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res,2010,38(16):e164.

[29]" 王" 婷,張?jiān)獞c,閆益波,等.“特藏寒羊”群體遺傳結(jié)構(gòu)分析與選擇信號(hào)的對(duì)比分析[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(7):2913-2926.

WANG T,ZHANG Y Q,YAN Y B,et al.The genetic structure analysis and the comparative analysis of selection signals in ‘Tezanghan’ sheep[J].Acta Veterinaria et Zootechnica Sinica,2024,55(7):2913-2926.(in Chinese)

[30]" PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.

[31]" 張小鍵.五個(gè)湖北地方雞品種遺傳多樣性評(píng)估及重要經(jīng)濟(jì)性狀選擇信號(hào)鑒定[D].武漢:華中農(nóng)業(yè)大學(xué),2022.

ZHANG X J.Evaluation of genetic diversity of five Hubei native chicken breeds and identification of selective signals for important economic traits[D].Wuhan:Huazhong Agricultural University,2022.(in Chinese)

[32]" DANECEK P,AUTON A,ABECASIS G,et al.The variant call format and VCFtools[J].Bioinformatics,2011,27(15):2156-2158.

[33]" ZHANG C,DONG S S,XU J Y,et al.PopLDdecay:a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J].Bioinformatics,2019,35(10):1786-1788.

[34]" ZHANG M M,HAN W,TANG H,et al.Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs[J].BMC Genomics,2018,19(1):598.

[35]" LEE T H,GUO H,WANG X Y,et al.SNPhylo:a pipeline to construct a phylogenetic tree from huge SNP data[J].BMC Genomics,2014,15:162.

[36]" XIE J M,CHEN Y R,CAI G J,et al.Tree Visualization By One Table (tvBOT):a web application for visualizing,modifying and annotating phylogenetic trees[J].Nucleic Acids Res,2023,51(W1):W587-W592.

[37]" ALEXANDER D H,NOVEMBRE J,LANGE K.Fast model-based estimation of ancestry in unrelated individuals[J].Genome Res,2009,19(9):1655-1664.

[38]" MAGLO K N,MERSHA T B,MARTIN L J.Population genomics and the statistical values of race:an interdisciplinary perspective on the biological classification of human populations and implications for clinical genetic epidemiological research[J].Front Genet,2016,7:22.

[39]" YANG J,LEE S H,GODDARD M E,et al.GCTA:a tool for genome-wide complex trait analysis[J].Am J Hum Genet,2011,88(1):76-82.

[40]" MCQUILLAN R,LEUTENEGGER A L,ABDEL-RAHMAN R,et al.Runs of homozygosity in European populations[J].Am J Hum Genet,2008,83(3):359-372.

[41]" 宋科林,閆尊強(qiáng),王鵬飛,等.基于SNP芯片分析徽縣青泥黑豬遺傳多樣性和遺傳結(jié)構(gòu)[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(3):995-1006.

SONG K L,YAN Z Q,WANG P F,et al.Analysis on genetic diversity and genetic structure based on SNP chips of Huixian Qingni Black pig[J].Acta Veterinaria et Zootechnica Sinica,2024,55(3):995-1006.(in Chinese)

[42]" SARTIKA T,SAPUTRA F,TAKAHASHI H.Genetic diversity of eight native indonesian chicken breeds on microsatellite markers[J].HAYATI J Biosci,2022,30(1):122-130.

[43]" TIAN S S,LI W,ZHONG Z Q,et al.Genome-wide re-sequencing data reveals the genetic diversity and population structure of Wenchang chicken in China[J].Anim Genet,2023,54(3):328-337.

[44]" XU D,ZHU W,WU Y H,et al.Whole-genome sequencing revealed genetic diversity,structure and patterns of selection in Guizhou indigenous chickens[J].BMC Genomics,2023,24(1):570.

[45]" KON T,PEI L Y,ICHIKAWA R,et al.Whole-genome resequencing of large yellow croaker (Larimichthys crocea) reveals the population structure and signatures of environmental adaptation[J].Sci Rep,2021,11(1):11235.

[46]" SCHMIDT T L,JASPER M E,WEEKS A R,et al.Unbiased population heterozygosity estimates from genome-wide sequence data[J].Methods Ecol Evol,2021,12(10):1888-1898.

[47]" BORTOLUZZI C,CROOIJMANS R P M A,BOSSE M,et al.The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity[J].Heredity (Edinb),2018,121(6):564-578.

[48]" LIU J J,XIAO Y,REN P W,et al.Integrating genomics and transcriptomics to identify candidate genes for high egg production in Wulong geese (Anser cygnoides orientalis)[J].BMC Genomics,2023,24(1):481.

[49]" 肖" 倩.浦東白豬種質(zhì)特性及其保護(hù)與利用研究[D].上海:上海交通大學(xué),2017.

XIAO Q.Study on breed characters,conservation and utilization of Pudong White pigs[D].Shanghai:Shanghai Jiao Tong University,2017.(in Chinese)

[50]" 李凱航,趙樂(lè)樂(lè),陸雪林,等.基于SNP芯片的浦東雞保種分析[J].中國(guó)家禽,2020,42(6):31-36.

LI K H,ZHAO L L,LU X L,et al.Analysis of conservation effect in Pudong chicken based on SNP chip[J].China Poultry,2020,42(6):31-36.(in Chinese)

[51]" 周明芳.三個(gè)不同地理分布絲羽烏骨雞群體遺傳多樣性、遺傳結(jié)構(gòu)及選擇信號(hào)分析[D].南昌:江西農(nóng)業(yè)大學(xué),2022.

ZHOU M F.Genetic diversity,genetic structure and selection signal analysis of three different regional Silkies (Gallus gallus domesticus Brisson)[D].Nanchang:Jiangxi Agricultural University,2022.(in Chinese)

[52]" 李德娟,朱" 迪,張" 浩,等.基于全基因組SNPs對(duì)太行雞保種群保種效果的評(píng)價(jià)[J].中國(guó)畜牧雜志, 2024,60(3):118-126.

LI D J,ZHU D,ZHANG H,et al.Evaluation of the conservation effect of Taihang chicken conservation population based on whole genome SNPs[J].Chinese Journal of Animal Science,2024,60(3):118-126.(in Chinese)

[53]" ZHANG M M,WANG S W,XU R,et al.Managing genomic diversity in conservation programs of Chinese domestic chickens[J].Genet Sel Evol,2023,55(1):92.

[54]" GAO C Q,DU W P,TIAN K T,et al.Analysis of conservation priorities and runs of homozygosity patterns for Chinese indigenous chicken breeds[J].Animals (Basel),2023,13(4):599.

[55]" ZHANG J X,NIE C S,LI X H,et al.Genome-wide population genetic analysis of commercial,indigenous,game,and wild chickens using 600K SNP microarray data[J].Front Genet,2020,11:543294.

[56]" TOLONE M,SARDINA M T,CRISCIONE A,et al.High-density single nucleotide polymorphism markers reveal the population structure of 2 local chicken genetic resources[J].Poult Sci,2023,102(7):102692.

[57]" KARDOS M,ARMSTRONG E E,F(xiàn)ITZPATRICK S W,et al.The crucial role of genome-wide genetic variation in conservation[J].Proc Natl Acad Sci U S A,2021,118(48):e2104642118.

(編輯" 郭云雁)

普陀区| 六枝特区| 荥经县| 米易县| 淮滨县| 隆尧县| 电白县| 麻江县| 宁城县| 固始县| 南木林县| 怀来县| 昆山市| 萍乡市| 突泉县| 旅游| 大港区| 和林格尔县| 云南省| 武汉市| 司法| 南丹县| 高邮市| 基隆市| 汉川市| 翼城县| 曲靖市| 金坛市| 五华县| 城市| 九江市| 会理县| 满洲里市| 南宁市| 施秉县| 宜川县| 兴海县| 大化| 青海省| 当雄县| 法库县|