摘 要:【目的】揭示火災(zāi)引起的土壤抗剪強(qiáng)度和理化性質(zhì)變化以及對(duì)土壤侵蝕過(guò)程的響應(yīng),以便林區(qū)管理者更有效地對(duì)那些易受火災(zāi)干擾的區(qū)域進(jìn)行火后的規(guī)劃與管理?!痉椒ā窟x取大興安嶺森林生態(tài)系統(tǒng)中的典型興安落葉松Larix gmelinii純林林地土壤,以未火燒樣地(CK)為對(duì)照,經(jīng)過(guò)調(diào)查后選取發(fā)生過(guò)輕度火燒的林地(L)和發(fā)生過(guò)重度火燒的林地(H)作為不同處理樣地,測(cè)定各處理樣地中土壤的抗剪強(qiáng)度和土壤理化性質(zhì),并挖取土壤剖面?!窘Y(jié)果】1)單因素分析結(jié)果表明,與未火燒對(duì)照樣地相比,重度火燒樣地土壤內(nèi)聚力顯著增加了17.32%,內(nèi)摩擦角顯著增加了29.28%,輕度火燒樣地較未火燒樣地?zé)o顯著變化;2)Mantel分析結(jié)果表明,土壤容重、孔隙、含水率和有機(jī)質(zhì)是影響輕度火燒和重度火燒土壤抗剪強(qiáng)度大小的主要因素;3)隨機(jī)森林結(jié)果表明,不同火燒強(qiáng)度下土壤理化性質(zhì)對(duì)土壤內(nèi)聚力與內(nèi)摩擦角影響貢獻(xiàn)度不同。對(duì)照樣地土壤內(nèi)聚力:含水率(P<0.05)>有機(jī)質(zhì)(P<0.05)>容重>孔隙度,對(duì)照樣地土壤內(nèi)摩擦角:含水率(P<0.001)>容重(P<0.05)>有機(jī)質(zhì)>孔隙度,輕度火燒樣地土壤內(nèi)聚力:孔隙(P<0.001)>容重(P<0.001)>含水率>有機(jī)質(zhì),輕度火燒樣地土壤內(nèi)摩擦角:容重(P<0.001)>含水率(P<0.05)>有機(jī)質(zhì)>孔隙度,重度火燒樣地土壤內(nèi)聚力:含水率(P<0.001)>孔隙度>有機(jī)質(zhì)>容重,重度火燒樣地土壤內(nèi)摩擦角:容重(P<0.001)>孔隙度(P<0.001)>含水率>有機(jī)質(zhì)?!窘Y(jié)論】重度火災(zāi)導(dǎo)致土壤侵蝕量激增,從而引起土層分布發(fā)生變化;輕度火災(zāi)未導(dǎo)致土壤侵蝕量激增,且土層分布沒(méi)有發(fā)生顯著變化。
關(guān)鍵詞:火災(zāi);抗剪強(qiáng)度;侵蝕;大興安嶺
中圖分類號(hào):S791.222 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)10-0036-10
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32071777);中國(guó)科協(xié)青年托舉工程項(xiàng)目(YESS20210370);黑龍江省自然基金優(yōu)秀青年-聯(lián)合引導(dǎo)項(xiàng)目(LH2021C012)。
Variation of soil shear strength in Larix gmelinii forests under different fire severities and its effecting factors
HU Tongxina,b, GENG Qingyea,b, LI Guangxina,b, SHI Lina,b, SUN Longa,b
(a. College of Forestry; b. Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China)
Abstracts:【Objective】This study reveals fire-induced changes in soil shear strength and physicochemical properties as well as responses to soil erosion processes so that forest managers can more effectively plan and manage post-fire in areas that are vulnerable to fire disturbance.【Method】Selected pure forest floor soils of Greater Khingan Range (Larix gmelinii), a typical forest ecosystem in the Greater Khingan Range forest. The unburned control sites (CK) was used as a control, and after the survey, the forest sites that had experienced low severity burned (L) and the forest sites that had experienced high severity burned (H) were selected as the sites for the two different treatments, shear strength and soil physicochemical properties were determined for each treatment and soil profiles were dug.【Result】1) One-way analysis showed that soil cohesion significantly increased by 17.32% and angle of internal friction significantly increased by 29.28% in the high severity burned sites compared to the unburned control sites, and there was no significant change in the low severity burned sites compared to the unburned control sites; 2) Mantel analysis showed that soil bulk weight, pore space, water content, and organic matter were the main factors affecting the shear strength of both low and high severity burned soils; 3) different contributions of soil physicochemical properties to the effects of soil cohesion and internal friction angle under different burned severities. Soil cohesion in unburned control sites: SWC (P<0.05)>SOM (P<0.05)>BD>SP; Soil internal friction angle of unburned control sites: SWC (P<0.001)>BD (P<0.05)>SOM>SP; Soil cohesion in low severity burned sites: SP(P<0.001)>BD (P<0.001)>SWC>SOM; Soil internal friction angle of low severity burned sites: BD (P<0.001)>SWC(P<0.05)>SOM>SP; Soil cohesion in high severity burned sites: SWC (P<0.001)>SP>SOM>BD; Soil internal friction angle of high severity burned sites: BD (P<0.001)>SP (P<0.001)>SWC>SOM.【Conclusion】The highly burned sites have experienced more severe soil erosion and have indirectly led to changes in the distribution of soil layers. No serious soil erosion has occurred in the low severity burned sites, and there have been no significant changes in the distribution of soil layers.
Keywords: fire; shear strength; erosion; Greater Khingan Range
土壤侵蝕是一種全球性的環(huán)境問(wèn)題[1],一直影響著世界各地的森林生態(tài)系統(tǒng)[2]。森林土壤侵蝕加劇的主要原因是保護(hù)性植被被破壞,其中包括土地利用變化、集約化耕作以及森林火災(zāi)發(fā)生[3-6]。近幾十年來(lái),由于氣候變暖以及土地利用方式的變化[7-8],火災(zāi)對(duì)森林生態(tài)系統(tǒng)的干擾愈加明顯[9-10],不但影響碳儲(chǔ)量、水質(zhì)和生態(tài)系統(tǒng)的穩(wěn)定性[11],而且野火后增強(qiáng)的徑流和侵蝕會(huì)演變成破壞性的洪水和泥石流,造成災(zāi)難性的破壞和生命損失[12]。因此,森林火災(zāi)對(duì)土壤侵蝕的影響也成為了眾多研究者們所關(guān)注的熱點(diǎn)。
火災(zāi)直接消耗森林生態(tài)系統(tǒng)的地表植被和地被層[10],這可能是加劇土壤侵蝕的重要原因之一。早在20世紀(jì)90年代,Imeso等[11-13]利用火后模擬降雨試驗(yàn)驗(yàn)證了在森林植物和地被層大量減少后,森林的儲(chǔ)水、降雨截留和阻止地表徑流的能力顯著下降。21世紀(jì)初期,為應(yīng)對(duì)火災(zāi)對(duì)森林土壤的侵蝕作用,研究者們開始使用等高砍伐原木作為火后緩解徑流和侵蝕的保護(hù)措施,雖然人為森林砍伐措施能降低火后土壤侵蝕,但仍無(wú)法對(duì)其進(jìn)行有效評(píng)估[14]?;鸷蠖唐趦?nèi)對(duì)雨滴擊濺侵蝕與土壤表面覆蓋物和表層土壤的理化性質(zhì)進(jìn)行了評(píng)估,再次確定了森林植物和地被層減少帶來(lái)的降雨截留能力減弱會(huì)顯著增加雨滴擊濺侵蝕[15];同時(shí)發(fā)現(xiàn)中、高強(qiáng)度的火災(zāi)可以直接通過(guò)高溫來(lái)破壞有機(jī)物和礦物的結(jié)合從而改變土壤本身的抗蝕性[16-17]。此外,土壤的滲透能力也因土壤團(tuán)聚體的分解而降低,減少了土壤的孔隙度并造成土壤板結(jié),進(jìn)一步加劇了土壤侵蝕過(guò)程[18-20]。因此,對(duì)火災(zāi)前后土壤理化參數(shù)的量化和相關(guān)分析也是確定火災(zāi)對(duì)土壤侵蝕響應(yīng)的有效辦法。
目前火災(zāi)與土壤侵蝕相關(guān)的研究很少?gòu)耐寥狼治g的基礎(chǔ)力學(xué)角度上探究其主要影響因素,也沒(méi)有用到土力學(xué)指標(biāo)來(lái)描述土壤侵蝕變化[21-22],因此本研究選用土壤抗剪強(qiáng)度指標(biāo)來(lái)預(yù)測(cè)火后土壤侵蝕過(guò)程的變化,從物理角度描述火后土壤侵蝕的主要變化[23]。剪切變形本身就是土壤侵蝕的一種常見的破壞形式[24],了解抗剪強(qiáng)度特性是預(yù)測(cè)其抗侵蝕性和邊坡穩(wěn)定性的重要組成部分[25-26]??辜魪?qiáng)度受多方面因素影響,例如顆粒尺寸、分布、容重和內(nèi)聚力等土壤固有物理性質(zhì)因素[25-28]會(huì)影響土壤抗剪強(qiáng)度的大小,改變土壤的抗蝕性;而土壤中的碳、氮、磷等土壤化學(xué)性質(zhì)也會(huì)影響土壤的分離過(guò)程[27,29-31]。許多研究表明土壤剪切強(qiáng)度是表示土壤剝離過(guò)程和徑流通過(guò)期間土壤抗蝕性最合適的指標(biāo)之一[32]。從土力學(xué)角度看,土壤水蝕是雨滴對(duì)土壤顆粒的擊濺剪切作用和徑流對(duì)土壤顆粒的沖刷剪切作用的綜合過(guò)程,因此將土體抗剪強(qiáng)度作為水土流失評(píng)價(jià)的重要指標(biāo)是可行的[32–36]。
大興安嶺是我國(guó)唯一的寒溫帶針葉林區(qū),保存著較為良好的興安落葉松林。作為典型的火災(zāi)多發(fā)區(qū)域和特有的“干-濕-干”變化演變的季節(jié)降水過(guò)程[37-38],其土壤侵蝕過(guò)程與林火有著密切的關(guān)系,因此本研究在大興安嶺畢拉河國(guó)家級(jí)自然保護(hù)區(qū)內(nèi)開展。在此樣地中利用土壤抗剪強(qiáng)度這一土力學(xué)參數(shù)來(lái)探討不同火干擾強(qiáng)度下土壤的抗蝕性變化,以揭示未來(lái)林火增加背景下森林土壤侵蝕過(guò)程的變化規(guī)律。這將有助于了解不同程度的火干擾后森林土層變化以及火后引起土壤侵蝕的主要因素,以便林區(qū)管理者們更有效地對(duì)易受火災(zāi)干擾的區(qū)域進(jìn)行火后的規(guī)劃與管理。
1 材料和方法
1.1 研究區(qū)概況
研究區(qū)位于大興安嶺畢拉河國(guó)家級(jí)自然保護(hù)區(qū),地理坐標(biāo):123°04′29″~123°29′16″E,49°19′40″~49°38′30″N(圖1)。該地區(qū)屬中溫帶濕潤(rùn)、半濕潤(rùn)大陸性季風(fēng)氣候。春季多風(fēng),降水稀少,氣溫多變;夏季溫和,降水集中;秋季降溫劇烈,霜期早;冬季漫長(zhǎng)嚴(yán)寒。年平均溫度為-1.1 ℃,極端最高氣溫35.4 ℃,極端最低氣溫-46.0 ℃。年平均降水量為479.4 mm,侵蝕性降水主要集中在6—8月。主要土壤類型是暗棕壤,是由保護(hù)區(qū)內(nèi)典型的針闊混交林區(qū)下發(fā)育而成,成土過(guò)程特點(diǎn)是森林腐殖質(zhì)積累、弱酸性淋溶作用和暗棕色黏化層的形成[39]。保護(hù)區(qū)內(nèi)興安落葉松Larix gmelinii為優(yōu)勢(shì)樹種,白樺Betula platyphylla、蒙古櫟Quercus mongolica為伴生樹種,林下灌木以興安杜鵑Rhododendron dauricum、杜香Rhododendron tomentosum、珍珠梅Sorbaria sorbifolia等為主。
1.2 試驗(yàn)設(shè)計(jì)
本研究區(qū)在2017年5月2日發(fā)生特大森林火災(zāi),過(guò)火面積達(dá)11 500 hm2,其中輕度受害面積為8 898.19 hm2,占火燒跡地總面積的76.36%,重度受害面積為1 031.03 hm2,占總面積的8.88%[40];未受害區(qū)域的面積最小為906.57 hm2,占火燒跡地總面積的7.81%。在本次特大火災(zāi)的過(guò)火區(qū)域中選擇坡度、坡位和坡向基本相同的興安落葉松林純林林地作為試驗(yàn)樣地,并保證其樣地中林分和立地條件相近。經(jīng)過(guò)實(shí)地調(diào)查后,在未火燒的林地中設(shè)置對(duì)照未火燒樣地(CK);在受到火干擾后樹冠燒焦率<50%,樹木未全部死亡的林地中設(shè)置輕度火燒樣地(L);在喬木冠層基本被全部燒毀,樹冠熏黑高度> 5 m的林地中設(shè)置重度火燒樣地(H)[41];設(shè)置的樣地面積為10 m×10 m,每種處理設(shè)置3組重復(fù),共計(jì)設(shè)置9個(gè)樣地。經(jīng)過(guò)前期調(diào)查,2種火燒樣地內(nèi)植被恢復(fù)良好,重復(fù)樣地內(nèi)植物的多樣性和生物量無(wú)顯著差異(表1)。
1.3 樣品采集與處理
于2022年5月在樣地內(nèi)進(jìn)行土壤剖面(1 m×1 m×0.6 m)的挖掘和取樣,發(fā)現(xiàn)在0~50 cm的表土層中,包括最上層地被層,3種不同火干擾下的土壤具有明顯不同的分層現(xiàn)象(圖2)。每個(gè)樣地設(shè)置4個(gè)采樣點(diǎn)(50 cm×50 cm),在每個(gè)采樣點(diǎn)上移除土壤地被物層,并在保證土壤的完整性的情況下使用環(huán)刀在0~10 cm的土層中收集樣品。因?yàn)楸敬卧囼?yàn)需使用原狀土(直剪試驗(yàn))進(jìn)行試驗(yàn),所以使用削土刀與細(xì)剪將環(huán)刀上下平面的土和細(xì)根修剪,使其盡量保持平整,并在同一采樣點(diǎn)中用鋁盒采集相同土壤樣品(用于理化性質(zhì)測(cè)定),最后將土樣包裹保鮮膜后一同低溫保存(4 ℃)并帶回實(shí)驗(yàn)室,進(jìn)行土壤抗剪強(qiáng)度和理化性質(zhì)測(cè)定。
1.4 土壤理化性質(zhì)的測(cè)定
土壤含水率(SWC)采用烘干法測(cè)定;土壤容重(BD)和孔隙度(SP)采用環(huán)刀法測(cè)定;土壤顆粒組成采用羅賓遜吸管法測(cè)定;土壤全氮(TN)采用開氏消煮法,后用AA3流動(dòng)分析儀(BRAN+ LUEBBE,Jena,德國(guó))測(cè)定含量,土壤有機(jī)質(zhì)(SOM)測(cè)定采用HT1300總碳分析儀(Analytik Jena AG,Jena,德國(guó))測(cè)定其有機(jī)質(zhì)含量(SOM);土壤全磷(TP)采用AA3流動(dòng)分析儀(BRAN+ LUEBBE,Jena,德國(guó))測(cè)定含量[42]。
1.5 土壤抗剪強(qiáng)度的測(cè)定
1.6 數(shù)據(jù)分析
所有數(shù)據(jù)的正態(tài)性和方差齊性都在SPSS 25.0軟件中進(jìn)行,并確定了不同對(duì)照之間土壤理化性質(zhì)和抗剪強(qiáng)度指標(biāo)的差異;基于Pearson相關(guān)性的mantel檢驗(yàn)分析揭示了土壤抗剪強(qiáng)度與土壤理化性質(zhì)之間的關(guān)系,其圖表呈現(xiàn)均基于R 4.2.3中的“corrplot”和“vegan”包完成;隨機(jī)森林分析基于R 4.2.3中“ggplot2”“tidyverse”“randomForest”“rfUtilities”“rfPermute”包,其結(jié)果表明了不同火燒強(qiáng)度下哪些參數(shù)是影響抗剪強(qiáng)度的主要參數(shù);在Origin 2023軟件中建立了基于土壤理化性質(zhì)和抗剪強(qiáng)度的多元線性回歸方程公式(2),用來(lái)預(yù)測(cè)和估算受到不同火干擾強(qiáng)度的森林土壤的抗剪強(qiáng)度。
(SC/IFA)=α+β×SOM+ε×BD+γ×SP+ω×SWC。 (2)式中:SWC表示土壤含水率;SOM表示土壤有機(jī)質(zhì)含量;BD表示土壤容重;SP表示土壤孔隙度;α、β、ε、γ和ω分別表示該方程的回歸系數(shù)。
2 結(jié)果與分析
2.1 不同火燒強(qiáng)度下的土壤理化性質(zhì)
單因素方差分析結(jié)果表明(表2),相較CK處理,L處理顯著增加了土壤含水率和粉粒含量,分別增加了52.70%和14.58%,土壤全磷、有機(jī)質(zhì)和砂粒含量較CK降低了21.09%、15.11%和14.58%;H處理中的全磷、有機(jī)質(zhì)和黏粒含量較CK處理降低了10.80%、40.90%和32.09%。
2.2 不同火燒強(qiáng)度下的土壤抗剪強(qiáng)度
H處理的內(nèi)聚力和內(nèi)摩擦角率較CK處理增加了17.32%和29.82%;L處理內(nèi)聚力相較CK降低了13.60%(圖3)。
2.3 不同火燒強(qiáng)度下土壤抗剪強(qiáng)度的影響因素
相關(guān)性矩陣分析結(jié)果(圖4)表明,土壤理化性質(zhì)與土壤抗剪強(qiáng)度呈顯著相關(guān)性(P<0.05)。在CK處理下,土壤的孔隙度、含水率和有機(jī)質(zhì)含量與內(nèi)聚力呈顯著負(fù)相關(guān)關(guān)系,容重與土壤內(nèi)聚力呈顯著正相關(guān)關(guān)系,土壤內(nèi)摩擦角與土壤含水率、孔隙度和有機(jī)質(zhì)呈顯著負(fù)相關(guān)關(guān)系;在L處理下,土壤的全氮、孔隙度、含水率和有機(jī)質(zhì)含量與內(nèi)聚力和內(nèi)摩擦角呈顯著負(fù)相關(guān)關(guān)系,土壤容重與內(nèi)聚力和內(nèi)摩擦角呈顯著正相關(guān)關(guān)系;在H處理下,土壤內(nèi)聚力與有機(jī)質(zhì)、含水率和孔隙度呈顯著負(fù)相關(guān)關(guān)系,與土壤全氮含量呈顯著負(fù)相關(guān)關(guān)系,與容重呈顯著正相關(guān)關(guān)系,土壤的內(nèi)摩擦角與含水率呈顯著負(fù)相關(guān)關(guān)系,與容重呈顯著正相關(guān)關(guān)系。土壤孔隙度、含水率、容重和有機(jī)質(zhì)是土壤抗剪強(qiáng)度指標(biāo)的主要影響因素。
為進(jìn)一步探究不同火燒強(qiáng)度下土壤理化指標(biāo)對(duì)土壤抗剪強(qiáng)度的影響,選用隨機(jī)森林分析(圖5),結(jié)果表明在CK處理中土壤含水率對(duì)預(yù)測(cè)土壤內(nèi)聚力和內(nèi)摩擦角均有顯著作用(P<0.05),土壤有機(jī)質(zhì)和容重也是預(yù)測(cè)內(nèi)聚力和內(nèi)摩擦角的重要變量;土壤容重在L處理下的貢獻(xiàn)率有顯著提升(P<0.001),其土壤孔隙在預(yù)測(cè)內(nèi)聚力時(shí)的貢獻(xiàn)率到達(dá)了最高點(diǎn),含水率是預(yù)測(cè)內(nèi)摩擦角的重要參數(shù);在H處理下,含水率再次成為影響土壤內(nèi)聚力最主要因素(P<0.001),其他3個(gè)參數(shù)在預(yù)測(cè)內(nèi)聚力的貢獻(xiàn)率均顯著下降,土壤容重和孔隙是影響內(nèi)摩擦角變化的重要參數(shù)。
2.4 不同火燒強(qiáng)度下對(duì)土壤抗剪強(qiáng)度的預(yù)測(cè)
通過(guò)隨機(jī)森林和相關(guān)性矩陣分析發(fā)現(xiàn),在不同火燒強(qiáng)度下土壤抗剪強(qiáng)度指標(biāo)與土壤理化性質(zhì)的響應(yīng)方式不同,且不同火燒強(qiáng)度下土壤理化指標(biāo)對(duì)土壤抗剪強(qiáng)度影響的貢獻(xiàn)也不同,為了能夠更好地預(yù)測(cè)不同火燒強(qiáng)度下對(duì)土壤抗剪強(qiáng)度指標(biāo),將上述輕度和重度火燒處理的主要理化性質(zhì)參數(shù)與2個(gè)抗剪強(qiáng)度指標(biāo)分別進(jìn)行多元線性回歸分析,以孔隙度、含水量、容重和有機(jī)質(zhì)這4個(gè)基本參數(shù)構(gòu)建的抗剪強(qiáng)度預(yù)測(cè)方程取得了較好的預(yù)測(cè)效果(表3),其中輕度火燒和重度火燒處理下的土壤內(nèi)聚力和理化性質(zhì)擬合的多元線性回歸方程表明,擬合模型的結(jié)果符合準(zhǔn)確預(yù)測(cè)的要求(R2>0.5,P<0.01)。
3 討 論
3.1 不同火燒強(qiáng)度對(duì)土壤抗剪強(qiáng)度和土層分布的影響
重度森林火災(zāi)的發(fā)生往往伴隨著大量的火災(zāi)撲救作業(yè)和火后人為林地管理[45],進(jìn)行的人工耕作和機(jī)械壓實(shí)提高了土壤的抗剪強(qiáng)度。此外,樣地所處位置氣候的干濕循環(huán)現(xiàn)象明顯,季節(jié)降雨過(guò)程呈“干—濕—干”變化演變,在一定程度上削弱了表層土壤的抗剪強(qiáng)度[38,46]?;鸷笏治g和風(fēng)侵蝕將表層較為松散的土壤沖刷掉,使下層抗剪強(qiáng)度較高的土壤得以保存[29,47],從而再次提高了土壤的抗剪強(qiáng)度。低強(qiáng)度森林火災(zāi)對(duì)土壤加熱的能力較低且對(duì)土壤的理化性質(zhì)影響有限[48],包括土壤侵蝕[49]。火燒可以釋放枯落物中固化的養(yǎng)分,使其快速參與地球化學(xué)循環(huán)和生物小循環(huán)[50]。通過(guò)單因素方差分析可以看出,輕度火燒后的土壤與未火燒的土壤相比,抗剪強(qiáng)度參數(shù)無(wú)明顯差異,結(jié)合土壤剖面的野外觀測(cè)(圖1)結(jié)果發(fā)現(xiàn)淋溶層的土壤厚度并無(wú)顯著變化,地被層的厚度略微增加,輕度火燒未對(duì)森林土壤的土層分布產(chǎn)生顯著影響。輕度火燒導(dǎo)致森林地被層厚度增加和促進(jìn)草本植物生長(zhǎng),也是生態(tài)系統(tǒng)提升土壤的自我保護(hù)能力。
3.2 不同火燒強(qiáng)度對(duì)土壤理化性質(zhì)的影響
重度火災(zāi)給森林系統(tǒng)帶來(lái)的影響和改變是顯著的[51]。本研究結(jié)果顯示:遭受重度火干擾后土壤的全磷、全氮、有機(jī)質(zhì)和含水率均有不同程度的降低,其中土壤中土壤磷和粒徑分布的變化與以往的研究形成了鮮明的對(duì)比。雖然在以往研究中也發(fā)現(xiàn)高強(qiáng)度的燃燒會(huì)消耗大量的有機(jī)物質(zhì),但是其中的土壤黏粒含量和磷的含量并不會(huì)因?yàn)榛馃@著減少[52-53],結(jié)合樣地調(diào)查發(fā)現(xiàn)本研究樣地的坡度較高于其他研究樣地,且火災(zāi)降低了土壤地被層的保護(hù)能力,從而使其表面略微松散且營(yíng)養(yǎng)物質(zhì)含量和黏粒占比更高的上層土壤遭受雨滴擊濺侵蝕和徑流沖刷?;馃笕葜氐纳吆涂紫抖鹊慕档鸵惨馕吨寥莱炙芰τ兴陆礫54]。相對(duì)于重度火燒來(lái)說(shuō),輕度火燒能給土壤帶來(lái)的變化就有些微不足道,單因素方差分析結(jié)果顯示,輕度火燒土壤與未火燒土壤的整體數(shù)據(jù)差異并不顯著,可能由于其燃燒能力有限,溫度和持續(xù)時(shí)間都達(dá)不到改變土壤理化性質(zhì)的條件[2,35]。
3.3 不同火燒強(qiáng)度對(duì)土壤侵蝕的影響
火災(zāi)對(duì)森林表層土壤的影響是復(fù)雜的,最直接的影響就是植被覆蓋度和地被物的減少以及灰層的形成,間接減少了植物對(duì)降水的截流作用和土壤表面粗糙度[11,55],使更多的土壤表層裸露出來(lái)且受到雨滴濺蝕,不斷改變土壤結(jié)構(gòu),加劇了侵蝕過(guò)程[56]。森林火災(zāi)對(duì)無(wú)機(jī)覆蓋物和植被結(jié)構(gòu)產(chǎn)生影響的同時(shí),還能通過(guò)改變土壤理化性質(zhì)來(lái)影響侵蝕過(guò)程,特別是當(dāng)發(fā)生中度到重度森林火災(zāi)時(shí),通過(guò)破壞有機(jī)物和礦物的結(jié)合來(lái)改變土壤結(jié)構(gòu),更有利于侵蝕的發(fā)生[20]。在重度火燒區(qū)域中發(fā)現(xiàn),其火后表層土壤和營(yíng)養(yǎng)物質(zhì)流失嚴(yán)重,土壤內(nèi)聚力和容重顯著增加,不斷惡化地表植物的生存環(huán)境,加劇土壤侵蝕的發(fā)展。隨機(jī)森林分析和回歸分析結(jié)果表明,土壤含水率一直是影響火燒跡地中土壤抗剪強(qiáng)度的主要參數(shù),許多研究者對(duì)非飽和土含水率和抗剪強(qiáng)度指標(biāo)的相關(guān)關(guān)系密切關(guān)注[29,33,35]。研究中發(fā)現(xiàn)火災(zāi)會(huì)顯著增加土壤的斥水性[57],其原因是火燒導(dǎo)致有機(jī)礦物集合體塌陷和灰分堵塞土壤孔隙,從而造成土壤容重增加[58],并且會(huì)減少土壤含水率對(duì)土壤抗剪強(qiáng)度的影響,將孔隙和容重進(jìn)一步提升為影響土壤抗剪強(qiáng)度的主要驅(qū)動(dòng)因子[55]。多元線性回歸方程顯示土壤有機(jī)質(zhì)含量對(duì)提高土壤穩(wěn)定性具有重要作用,火后土壤有機(jī)質(zhì)減少的同時(shí)也減少了土壤孔隙,從而使土壤更容易發(fā)生板結(jié)和壓實(shí)。土壤有機(jī)質(zhì)含量與孔隙和含水率呈正相關(guān)關(guān)系,與容重呈負(fù)相關(guān)關(guān)系,且經(jīng)歷重度火災(zāi)后的土壤相對(duì)于輕度火災(zāi)后的土壤有機(jī)質(zhì)含量更低,水穩(wěn)性更差,導(dǎo)致其在降雨作用下更易發(fā)生侵蝕[33,58]。為改善火燒給森林土壤所帶來(lái)的侵蝕影響,許多研究還表明森林管理者們應(yīng)使用一些能夠改善土壤條件的措施,比如對(duì)被侵蝕土壤添加一定量的生物炭會(huì)有效改善土壤養(yǎng)分條件[29,58],但是對(duì)于不同火燒強(qiáng)度后不同類型的土壤該如何施加生物炭,施加什么種類的生物炭,還需要更進(jìn)一步的研究和探討。
在本研究中重度火燒區(qū)域土壤相對(duì)于未火燒區(qū)域而言,土壤內(nèi)聚力和內(nèi)摩擦角顯著增加,在土力學(xué)的角度意味著土壤抵抗剪切破壞能力增加。但結(jié)合土壤理化性質(zhì)和樣地調(diào)查的綜合試驗(yàn)發(fā)現(xiàn)重度火燒并不能顯著提升土壤的抗蝕性,并且不同的火燒強(qiáng)度會(huì)以不同方式改變影響土壤抗剪強(qiáng)度的主要驅(qū)動(dòng)因子,這些影響可能不僅是由土壤理化性質(zhì)的改變?cè)斐?,似乎更多源于相互作用的生物機(jī)制。這些機(jī)制隨植被類型、火災(zāi)特征和植物-土壤反饋?zhàn)饔玫牟煌兓?,從多種方面來(lái)影響土壤侵蝕的進(jìn)程。本研究探討了不同火燒強(qiáng)度對(duì)興安落葉松林土壤抗剪強(qiáng)度產(chǎn)生的不同影響及其影響因素,但研究對(duì)象僅涉及了單一土層,具有一定的空間局限性,隨著火燒強(qiáng)度的變化,其對(duì)土壤產(chǎn)生的影響也許不局限表面,對(duì)于更下層的土壤抗剪強(qiáng)度的影響仍需要持續(xù)關(guān)注。另外,本研究未根據(jù)不同火燒強(qiáng)度對(duì)土壤侵蝕的響應(yīng)提出應(yīng)對(duì)辦法,今后還需要開展能夠應(yīng)對(duì)不同程度火災(zāi)對(duì)興安落葉松林土壤侵蝕的研究,以便林區(qū)管理者更有效地對(duì)易受火災(zāi)干擾的區(qū)域進(jìn)行火后的規(guī)劃與管理。
參考文獻(xiàn):
[1] 盧超,馬周加態(tài),李佳輝,等.凍融條件下土壤侵蝕阻力影響因素[J].水土保持學(xué)報(bào),2023,37(6):25-33. LU C, MA Z J T, LI J H, et al. The factors influencing soil erosion resistance under freeze-thaw conditions[J]. Journal of Soil and Water Conservation,2023,37(6):25-33.
[2] KASTRIDIS A, STATHIS D, SAPOUNTZIS M, et al. Insect outbreak and long-term post-fire effects on soil erosion in mediterranean suburban forest[J]. Land,2022,11(6):911.
[3] BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion[J]. Nature Communications,2017,8(1):2013.
[4] PANAGOS P, BORRELLI P, POESEN J. Soil loss due to crop harvesting in the European Union: a first estimation of an underrated geomorphic process[J]. The Science of the Total Environment,2019,664:487-498.
[5] SHAKESBY R A, BENTO C P M, FERREIRA C S S, et al. Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal[J]. Catena,2015,128:278-293.
[6] FERREIRA C S S, SEIFOLLAHI-AGHMIUNI S, DESTOUNI G, et al. Soil degradation in the European Mediterranean region:processes, status and consequences[J]. Science of the Total Environment,2022,805:150106.
[7] GARCíA-CARMONA M, GARCíA-ORENES F, MATAIXSOLERA J, et al. Salvage logging alters microbial community structure and functioning after a wildfire in a Mediterranean forest[J]. Applied Soil Ecology,2021,168:104130.
[8] FORD A E S, HARRISON S P, KOUNTOURIS Y, et al. Modelling human-fire interactions: combining alternative perspectives and approaches[J]. Frontiers in Environmental Science,2021,9:649835.
[9] CAON L, VALLEJO V R, RITSEMA C J, et al. Effects of wildfire on soil nutrients in Mediterranean ecosystems[J]. EarthScience Reviews,2014,139:47-58.
[10] SHAKESBY R A. Post-wildfire soil erosion in the Mediterranean: review and future research directions[J]. EarthScience Reviews,2011,105(3):71-100.
[11] IMESON A C, VERSTRATEN J M, van MULLIGEN E J, et al. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest[J]. Catena,1992,19(3):345-361.
[12] CUI X, ALAM M A, PERRY G L W, et al. Green firebreaks as a management tool for wildfires: lessons from China[J]. Journal of Environmental Management,2019,233:329-336.
[13] LUCAS-BORJA M E, de LAS HERAS J, MOYA NAVARRO D, et al. Short-term effects of prescribed fires with different severity on rainsplash erosion and physico-chemical properties of surface soil in Mediterranean forests[J]. Journal of Environmental Management,2022,322:116143.
[14] GIOVANNINI G, LUCCHESI S. Effect of fire on hydrophobic and cementing substances of soil aggregates[J]. Soil Science, 1983,136(4):231.
[15] GIOVANNINI G, LUCCHESI S, GIACHETTI M. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility[J]. Soil Science,1988,146(4):255.
[16] FERNáNDEZ FILGUEIRA C, VEGA J, JIMéNEZ E, et al. Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain)[J]. International Journal of Wildland Fire,2011,20:104-114.
[17] LARSEN I J, MACDONALD L H. Predicting postfire sediment yields at the hillslope scale: testing RUSLE and Disturbed WEPP[J]. Water Resources Research,2007,43(11):W11412.
[18] FERNáNDEZ C, VEGA J A, VIEIRA D C S. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan-Finney models[J]. Land Degradation Development,2010,21(1):58-67.
[19] 張健樂(lè),史東梅,劉義,等.土壤容重和含水率對(duì)紫色土坡耕地耕層抗剪強(qiáng)度的影響[J].水土保持學(xué)報(bào),2020,34(3):162- 167,174. ZHANG, J L, SHI D M, LIU Y, et al. Effects of soil bulk density and water content on shear strength of cultivated-layer in purple soil sloping farmland[J]. Journal of Soil and Water Conservation, 2020,34(3):162-167,174.
[20] 林嘉輝,黃夢(mèng)元,張莉婷,等.芒萁根系對(duì)崩崗紅土層土壤抗剪強(qiáng)度的影響[J].水土保持學(xué)報(bào),2020,34(6):159-165. LIN J H, HUANG M Y, ZHANG L T, et al. Effects of dicranopteris dichotoma roots on soil shear strength of red soil layer in Benggang[J]. Journal of Soil and Water Conservation, 2020,34(6):159-165.
[21] WANG B, ZHANG G H. Quantifying the binding and bonding effects of plant roots on soil detachment by overland flow in 10 typical grasslands on the Loess Plateau[J]. Soil Science Society of America Journal,2017,81(6):1567-1576.
[22] HORN R. Stress–strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes[J]. Geoderma, 2003,116(1):77-88.
[23] WUDDIVIRA M N, STONE R J, EKWUE E I. Influence of cohesive and disruptive forces on strength and erodibility of tropical soils[J]. Soil and Tillage Research,2013,133:40-48.
[24] ASHWORTH A J, OWENS P R, ALLEN F L. Long-term cropping systems management influences soil strength and nutrient cycling[J]. Geoderma,2020,361:114062.
[25] KNAPEN A, POESEN J, GOVERS G, et al. Resistance of soils to concentrated flow erosion: a review[J]. Earth-Science Reviews,2007,80(1):75-109.
[26] FUJIWARA D, TSUJIKAWA N, OSHIMA T, et al. Estimation of resistance force at steady-state sinkage for cylindrical wheeltyped lunar/planetary exploration rovers with function of push–pull locomotion[J]. Robomech Journal,2020,7(1):38.
[27] ZHANG J, SHI D, JIN H, et al. Characteristics of cultivated layer soil shear strength for sloping farmland in response to soil erosion in the Three Gorges reservoir area, China[J]. Catena,2022,215: 106304.
[28] 周磊,易文,江偉健,等.降雨作用下微生物改良紅黏土邊坡穩(wěn)定性分析[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(7):179-188. ZHOU L, YI W, JIANG W J, et al. Stability analysis of microbially modified red clay slopes under rainfall[J]. Journal of Central South University of Forestry Technology,2023,43(7): 179-188.
[29] GENG R, ZHANG G H, HONG D L, et al. Response of soil detachment capacity to landscape positions in hilly and gully regions of the Loess Plateau[J]. Catena,2021,196:104852.
[30] WEI Y, WU X, XIA J, et al. The effect of water content on the shear strength characteristics of granitic soils in south China[J].Soil and Tillage Research,2019,187:50-59.
[31] 文慧,倪世民,王藝彤,等.贛南崩崗區(qū)不同植被類型粉砂質(zhì)土壤抗剪強(qiáng)度及其影響因素[J].土壤學(xué)報(bào),2022,59(6):1517-1526. WEN H, NI S M, WANG Y T, et al. A study on silty soil shear strength and its influencing factors in different vegetation types in benggang erosion area of southern Jiangxi[J]. Acta Pedologica Sinica,2022,59(6):1517-1526.
[32] 張曉明,丁樹文,蔡崇法.干濕效應(yīng)下崩崗區(qū)巖土抗剪強(qiáng)度衰減非線性分析[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):241-245. ZHANG X M, DING S W, CAI C F. Effects of drying and wetting on nonlinear decay of soil shear strength in slope disintegration erosion area[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(5):241-245.
[33] MOODY J A, SMITH J D, RAGAN B W. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires[J]. Journal of Geophysical Research: Earth Surface,2005,110(F1).
[34] FOX D M, DARBOUX F, CARREGA P. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions[J]. Hydrological Processes,2007,21(17):2377-2384.
[35] 胡海清,魏書精,孫龍.大興安嶺2001—2010年森林火災(zāi)碳排放的計(jì)量估算[J].生態(tài)學(xué)報(bào),2012,32(17):5373-5386. HU H Q, WEI S J, SUN L. Estimating carbon emissions from forest fires during 2001 to 2010 in Daxing’anling mountain[J]. Acta Ecologica Sinica,2012,32(17):5373-5386.
[36] 李秀芬,郭昭濱,趙慧穎,等.大興安嶺氣候干濕變化及對(duì)森林火災(zāi)的影響[J].應(yīng)用氣象學(xué)報(bào),2018,29(5):619-629. LI X F, GUO Z B, ZHAO H Y, et al. Change of dry and wet climate and its influence on forest fire in the Great Xing’an mountains[J]. Journal of Applied Meteorological Science, 2018,29(5):619-629.
[37] 黃明,黃杰.大興安嶺主要森林土壤類型的分析鑒別[C].內(nèi)蒙古自治區(qū)第六屆自然科學(xué)學(xué)術(shù)年會(huì)優(yōu)秀論文集,2011:3. HUANG M, HUANG J. Analytical identification of major forest soil types in the Daxing’anling mountains[C]. Proceedings of the Sixth Annual Natural Science Conference of Inner Mongolia Autonomous Region,2011:3.
[38] 劉樹超,陳小中,覃先林,等.內(nèi)蒙古畢拉河林場(chǎng)森林火災(zāi)受害程度遙感評(píng)價(jià)[J].林業(yè)資源管理,2018(1):90-95,140. LIU S C, CHEN X Z, QIN X L, et al. Remote sensing assessment of forest fire damage degree in bilahe forest farm, Inner Mongolia[J]. Forest Resources Management,2018(1):90-95,140.
[39] SMIT I P J, ASNER G P, GOVENDER N, et al. An examination of the potential efficacy of high-intensity fires for reversing woody encroachment in savannas[J]. Journal of Applied Ecology, 2016,53(5):1623-1633.
[40] 孫龍,任玥霄,竇旭,等.火干擾對(duì)棋盤山油松林土壤碳氮及驅(qū)動(dòng)因子的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(7): 120-128. SUN L, REN Y X, DOU X, et al. Effects of fire disturbance on soil carbon, nitrogen and driving factors of Pinus tabuliformis forests in Qipan mountain[J]. Journal of Central South University of Forestry Technology,2023,43(7):120-128..
[41] ZHANG X, WANG Y, WANG Y, et al. Shear strengths of undisturbed and remolded soil under typical forests in Jinyun mountain, Chongqing city, southwest China[J]. Frontiers of Forestry in China,2007,2(3):305-309.
[42] 詹振芝,黃炎和,蔣芳市,等.礫石含量及粒徑對(duì)崩崗崩積體滲透特性的影響[J].水土保持學(xué)報(bào),2017,31(3):85-90,95. ZHAN Z Z, HUANG Y H, JIANG F S, et al. Effects of content and size of gravel on soil permeability of the colluvial deposit in Benggang[J]. Journal of Soil and Water Conservation,2017,31(3): 85-90,95.
[43] 史東梅,蔣平,何文健,等.紫色土坡耕地生物埂土壤抗剪強(qiáng)度對(duì)干濕作用的響應(yīng)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):139-146. SHI D M, JIANG P, HE W J, et al. Response of soil shear strength of bio-embankments for slope farmland to dryingwetting effect in purple hilly area[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(24):139-146.
[44] 商麗娜,吳正方,楊青,等.火燒對(duì)三江平原濕地土壤養(yǎng)分狀況的影響[J].濕地科學(xué),2004,2(1):54-60. SHANG L N, WU Z F, YANG Q, et al. The effects of fire on the nutrient status of wetland soil in Sanjiang Plain[J]. Wetland Science,2004,2(1):54-60.
[45] 錢達(dá),張虎,何龍.火災(zāi)區(qū)域林地植被變化分析—以大興安嶺和黃石公園地區(qū)為例[J].天津師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019,39(3):60-68. QIAN D, ZHANG H, HE L. Vegetation changes in conflagration area: sase study of Da Hinggan mountains and Yellowstone National Park burned area[J]. Journal of Tianjin Normal University(Natural Science Edition),2019,39(3):60-68.
[46] PEREIRA J S, BADíA D, MARTí C, et al. Fire effects on biochemical properties of a semiarid pine forest topsoil at cmscale[J]. Pedobiologia,2023,96:150860.
[47] MORRIS R, BRADSTOCK R, DRAGOVICH D, et al. Environmental assessment of erosion following prescribed burning in the Mount Lofty Ranges, Australia[J]. International Journal of Wildland Fire,2013,23(1):104-116.
[48] NEARY D G, KLOPATEK C C, DEBANO L F, et al. Fire effects on belowground sustainability: a review and synthesis[J]. Forest Ecology and Management,1999,122(1):51-71.
[49] BEYERS J, BROWN J, BUSSE M, et al. Wildland fire in ecosystems effects of fire on soil and water[M]. General Technical Report, RMRS-GTR-42-vol. 4. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station,2005:42.
[50] GALANG M A, MARKEWITZ D, MORRIS L A. Soil phosphorus transformations under forest burning and laboratory heat treatments[J]. Geoderma,2010,155(3):401-408.
[51] RAISON R J, KHANNA P K, WOODS P V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests[J]. Canadian Journal of Forest Research,1985,15(4):657-664.
[52] BOYER W D, MILLER J H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands[J]. Forest Ecology and Management,1994,70(1): 311-318.
[53] GIRONA-GARCíA A, VIEIRA D C S, SILVA J, et al. Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis[J]. Earth-Science Reviews, 2021,217:103611.
[54] FERNáNDEZ C. Soil fire severity is more relevant than fire frequency in explaining soil, carbon and nitrogen losses and vegetation recovery after wildfire in NW Spain[J]. Journal of Environmental Management,2023,327:116876.
[55] DEBANO L F. The role of fire and soil heating on water repellency in wildland environments: a review[J]. Journal of Hydrology,2000,231-232:195-206.
[56] CERTINI G. Effects of fire on properties of forest soils: a review[J]. Oecologia,2005,143(1):1-10.
[57] CERTINI G, MOYA D, LUCAS-BORJA M E, et al. The impact of fire on soil-dwelling biota: a review[J]. Forest Ecology and Management,2021,488:118989.
[58] KAMMANN C, LINSEL S, G??LING J, et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations[J]. Plant and Soil,2011,345:195-210.
[本文編校:吳 彬]