摘 要:【目的】探究不同水生植物對農田退水氮磷污染物的去除效果,為利用水生植物修復和防治水體污染提供科學依據(jù)?!痉椒ā坎捎盟嘣囼灉y定12種水生植物莖葉和根的生物量、氮磷含量、氮磷吸收量以及對水體氮磷的去除率,運用篩選指標的平均隸屬函數(shù)值對12種水生植物去除氮磷能力進行聚類分析。【結果】挺水植物中,水蔥、蘆葦、香蒲凈增生物量較高;蘆葦?shù)樟孔罡哌_到201.22 mg·m-2,香蒲磷吸收量最高達到26.64 mg·m-2;蘆葦對氨氮、硝氮、總氮、總磷去除率最高,分別達到98.56%、78.93%、80.22%、81.36%。浮水植物中,鳳眼蓮凈增生物量最高;鳳眼蓮氮吸收量最高達到156.14 mg·m-2,睡蓮磷吸收量最高達到23.48 mg·m-2;鳳眼蓮對氨氮、硝氮、總氮、總磷去除率最高,分別達到95.63%、76.01%、71.66%、80.58%。沉水植物中,狐尾藻凈增生物量最高;狐尾藻氮吸收量最高達到230.75 mg·m-2,苦草磷吸收量最高達到26.11 mg·m-2;狐尾藻對氨氮、總氮去除率最高,分別達到97.94%、84.93%;苦草對硝氮、總磷去除率最高,分別達到76.32%、79.09%。蘆葦、水蔥、睡蓮主要通過根吸收累積氮磷,其他9種水生植物主要通過莖葉吸收氮磷從而增加生物量去除水體氮磷。水體氮磷去除率與植物氮磷吸收量呈極顯著正相關。蘆葦、香蒲、狐尾藻為高效凈化植物,苦草、水蔥、鳳眼蓮、睡蓮、千屈菜為較高效凈化植物?!窘Y論】挺水植物蘆葦、香蒲、水蔥、千屈菜,浮水植物睡蓮和沉水植物狐尾藻、苦草對寧夏引黃灌區(qū)農田退水氮磷污染物去除效果較好。
關鍵詞:挺水植物;浮水植物;沉水植物;農田退水;去除率;引黃灌區(qū)
中圖分類號:S719 文獻標志碼:A 文章編號:1673-923X(2024)10-0105-11
基金項目:寧夏回族自治區(qū)重點研發(fā)計劃項目(2022BEG02007);寧夏自然科學基金項目(2022AAC03447);農業(yè)高質量發(fā)展和生態(tài)保護科技創(chuàng)新示范課題(NGSB-2021-11)。
The removal effect of 12 aquatic plants on nitrogen and phosphorus in the return flow of farmland
HONG Yu1,2, HE Ziqi1, FANG Xi1, LIU Ruliang2
(1. College of Life and Environmental Sciences, Central South University of Forestry Technology, Changsha 410004, Hunan, China; 2. Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, Ningxia, China)
Abstract:【Objective】Exploring the removal effects of nitrogen and phosphorus in the return flow of farmland by different aquatic plants, providing scientific basis for the use of aquatic plants in the remediation and prevention of water pollution.【Method】Using hydroponic experiments to determine the changes of biomass, content and absorption of nitrogen and phosphorus in roots, stems and leaves of 12 aquatic plants, as well as removal rate of nitrogen and phosphorus in water. Cluster analysis was conducted on the nitrogen and phosphorus removal ability of 12 aquatic plants using the average membership function values of screening indicators.【Result】Among the emergent plants, the net increase biomasses of Scirpusvalidus, Phragmitesaustralis and Typhaorientalis were higher. Phragmitesaustralis had the highest nitrogen absorption, reaching 201.22 mg·m-2, and Typhaorientalis had the highest phosphorus absorption, reaching 26.64 mg·m-2. Phragmitesaustralis had the highest removal rates for ammonia nitrogen, nitrate nitrogen, total nitrogen, and total phosphorus, reaching 98.56%, 78.93%, 80.22%, and 81.36%, respectively. Among floating plants, the net increase biomass of Eichhorniacrassipes was the highest. Eichhorniacrassipes had the highest nitrogen absorption, reaching 156.14 mg·m-2, and Nymphaea tetragona had the highest phosphorus absorption, reaching 23.48 mg·m-2. Eichhorniacrassipes had the highest removal rates for ammonia nitrogen, nitrate nitrogen, total nitrogen, and total phosphorus, reaching 95.63%, 76.01%, 71.66%, and 80.58%, respectively.Among submerged plants, the net increase biomass of Myriophyllumverticillatum was the highest. Myriophyllumverticillatum had the highest nitrogen absorption, reaching 230.75 mg·m-2, and Vallisnerianatans had the highest phosphorus absorption, reaching 26.11 mg·m-2. Myriophyllumverticillatum had the highest removal rate of ammonia nitrogen and total nitrogen, reaching 97.94% and 84.93%, respectively; and Vallisnerianatans had the highest removal rates of nitrate nitrogen and total phosphorus, reaching 76.32% and 79.09%, respectively. Phragmitesaustralis, Scirpusvalidus and Nymphaea tetragona mainly absorbed nitrogen and phosphorus through their roots, while the other 9 aquatic plants mainly absorbed nitrogen and phosphorus through their stems and leaves, thereby increasing biomass and removing nitrogen and phosphorus from the water. The removal rate of nitrogen and phosphorus in water was significantly positively correlated with the absorbed quantities of nitrogen and phosphorus by plants. Phragmitesaustralis, Typhaorientalis and Myriophyllumverticillatum were highly efficient purification plants, while Vallisnerianatans, Scirpusvalidus, Eichhorniacrassipes, Nymphaea tetragona, and Lythrumsalicaria were relatively efficient purification plants.【Conclusion】In Ningxia Yellow River irrigation region, the emergent plants such as Phragmitesaustralis, Typhaorientalis, Scirpusvalidus, and Lythrumsalicaria, as well as the floating plants such as Nymphaea tetragona, and the submerged plants such as Myriophyllumverticillatum and Vallisnerianatans, had a good removal effect on nitrogen and phosphorus.
Keywords: emergent plants; floating plants; submerged plants; return flow of farmland; removal rate; Yellow River irrigation region
寧夏引黃灌區(qū)是我國西北地區(qū)重要的灌溉農區(qū)和商品糧基地,由于獨特的灌排制度,每年從黃河引水量約70×108 m3,退水量約30×108 m3,其中40%通過排水溝退回黃河。農業(yè)生產過程中,農戶個體經營方式較為普遍,長期存在化肥過量施用和大水漫灌現(xiàn)象,導致大量的氮磷隨農田退水進入各級排水溝,導致地表水水質惡化[1-2],對黃河水質安全造成了嚴重威脅。以農田排水溝為核心的灌區(qū)水系污染正演變?yōu)橛绊扅S河水質的主要污染源[3-4]。農田退水氮磷高污染負荷,無序不穩(wěn)定性,潛伏周期長,是農業(yè)面源污染的主要貢獻者,已經成為灌區(qū)排水溝氮磷污染和水環(huán)境富營養(yǎng)化的主要來源[5-6]。通過水生植物修復技術去除農田排水溝中過量氮、磷污染物成為灌區(qū)水體保持良好水質的關鍵[7-8]。
利用水生植物(挺水植物、浮水植物和沉水植物)的吸收、吸附及其根系微生物降解等途徑去除水體氮磷污染物[9],抑制沉積物營養(yǎng)物質的釋放[10],通過植物生命活動改變根圍的水體微環(huán)境,影響微生物轉化和去除污染物的過程[11],以及通過對氮、磷等營養(yǎng)物質的競爭作用,抑制藻類繁殖,改善水體環(huán)境[12],是一種投資低、耗能低、無二次污染的修復技術。有研究表明,無錫市農田退水凈污濕地中,挺水植物去除退水氮磷的能力較強[13]。沉水植物苦草型凈化系統(tǒng)對農田退水除磷效率較高 [14]。與單一、自然植被相比,多種人工植被對長江流域農田生態(tài)排水溝渠TN削減效果最好,平均削減率為47.72%[15]。但是關于挺水、浮水和沉水植物對寧夏引黃灌區(qū)農田退水氮磷的去除能力的研究仍少見報道。寧夏引黃灌區(qū)屬于中溫帶干旱區(qū),水生植物的生態(tài)學特性、生長規(guī)律及養(yǎng)分吸收機制均有其特殊性,篩選適宜的水生植物修復寧夏引黃灌區(qū)農田退水氮磷污染成為重要的環(huán)節(jié)。本研究開展水培試驗,比較研究寧夏引黃灌區(qū)農田排水溝常見的12種水生植物對農田退水氮磷的去除效果及其作用機制,運用聚類分析篩選去除氮磷能力強的水生植物,為西北地區(qū)農業(yè)面源污染水生植物修復提供科學依據(jù)。
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)位于寧夏回族自治區(qū)銀川市賀蘭縣常信鄉(xiāng)(106°21′26″E,38°37′32″N),屬于典型中溫帶大陸性干旱氣候,年均降水量138.8 mm,平均溫度9.7 ℃,全年無霜期165 d,積溫3 280 ℃。年均日照為2 935.5 h,全年太陽輻射總量為140.9 kcal·cm-2。
1.2 供試植物的來源
根據(jù)課題組前期試驗結果,綜合考慮植物成活率、生態(tài)型與凈化效果,選擇寧夏引黃灌區(qū)常見的6種挺水植物:香蒲Typha orientalis、菖蒲Acorus calamus、千屈菜Lythrum salicaria、蘆葦Phragmites australis、水蔥Scirpus validus、慈姑Sagittaria trifolia,3種浮水植物:睡蓮Nymphaea tetragona、鳳眼蓮Eichhornia crassipes、浮萍Lemna minor和3種沉水植物:狐尾藻Myriophyllum verticillatum、伊樂藻Elodea nuttallii、苦草Vallisneria natans的幼苗移栽在農田退水排水溝,生長2個月,作為水培試驗材料。
1.3 試驗設計
選取性狀相同、生長狀況良好的植株,種植在48 cm×35 cm×25 cm白色透明塑料箱中,箱底鋪上5 cm厚的用蒸餾水清洗過的石英砂,自然光照。試驗用水取自賀蘭縣常信鄉(xiāng)稻田排水溝的農田退水,原水中TN 2.83±0.06 mg·L-1,NH4+-N 0.91±0.05 mg·L-1,NO3--N 1.76±0.14 mg·L-1,TP 0.41±0.06 mg·L-1,通過添加NH4Cl、KNO3和KH2PO4試劑,參照地表水環(huán)境質量標準(GB 3838—2002),配制成NH4+-N、NO3--N和TP為5.0、10.0和1.8 mg·L-1的劣Ⅴ類水,每個處理18 L試驗用水,空白處理只放置石英砂,每個處理3個重復。以植物移植的當天為第1次取水樣時間,以后每隔4 d取水樣1次,每次取水樣50 mL,持續(xù)時間28 d,取水樣8次,測定NH4+、NO3--N、TN和TP濃度;測定水培試驗前和水培試驗結束后植株的生物量及植物根莖葉TN和TP含量。水培試驗前12種植物莖葉和根TN、TP含量如圖1所示。
1.4 樣品處理與測定方法
水培試驗開始前與結束后,將植株從溶液中取出,用蒸餾水沖洗植物樣品的殘留物,置于陰涼處晾干表面水分,分別稱量各種植物莖葉和根的鮮質量后,在70℃恒溫下烘干至恒質量,稱取每個樣品的烘干質量,用研磨機磨碎各烘干植物樣品,過0.25 mm孔徑篩,用自封袋密閉保存?zhèn)溆谩?/p>
植物樣品經濃硫酸和過氧化氫消解后,采用凱氏定氮儀法測定TN含量,采用鉬銻抗吸光光度法測定TP含量。采用連續(xù)流動分析儀(FUTURA,法國Alliance)測定水樣NH4+-N、NO3--N濃度,采用鉬銻抗分光光度法測定水樣H2PO4-濃度,采用堿性過硫酸鉀消解紫外分光光度法測定水樣TN濃度,采用鉬酸銨分光光度法測定水樣TP濃度。
1.5 數(shù)據(jù)統(tǒng)計分析
采用SPSS 26.0軟件的Duncan新復極差法進行多重比較。
2 結果與分析
2.1 不同水生植物體內氮磷含量及分布
從表1可以看出,水蔥、蘆葦凈增生物量顯著高于其他植物(P<0.05)。挺水植物中,水蔥凈增生物量最高(105.50 g·m-2),其次是蘆葦、香蒲;蘆葦莖葉凈增量最大,水蔥根凈增量最大。浮水植物中,鳳眼蓮凈增生物量最高(42.72 g·m-2),其莖葉凈增量最大;睡蓮根凈增量最大。沉水植物中,狐尾藻凈增生物量最高(61.24 g·m-2),莖葉、根凈增量最大。蘆葦、水蔥、睡蓮、伊樂藻的根凈增量均高于莖葉,其他水生植物的莖葉凈增量均高于根。
從圖2可以看出,在試驗結束時,挺水植物中,千屈菜莖葉TN含量最高(4.04 g·kg-1),慈姑根最高(2.87 g·kg-1);浮水植物中,鳳眼蓮莖葉TN含量最高(3.98 g·kg-1),睡蓮根最高(1.56 g·kg-1);沉水植物中,苦草莖葉TN含量最高(2.73 g·kg-1),伊樂藻根最高(2.77 g·kg-1)。挺水植物中,慈姑莖葉、根TP含量最高,分別為0.73、0.60 g·kg-1;浮水植物中,浮萍植株TP含量最高(0.58 g·kg-1),睡蓮根TP含量最高(0.47 g·kg-1);沉水植物中,伊樂藻莖葉TP含量最高(0.51 g·kg-1),苦草根最高(0.50 g·kg-1)。此外,蘆葦、狐尾藻、伊樂藻根TN含量高于莖葉,而其他水生植物則為莖葉高于根;睡蓮、蘆葦、香蒲、狐尾藻根TP含量高于莖葉,而其他水生植物則為莖葉高于根。
2.2 不同水生植物的氮磷吸收量
從表2可以看出,狐尾藻、蘆葦?shù)腘吸收量與其他植物差異顯著(P<0.05),香蒲、苦草、伊樂藻的P吸收量與其他植物差異顯著(P<0.05)。挺水植物中,蘆葦N吸收量最高(201.22 mg·m-2),其次為香蒲、水蔥;香蒲P吸收量最高(26.64 mg·m-2),其次為慈姑、蘆葦。浮水植物中,鳳眼蓮N吸收量最高(156.14 mg·m-2),睡蓮P吸收量最高(23.48 mg·m-2);沉水植物中,狐尾藻N吸收量最高(230.75 mg·m-2),苦草P吸收量最高(26.11 mg·m-2)。蘆葦、水蔥、睡蓮根部的N、P吸收量均高于莖葉部,而其他水生植物莖葉部的N、P吸收量均高于根部。表明植物氮磷累積量的差異主要來源于生物量的差異,也表明蘆葦、水蔥、睡蓮主要通過根部累積氮磷,其他水生植物的生長中心是莖葉部,從莖葉部獲得的氮磷量高于根部。
2.3 不同水生植物對水體氮磷污染物的去除效果
從圖3可以看出,不同水生植物的氮磷去除率與CK之間表現(xiàn)顯著性差異(P<0.05)。氨氮去除率:挺水植物中蘆葦最高,達到98.56%,其次為千屈菜、香蒲;浮水植物中鳳眼蓮最高,達到95.63%;沉水植物中狐尾藻最高,達到97.94%。硝氮去除率:挺水植物中蘆葦最高,達到78.93%,其次為水蔥、香蒲;浮水植物中鳳眼蓮最高,達到76.01%;沉水植物中苦草最高,達到76.32%??偟コ剩和λ参镏刑J葦最高,達到80.22%,其次為香蒲、水蔥;浮水植物中鳳眼蓮最高,達到71.66%;沉水植物中狐尾藻最高,達到84.93%??偭兹コ剩和λ参镏邢闫炎罡?,達到81.36%,其次為水蔥、蘆葦;浮水植物中鳳眼蓮最高,達到80.58%;沉水植物中苦草最高,達到79.09%。
2.4 不同水生植物去除效果的相關因素與綜合評價
由表3可以看出,氨氮去除率與總氮去除率、全株氮吸收量呈極顯著正相關(P<0.01);硝氮去除率與凈增生物量呈顯著正相關(P<0.05);總氮去除率與全株氮吸收量呈極顯著正相關(P<0.01);總磷去除率與全株磷吸收量呈極顯著正相關(P<0.01)。
采用數(shù)學分析法-隸屬度函數(shù)法分別計算不同水生植物中總氮、總磷、氨氮、硝氮的去除率的具體隸屬度值,并將各植物、各指標的去除率隸屬值進行累加,綜合分析不同水生植物對水體氮磷的去除效果差異,由圖4可以看出,挺水植物中蘆葦、香蒲、水蔥去除效果較強,浮水植物中鳳眼蓮、睡蓮去除效果較強,沉水植物中狐尾藻、苦草去除效果較強。同時將水生植物去除效果強弱采用組間連接方法進行系統(tǒng)聚類分析,蘆葦、香蒲、狐尾藻為高效凈化植物,苦草、水蔥、鳳眼蓮、睡蓮、千屈菜為較高效凈化植物,伊樂藻、浮萍、菖蒲、慈姑為普通凈化植物。
3 討 論
3.1 不同挺水植物對模擬農田退水氮磷的去除效果
挺水植物根在泥質中生長,莖下部和基部在水中,莖、葉光合部分露出水面[19],因此挺水植物莖葉儲存更多N、P滿足光合作用的需要[20]。盡管根吸收P最多,但受生物量的影響,各植株P儲量仍以地上部分居多[21]。收獲挺水植物的地上部分,可以達到去除水體氮磷的目的。
研究表明,挺水植物蘆葦、水蔥等對生活污水[21]、煤礦廢水[22]、茅洲河中游污染水體[23]的總氮、總磷去除效果較好,與本研究的結果基本一致。本研究中,挺水植物對農田退水的氨氮去除率達92.57%,對硝氮去除率達72.44%;總氮去除率達55.39%;總磷去除率達61.08%,其中蘆葦、香蒲、水蔥和千屈菜去除氮磷效果較為明顯。有研究表明挺水植物根系分泌物濃度高、泌氧能力強,蘆葦[24]、香蒲[25]、水蔥[26]和千屈菜[27]通過改變根際相關微生物的豐度與群落結構,促進了微生物硝化和反硝化作用,介導有機物降解并對植物吸收起到調控作用[28]。而且蘆葦、水蔥的根部氮磷吸收量高于莖葉部,香蒲、千屈菜的莖葉部氮磷吸收量高于根部,說明蘆葦、水蔥主要依靠根部去除氮磷,而香蒲、千屈菜主要依靠莖葉部。
3.2 不同浮水植物對模擬農田退水氮磷的去除效果
浮水植物是指根部生長于底泥中,莖部在水中,而葉片漂浮在水面或者根莖葉植物體完全漂浮在水面,只有漂浮在水面上的植物器官具有光合作用,是去除水體氮磷能力較強的水生植物類型[29]。浮水植物去除水體N的途徑主要是植物吸收[30],另外微生物降解和底泥的吸附與截留同樣發(fā)揮著重要作用[29];去除水體P的途徑主要包括植物吸收、根系吸附以及物理沉淀[31]。
研究表明,浮水植物在媯水河污染水體中NH4+-N、TP的去除效果較好,其中植物磷吸收貢獻率較高,植物吸收對TP的去除起到關鍵作用[32]。鳳眼蓮對再生水氮磷去除率較高,主要由于其生物量大,增殖迅速,去除效果能夠持續(xù)[33]。本研究也證實了這一結果,但是鳳眼蓮是外來物種,具有入侵性,易引發(fā)次生環(huán)境問題[34]。本研究發(fā)現(xiàn),睡蓮和浮萍對農田退水的氨氮、硝氮、總氮、總磷去除率僅略低于鳳眼蓮,因此可采用睡蓮和浮萍代替鳳眼蓮凈化寧夏農田退水氮磷污染。睡蓮的根部氮磷吸收量高于莖葉部,而鳳眼蓮的莖葉部氮磷吸收量高于根部,說明睡蓮主要依靠根部去除氮磷,而鳳眼蓮主要依靠莖葉部。在寧夏引黃灌區(qū),浮水植物睡蓮對農田退水氮磷去除效果較好。
3.3 不同沉水植物對模擬農田退水氮磷的去除效果
沉水植物體整株沉沒于水層下面,莖、葉和根均具有吸收作用,將氮磷物質同化成生長所需的蛋白質和核酸等結構組成物質[35]。沉水植物可以通過生長繁殖吸收、促進微生物代謝分解、改善沉積物理環(huán)境、抑制沉積物再懸浮等多種途徑降低沉積物中N、P含量或抑制N、P釋放通量,從而有效控制水體內源負荷[36]。在一定范圍內,沉水植物的生物量越大,對水體中氮磷物質的去除效果越好[37],沉水植物對NH4+-N的吸收能力顯著強于其對NO3--N的吸收能力[38],當上覆水中磷濃度較高時,沉水植物主要通過葉片吸收作用滿足植物生長對磷的需求[39]。
研究表明,狐尾藻對模擬污染水體的總磷、氨氮去除效果顯著[40],對污染湖水磷吸收量較高,主要為根系吸收作用[41]。狐尾藻和苦草對富營養(yǎng)化水體的TN、TP去除率較高[42],與本研究的結果基本一致。本研究中,沉水植物對農田退水的氨氮去除率達96.67%,對硝氮去除率達69.72%,總氮去除率達66.21%,總磷去除率達77.42%。沉水植物狐尾藻、苦草的莖葉部氮磷吸收量高于根部,說明它們均主要依靠莖葉部去除氮磷。在寧夏引黃灌區(qū),沉水植物狐尾藻和苦草對農田退水水體氮磷去除效果較好。
3.4 不同水生植物去除效果的相關因子與綜合評價
植物能吸收水體氮磷,并通過生物量不斷增加、積累氮磷,因此可以通過收割植物的莖、葉和根達到去除水體氮磷污染物的目的,植物莖葉部氮磷含量越高越有利于去除氮磷[43]。浮水植物對富營養(yǎng)化水體的磷去除量與植物磷積累量呈顯著正相關[44]。沉水植物對氮磷的去除效果主要受植物生物量大小的影響,二者呈顯著正相關[45]。本研究也發(fā)現(xiàn),水體中的氨氮、總氮去除率和總磷去除率分別與植物氮吸收量、磷吸收量呈極顯著正相關關系(P<0.01);硝氮去除率與植物凈增生物量呈顯著正相關(P<0.05)。
彭蕾等[46]和張倩妮等[18]針對生活污水不同污染物指標的平均隸屬函數(shù)值對不同水生植物進行聚類分析,后者運用氨氮、總磷、化學需氧量、懸浮固體的平均隸屬函數(shù)值分析表明,高凈化能力植物為蘆葦、鳳眼蓮、香蒲;中等凈化能力植物為睡蓮、伊樂藻、水蔥、苦草、菖蒲、千屈菜、狐尾藻。本研究中,蘆葦、香蒲、狐尾藻為高效凈化植物,苦草、水蔥、鳳眼蓮、睡蓮、千屈菜為較高效凈化植物。由于本研究運用了總氮、總磷、氨氮、硝氮的平均隸屬函數(shù)值,因此聚類分析結果與張倩妮等[18]的研究結果有所不同;而且生活污水和農田退水污染物種類、來源不同,因此水生植物凈化能力表現(xiàn)不同。
由于單一植物存在抗逆性差、凈化能力有限等問題,而不同生態(tài)型水生植物組合具有更高的生物量和氮磷累積效應,對水體氮磷具有更強的吸收凈化作用[47-48]。而光照是決定沉水植物生長發(fā)育的主要限制因素[49],浮水植物會對沉水植物的生長空間形成較大影響[50]。因此根據(jù)本研究的結果,可采用凈化效果較好的挺水植物(蘆葦、香蒲、水蔥、千屈菜)與浮水植物(睡蓮)/沉水植物(狐尾藻、苦草)組配。在下一步研究中,將注重從營養(yǎng)鹽去除能力、空間組合和景觀效果等方面[51]對不同生態(tài)型水生植物進行優(yōu)化配置,開展凈化效果與機理研究。
4 結 論
挺水植物蘆葦、香蒲氮磷去除率較高,浮水植物鳳眼蓮氮磷去除率較高,沉水植物狐尾藻、苦草氮磷去除率較高。蘆葦、水蔥和睡蓮主要通過根吸收積累水體氮磷,而其他水生植物主要通過莖、葉吸收氮磷從而增加生物量去除水體氮磷。水生植物氮磷吸收量越高,對水體氮磷去除能力越強。針對寧夏引黃灌區(qū)農田退水氮磷污染物,蘆葦、香蒲和狐尾藻為高效凈化植物,苦草、水蔥、睡蓮和千屈菜為較高效凈化植物。
參考文獻:
[1] YAN L, LYU Y L, FEN Q, et al. Total nitrogen and total phosphorus pollution reshaped the relationship between water supply and demand in the Huaihe River watershed, China[J]. Chinese Geographical Science,2023,33(3):512-530.
[2] SRINIVAS R, SINGH A P, DHADSE K, et al. An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem[J]. Journal of Cleaner Production,2020,246:118963.
[3] XUE L, DUAN J, HOU P, et al. Full time-space governance strategy and technology for cropland non-point pollution control in China[J]. Frontiers of Agricultural Science and Engineering, 2023,10(4):593-606.
[4] 陸紅飛,齊學斌,喬冬梅,等.基于文獻計量的黃河流域農田灌排研究現(xiàn)狀[J].灌溉排水學報,2020,39(10):25-34. LU H F, QI X B, QIAO D M, et al. Using bibliometrics to analyze research on irrigation and drainage in the yellow river basin[J]. Journal of Irrigation and Drainage,2020,39(10):25-34.
[5] 路鑫雨,徐惠風,文波龍,等.濕地植物對農田退水的生理生態(tài)響應[J/OL].分子植物育種,http://kns.cnki.net/kcms/ detail/46.1068.S.20230704. 1102.005.html. LU X Y, XU H F, WEN B L, et al. Physiological and ecological response of wetland plants to receding farmland water[J/OL]. Molecular Plant Breeding,http://kns.cnki.net/kcms/detail/ 46.1068.S.20230704.1102.005.html.
[6] 朱金格,張曉姣,劉鑫,等.生態(tài)溝-濕地系統(tǒng)對農田排水氮磷的去除效應[J]. 農業(yè)環(huán)境科學學報,2019,38(2):405-411. ZHU J G, ZHANG X J, LIU X, et al. Removal of nitrogen and phosphorus from farmland drainage by ecological ditch-wetland system[J]. Journal of Agro-Environment Science,2019,38(2): 405-411.
[7] NSENGA M K, BO Z, KAVIDIA D M. Assessing the influence of different plant species in drainage ditches on mitigation of non-point source pollutants (N, P, and sediments) in the Purple Sichuan basin[J]. Environmental Monitoring and Assessment, 2017,189(6):267.
[8] 程浩淼,季書,葛恒軍,等.生態(tài)溝渠對農田面源污染的消減機理及其影響因子分析 [J].農業(yè)工程學報,2022,38(21):42-52. CHENG H M, JI S, GE H J, et al. Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(21):42-52.
[9] SUPREETH M. Enhanced remediation of pollutants by microorganisms-plant combination[J]. International Journal of Environmental Science and Technology,2021,19(5):1-12.
[10] GERM M, SIM?I? T. Vitality of aquatic plants and microbial activity of sediment in an oligotrophic lake (Lake Bohinj, Slovenia)[J]. Journal of Limnology,2011,70(2):305-312.
[11] YANG J, PEI H G, LYU J P, et al. Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river[J]. Journal of Oceanology and Limnology,2022,40(3):1012-1026.
[12] LI Y, MA Y, WANG H, et al. Do alternative stable states exist in large shallow Taihu Lake, China?[J]. Journal of Oceanology and Limnology,2023,41(3):959-971.
[13] 王沛芳,婁明月,錢進,等.農田退水凈污濕地對污染物的凈化效果及機理分析[J].水資源保護,2020,36(5):1-10. WANG P F, LOU M Y, QIAN J, et al. Analysis of purification effect and mechanism of pollutant by the farmland drainage wetland[J]. Water Resources Protection,2020,36(5):1-10.
[14] 龔苗苗,蔡飛翔,姜培坤,等.沉水植物型生態(tài)凈化系統(tǒng)處理農田退水的總磷去除動力學研究[J].浙江農林大學學報, 2022,39(1):136-145. GONG M M, CAI F X, JIANG P K, et al. Kinetic modeling of total phosphorus removal from farmland drainage with submerged macrophyte-type ecological purification system[J]. Journal of Zhejiang A F University,2022,39(1):136-145.
[15] 秦沂樟,白靜,趙健,等.長江流域農田生態(tài)排水溝渠氮削減效應研究[J/OL].農業(yè)環(huán)境科學學報,http://kns.cnki.net/kcms/ detail/12.1347.S.20231225.1755.011.html. QIN Y Z, BAI J, ZHAO J, et al. Nitrogen removal effect of agricultural ecological drainage ditches in the Yangtze River basin, China[J]. Journal of Agro-Environment Science, http://kns. cnki.net/kcms/detail/12.1347.S.20231225.1755.011.html.
[16] 吳建強,王敏,吳健,等.4種浮床植物吸收水體氮磷能力實驗研究[J].環(huán)境科學,2011,32(4):995-999. WU J Q, WANG M, WU J, et al. Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floatingbed[J]. Environmental Science,2011,32(4):995-999.
[17] ZHANG X B, LIU P, YANG Y S, et al. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes[J]. Journal of Environmental Sciences,2007,19(8):902-909.
[18] 張倩妮,陳永華,楊皓然,等.29種水生植物對農村生活污水凈化能力研究[J].農業(yè)資源與環(huán)境學報,2019,36(3):392-402. ZHANG Q N, CHEN Y H, YANG H R, et al. Study on the purification ability of 29 aquatic plants to rural domestic sewage[J]. Journal of Agricultural Resources and Environment, 2019,36(3):392-402.
[19] WETZEL R G. Structure and productivity of aquatic ecosystems. Limnology[M]. New York: Saunders College Publishing,1983.
[20] 汪昆侖.挺水植物對大石河下游水體的凈化及吸收動力學實驗研究[D]. 北京:北京市環(huán)境保護科學研究院,2021. WANG K L. Experimental study on purification and absorption kinetics of emergent plants in lower Dashi river[D]. Beijing: Beijing Academy of Environmental Protection Sciences,2021.
[21] 龐慶莊,郭建超,魏超,等.4種濕地植物對污水中氮磷的去除效能及其遷移規(guī)律[J].西北林學院學報,2019,34(6):68-73. PANG Q Z, GUO J C, WEI C, et al. Migration regularity and removal efficiency of nitrogen and phosphorus by four different wetland plants[J]. Journal of Northwest Forestry University, 2019,34(6):68-73.
[22] 程麗芬,張欣.5種水生植物對煤礦廢水的適應性及凈化效果[J].浙江農林大學學報,2019,36(4):801-809. CHENG L F, ZHANG X. Adaptability and purification effect on coal mine wastewater with five aquatic plants[J]. Journal of Zhejiang A F University,2019,36(4):801-809.
[23] 李斌,李慧,吳基昌,等.12種水生植物對茅洲河污染水體的凈化研究[J].環(huán)境科學與技術,2020,43(增刊1):151-158. LI B, LI H, WU J C, et al. Purification ability of 12 aquatic macrophytes to polluted water in the Maozhou River[J]. Environmental Science Technology,2020,43(Suppl.1):151-158.
[24] FANG J, ZHAO R, CAO Q, et al. Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in northern China[J]. Plant and Soil,2019,443(1-2):473-492.
[25] 張義.香蒲和蘆葦垂直潛流人工濕地對再生水中氮的去除效果及影響機制[D].北京:中國林業(yè)科學研究院,2021. ZHANG Y. Wetland treating reclaimed water nitrogen removal effect and influencing mechanism for cattail and reed vertical subsurface flow constructed[D]. Beijing: Chinese Academy of Forestry,2021.
[26] 蔣旭瑤,吉喜燕,黃德英,等.不同植物類型復合垂直流人工濕地根系微生物群落結構的研究[J].農業(yè)環(huán)境科學學報, 2019,38(1):176-183. JIANG X Y, JI X Y, HUANG D Y, et al. Microbial community structure in the roots of three kinds of plants in integrated vertical flow constructed wetlands[J]. Journal of Agro-Environment Science,2019,38(1):176-183.
[27] 趙卉琳.耐鹽挺水植物去除氮磷的機制及根際氨氧化菌群特征分析[D].天津:天津大學,2014. ZHAO H L. Removal mechanism of nitrogen and phosphorus by salt-tolerant emergent macrophyte and the community characteristics of rhizosphere ammonia-oxidizing microorganisms[D]. Tianjin: Tianjin University,2014.
[28] 楊桂英.大型濕地植物香蒲在砷污染條件下對磷的吸收分配及其生態(tài)機制[D].昆明:云南大學,2020. YANG G Y. Effect of sediment arsenic pollution on phosphorus uptake and distribution in wetland macrophyte Typha angustifolia and their ecological mechanisms[D]. Kunming: Yunnan University, 2020.
[29] 鄔淑婷,周之棟,華建峰,等.浮水植物-底泥-微生物系統(tǒng)對富營養(yǎng)化水體氮的凈化作用[J].生態(tài)與農村環(huán)境學報, 2021,37(10):1341-1351. WU S T, ZHOU Z D, HUA J F, et al. Study on the N purification of eutrophic water by floating plant-sediment-microbial system[J]. Journal of Ecology and Rural Environment,2021,37(10): 1341-1351.
[30] MD N, FAISAL M H A A, RANJAN S. Metal removal kinetics,bio-accumulation and plant response to nutrient availability in floating treatment wetland for storm water treatment[J]. Water, 2022,14(11):1683.
[31] NOZAILY F A, ALAERTS G, VEENSTRA S. Performance of duckweed- covered sewage lagoons-II. nitrogen and phosphorus balance and plant productivity[J]. Water Research, 2000,34(10):2734-2741.
[32] 林海,陶艷茹,董穎博,等.基于媯水河水體水質凈化的浮水植物優(yōu)選[J].安全與環(huán)境學報,2019,19(5):1685-1694. LIN H, TAO Y R, DONG Y B, et al. Optimal selection of floating plants based on water purification for Guishui River[J]. Journal of Safety and Environment,2019,19(5):1685-1694.
[33] 趙麗君,陳剛新,張文超,等.2種漂浮植物對再生水水質凈化能力比較[J].環(huán)境工程,2019,37(6):58-63. ZHAO L J, CHEN G X, ZHANG W C, et al. Comparison of purification of reclaimed water quality by two kinds of floating plants[J]. Environmental Engineering,2019,37(6):58-63.
[34] 馮優(yōu),陳慶鋒,李金業(yè),等.水生植物對不同氮磷水平養(yǎng)殖尾水的綜合凈化能力比較[J].農業(yè)環(huán)境科學學報,2020,39(10): 2397-2408. FENG Y, CHEN Q F, LI J Y, et al. Comparison of purification ability of aquatic plants under different concentrations of nitrogen and phosphorus in tailrace of livestock wastewater[J]. Journal of Agro-Environment Science,2020,39(10):2397-2408.
[35] WILHELM G, DORIS S. Influence of aquatic macrophytes on phosphorus cycling in lakes[J]. Hydrobiologia,1988,170(1): 245-266.
[36] 黃小龍,郭艷敏,張毅敏,等.沉水植物對湖泊沉積物氮磷內源負荷的控制及應用[J]. 生態(tài)與農村環(huán)境學報,2019,35(12): 1524-1530. HUANG X L, GUO Y M, ZHANG Y M, et al. Controlling of internal phosphorus and nitrogen loading in lake sediment by submerged macrophytes and its application[J]. Journal of Ecology and Rural Environment,2019,35(12):1524-1530.
[37] LIU L, GUAN Y T, QIN T J, et al. Effects of water regime on the growth of the submerged macrophyte Ceratophyllum demersum at different densities[J]. Journal of Freshwater Ecology,2018,33(1):45-56.
[38] 楊東翰,李本行,張立秋,等.大型溞-沉水植物組合系統(tǒng)去除北京沙河水庫水與底泥污染物效果研究[J].環(huán)境科學學報, 2021,41(1):255-262. YANG D H, LI B H, ZHANG L Q, et al. Study on the efficiencies of removing pollutants from water and sediment of Shahe Reservoir in Beijing by Daphnia magna submerged macrophytes system[J]. Acta Scientiae Circumstantiae,2021,41(1):255-262.
[39] MADSEN V T, CEDERGREEN N. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream[J]. Freshwater Biology,2002,47(2):283-291.
[40] 陸慶楠,賀宇欣,莊文化,等.粉綠狐尾藻凈水效果對氮磷濃度的響應機制[J].中國農村水利水電,2019(2):11-15. LU Q N, HE Y X, ZHUANG W H, et al. How green myriophyllum verticillatum’s water purification effect responds to nitrogen and phosphorus concentration[J]. China Rural Water and Hydropower,2019(2):11-15.
[41] CRAIG S S, MICHAEL S A. Phosphorus transfer from sediments by Myriophyllum spicatum[J]. Limnology and Oceanography, 1986,31(6):1312-1321.
[42] 伏桂仙,曹偉張,陶俊.12種水生植物對富營養(yǎng)化水體的凈化效果[J].環(huán)境科學與技術,2021,44(增刊2):308-315. FU G X, CAO W Z, TAO J. Purification effect of 12 aquatic plants on eutrophic water[J]. Environmental Science Technology, 2021,44(Suppl.2):308-315.
[43] 王子潮,左鋒,王文明,等.長沙市洋湖人工濕地冬季去污效果與植物效應[J].中南林業(yè)科技大學學報,2022,42(2):98-107. WANG Z C, ZUO F, WANG W M, et al. The decontamination effect and plant effect of Yanghu constructed wetland in Changsha city in winter[J]. Journal of Central South University of Forestry Technology,2022,42(2):98-107.
[44] SARAH D, SHAHBAZ M A, ALLAH D, et al. Microcosm study on the potential of aquatic macrophytes for phytoremediation of phosphorus-induced eutrophication[J]. Sustainability, 2022,14(24):16415-16415.
[45] 丁玲,李羚君,李劍峰,等.沉水植物凈化人工水源湖原水中氮磷和懸浮物的試驗研究[J].生態(tài)環(huán)境學報,2018,27(1): 122-129. DING L, LI L J, LI J F, et al. Experimental studies on purification of nitrogen, phosphorus and suspended solids in raw water from an artificial source lake by submerged macrophytes[J]. Ecology and Environmental Sciences,2018,27(1):122-129.
[46] 彭蕾,湯春芳,陳永華,等.凈化生活污水的浮床植物篩選[J].中南林業(yè)科技大學學報,2020,40(5):162-170. PENG L, TANG C F, CHEN Y H, et al. Study on screening of floating bed plants to purify domestic sewage[J]. Journal of Central South University of Forestry Technology,2020,40(5): 162-170.
[47] 盧秀秀,劉云根,王妍,等.典型挺水植物應用于濕地生態(tài)修復工程污染凈化效應差異性研究[J].環(huán)境污染與防治, 2024,46(1):87-91,98. LU X X, LIU Y G, WANG Y, et al. Study on the difference of sterilization effect of typical water-holding plants applied to wetland ecological restoration projects[J]. Environmental Pollution Control,2024,46(1):87-91,98.
[48] 湯鵬.不同水生植物配置對微污染水體的凈化效果及相關機理研究[D].鄭州:鄭州大學,2021. TANG P. Study on purification performance and mechanism of different aquatic plant configurations on micro-polluted water[D]. Zhengzhou: Zhengzhou University,2021.
[49] KHANDAY A S, YOUSUF R A, RESHI A Z, et al. Management of Nymphoides peltatum using water level fluctuations in freshwater lakes of Kashmir Himalaya[J]. Limnology, 2017,18(2):219-231.
[50] SAMUEL J L T, ANDREW F, DAVID T B. Quantifying the ecological impacts of alien aquatic macrophytes: a global meta- analysis of effects on fish, macroinvertebrate and macrophyte assemblages[J]. Freshwater Biology,2022,67(11):1847-1860.
[51] 唐炳然,蔡然,王瑞霖,等.基于文獻分析的我國人工濕地植物配置路線優(yōu)化[J].環(huán)境工程技術學報,2022,12(3):905-915. TANG B R, CAI R, WANG R L, et al. Optimization of hydrophyte configuration route in constructed wetlands in China based on literature analysis[J]. Journal of Environmental Engineering Technology,2022,12(3):905-915.
[本文編校:吳 彬]