国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

馬尾松純林闊葉化改造對土壤碳氮固持的短期效應(yīng)

2024-12-31 00:00:00王浩東陳夢袁叢軍何爽丁訪軍楊瑞

摘 要:【目的】為了解馬尾松純林補(bǔ)植不同闊葉樹種對土壤碳庫的影響,篩選不同類型的闊葉化改造土壤高效固碳模式。【方法】在貴州省獨(dú)山縣國有林場內(nèi)選擇林分結(jié)構(gòu)相似且具有代表性的馬尾松Pinus massoniana人工純林,經(jīng)擇伐后補(bǔ)植香樟Cinnamomum camphora、楠木Phoebe zhennan、南酸棗Choerospondias axillaris、鵝掌楸Liriodendron chinense闊葉樹種8~14 a,以未補(bǔ)植闊葉樹的馬尾松純林為對照,分別設(shè)置3塊樣地,共15塊,采集0~20、20~40和40~60 cm的土壤,測定土壤理化性質(zhì)和活性有機(jī)碳組分?!窘Y(jié)果】補(bǔ)植不同闊葉樹種對土壤碳庫影響不同,對0~20 cm影響較為顯著,對更深層土壤影響較小,0~60 cm的土壤碳儲量變化范圍約1.39~12.77 kg·m-2,其中,馬尾松純林和馬尾松+南酸棗林的土壤碳儲量較高,分別達(dá)到212.35和203.51 kg·m-2,馬尾松+香樟林土壤碳儲量最低,約為100.78 kg·m-2;補(bǔ)植闊葉樹種后土壤pH值顯著降低,而MBC顯著增加;在0~20 cm土層,南酸棗+馬尾松林土壤有機(jī)碳和全氮顯著提升;補(bǔ)植闊葉樹種后短期內(nèi)土壤碳儲量降低,但土壤氮儲量無顯著變化;補(bǔ)植楠木后土壤碳庫活度和碳庫活度指數(shù)提升,補(bǔ)植南酸棗后土壤碳庫穩(wěn)定性顯著提升?!窘Y(jié)論】優(yōu)先選擇葉片中初始木質(zhì)素/氮值高的落葉闊葉樹種能有效提升馬尾松純林土壤碳氮固持能力。馬尾松純林闊葉化改造短期內(nèi)對土壤氮儲量影響較小,土壤碳庫一定程度下降后,可能需要15 a以上的恢復(fù)期。

關(guān)鍵詞:馬尾松人工純林;碳氮固存;補(bǔ)植闊葉樹;短期效應(yīng)

中圖分類號:S714.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-923X(2024)10-0126-12

基金項(xiàng)目:貴州省科技計(jì)劃項(xiàng)目(黔科合服企〔2020〕4010);2023年貴州天然林保護(hù)管理補(bǔ)助資金項(xiàng)目“天然林資源保護(hù)與修復(fù)效益監(jiān)測”;2023年貴州森林資源管理補(bǔ)助資金項(xiàng)目“貴州人工商品純林樹種結(jié)構(gòu)優(yōu)化調(diào)整對森林碳匯效益提升監(jiān)測研究”;貴州雷公山森林生態(tài)系統(tǒng)國家定位觀測研究站項(xiàng)目資助。

The short-term effects of converting pure Pinus massoniana forests into mixed broadleaved forests on soil carbon and nitrogen sequestration

WANG Haodong1,2,3,4, CHEN Meng1,2, YUAN Congjun1,2, HE Shuang1,2, DING Fangjun1,2, YANG Rui4

(1. Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, Guizhou, China; 2. Guizhou Leigongshan Observation and Research Station for Forest Ecosystem, Leishan 557100, Guizhou, China; 3. Longli Forestry Farm of Guizhou Prorince, Longli 551200, Guizhou, China; 4. College of Forestry, Guizhou University, Guizhou 550025, Guiyang, China)

Abstract:【Objective】In order to understand the impact of replanting different broad-leaved tree species on soil carbon storage in Pinus massoniana forests, a study was conducted to identify an effective carbon sequestration model for the broadleaf transformation of P. massoniana plantations.【Method】Within the state-owned forest farm in Dushan county, Guizhou province, a representative artificially planted pure forest of P. massoniana with similar forest structure was selected. After selective logging, Cinnamomum camphora, Phoebe zhennan, Choerospondias axillaris, and Liriodendron chinense of broad-leaved tree species were replanted in the same forest plot for 8-14 a. Three plots were designated for each condition, with a total of 15 plots, and soil samples of 0-20, 20-40, and 40-60 cm were collected for determination of soil physiochemical properties and active organic carbon components, using the pure forest of P. massoniana without replanting the broad-leaved trees as the control.【Result】Replanting different broad-leaved tree species had varying effects on soil carbon pools, with significant effects on the 0-20 cm soil layer and smaller effects on deeper soil layers. The range of soil carbon storage changes in the 0-60 cm layer was approximately 1.39-12.77 kg·m-2, with the highest soil carbon storage observed in pure forests of P. massoniana and P. massoniana + C. axillaris, reaching 212.35 and 203.51 kg·m-2, respectively, while the P. massoniana and C. camphora forest had the lowest soil carbon storage, approximately 100.78 kg·m-2. Replanting broad-leaved trees significantly reduced soil pH but increased microbial biomass carbon (MBC). In the 0-20 cm soil layer, the soil organic carbon and total nitrogen significantly increased in the P. massoniana + C. axillaris forest. Although soil carbon storage decreased in the short term after replanting broad-leaved trees, soil nitrogen storage did not significantly change. The replanting of P. zhennan significantly increased soil carbon pool activity and carbon pool activity index, while the replanting of C. axillaris significantly improved soil carbon pool stability.【Conclusion】Prioritizing the selection of deciduous broad-leaved tree species with high initial lignin /N values in the leaf effectively enhanced the soil carbon and nitrogen retention capacity of pure P. massoniana forests. The transformation of pure P. massoniana forests into broad-leaved forests had a minor short-term effect on soil nitrogen storage. After a certain degree of decline in soil carbon stocks, it might require a recovery period of fifteen years or more.

Keywords: Pinus massoniana artificial pure forest; carbon and nitrogen sequestration; replanting broad-leaved trees; short-term effects

近年來,氣候變暖已成為人們必須重視的全球性問題[1]??刂拼髿鉁厥覛怏w二氧化碳濃度最有效的途徑是人為減排和森林碳匯。森林固碳可分為地上和地下兩部分,地下土壤是陸地生態(tài)系統(tǒng)最大的碳庫,在全球碳循環(huán)中起著至關(guān)重要的作用[2-3]。與植物碳庫相比,土壤碳庫能保存更久[4],對穩(wěn)定大氣二氧化碳濃度至關(guān)重要。即使土壤碳庫發(fā)生微小變化也會引起大氣二氧化碳含量的顯著變化[5],而氣候變暖反過來會加快土壤碳庫的分解[6],因此,土壤碳庫穩(wěn)定性備受關(guān)注[7]。土壤有機(jī)碳主要來源于凋落物和根系分泌物,因而土壤碳庫穩(wěn)定性與地上植被類型密切相關(guān)。目前的研究按照周轉(zhuǎn)的快慢、轉(zhuǎn)化控制因素、分組方法的不同等將土壤有機(jī)碳分為不同的獨(dú)立組分,如活性有機(jī)碳、慢性有機(jī)碳、惰性有機(jī)碳、顆粒有機(jī)碳、可溶性有機(jī)碳、輕組有機(jī)碳、重組有機(jī)碳、黏粉粒有機(jī)碳、團(tuán)聚體保護(hù)有機(jī)碳等[8],共同參與土壤腐殖質(zhì)和團(tuán)聚體結(jié)構(gòu)的形成、土壤供水供肥過程[9-10]。土壤碳循環(huán)與氮存在一定關(guān)聯(lián),因?yàn)樵诮^大多數(shù)生態(tài)系統(tǒng)中氮與凈初級產(chǎn)量直接關(guān)聯(lián)[11],土壤氮動態(tài)對土壤碳固存有較強(qiáng)影響,研究土壤碳庫時分析土壤氮固持能力不可或缺[12],二者共同參與地球化學(xué)循環(huán),對環(huán)境變化響應(yīng)迅速,備受關(guān)注[13]。

針葉林連栽經(jīng)營常引起土壤肥力下降和土壤酸化等問題[14],為更好地解決這些問題,需采取有目的性的森林經(jīng)營措施。研究表明,改變森林類型和林分結(jié)構(gòu)等森林經(jīng)營措施影響土壤固持碳氮的作用[15-16]。通過調(diào)整樹種結(jié)構(gòu)將針葉林變?yōu)獒橀熁旖涣?,可加快凋落物的分解,也進(jìn)一步豐富森林物種多樣性,有利于土壤碳固存。當(dāng)前這一結(jié)論已得到大量研究的證實(shí)[17-19]。但是,林分結(jié)構(gòu)調(diào)整后短期內(nèi)對土壤碳氮固持的影響以及不同針闊混交林土壤碳儲量是否存在差異等問題仍不十分清楚,還需要深入探索。

馬尾松(Pinus massoniana,PM)作為中國亞熱帶主要造林樹種,在全國人工林中占據(jù)重要地位。目前的研究主要集中在馬尾松純林土壤理化性質(zhì)[20]和碳儲量[21]。盧立華等[19]研究發(fā)現(xiàn),與純林相比,馬尾松混交林土壤碳儲量顯著提升。徐芷君等[22]研究發(fā)現(xiàn),與木荷混交種植的馬尾松混交林同樣提升了土壤碳氮固持能力。相較于闊葉樹種,馬尾松針葉木質(zhì)素和樹脂含量高,比葉面積小[23],使得微生物分解速率較慢,分解后產(chǎn)生的酸性成分,抑制微生物的捕食和繁殖等活動[24],導(dǎo)致馬尾松針葉分解緩慢。但是,較多研究僅有一種馬尾松混交林,關(guān)于馬尾松與不同闊葉樹種混交林的對比研究較少,缺乏足夠的對比研究,可能會限制我們對森林生態(tài)系統(tǒng)土壤碳氮固持動態(tài)變化的認(rèn)識,還影響森林經(jīng)營管理決策的科學(xué)性。因此,比較研究馬尾松闊葉化改造,有利于維持馬尾松林生態(tài)系統(tǒng)穩(wěn)定并提高固碳能力。

基于此,本研究在樹種結(jié)構(gòu)調(diào)整措施的基礎(chǔ)上,在馬尾松林下補(bǔ)植香樟(Cinnamomum camphora,CC)、楠木(Phoebe zhennan,PZ)、南酸棗(Choerospondias axillaris,CA)和鵝掌楸(Liriodendron chinense,LC)。由于前期對馬尾松純林進(jìn)行了間伐,導(dǎo)致在試驗(yàn)初期人工林內(nèi)物種多樣性大幅下降,作出以下假設(shè):短期內(nèi)森林的碳儲量無法恢復(fù)到最初的狀態(tài),且這一過程中不同混交林土壤碳儲量差異顯著,這通常與生態(tài)系統(tǒng)植物多樣性和土壤養(yǎng)分有關(guān)。本研究通過對比分析不同樹種搭配模式下,土壤碳氮固持能力的變化趨勢以及差異性,評估短期內(nèi)馬尾松人工林闊葉化改造后土壤碳氮固持效應(yīng)。研究馬尾松純林闊葉化改造后土壤碳氮固持能力,可為針葉林改造調(diào)整提供理論依據(jù),有助于篩選馬尾松純林闊葉化改造土壤高效固碳模式。

1 研究區(qū)概況與方法

1.1 研究區(qū)概況

研究區(qū)位于貴州省黔南布衣族苗族自治州東南部獨(dú)山縣國有林場(圖1),獨(dú)山縣位于貴州省,地處貴州最南端,素有“貴州南大門”“西南門戶”之稱,是“中國花燈藝術(shù)之鄉(xiāng)”。全縣平均海拔850~1 100 m,屬中亞熱帶溫潤季風(fēng)性氣候,四季分明,冬無嚴(yán)寒、夏無酷暑,年平均氣溫15 ℃,年均降水量1 430 mm,無霜期297 d。獨(dú)山縣國有林場占地面積約18 588.00 hm2,其中:林地15 839.14 hm2,占總面積的85.21%,非林地2 748.86 hm2,占總面積的 14.79%。森林面積 13 564.32 hm2,森林覆蓋率 72.96%,森林總蓄積865 465.48 m3,是貴州最大的國有林場。林場內(nèi)出露的巖石以砂頁巖和碳酸巖為主,土壤以硅鋁質(zhì)和鐵鋁質(zhì)黃壤為主,土壤厚度一般在中層以上,肥力中等,多呈酸性或微酸性。林場栽植的樹種以馬尾松、濕地松Pinus elliottii、香樟和鵝掌楸等為主。

1.2 樣地設(shè)置與調(diào)查

本研究土壤樣品采自4種不同的馬尾松-闊葉混交林(馬尾松+香樟、馬尾松+楠木、馬尾松+南酸棗和馬尾松+鵝掌楸)和未改造的馬尾松純林。選擇林分結(jié)構(gòu)相近且具有代表性的馬尾松純林,通過林分結(jié)構(gòu)調(diào)整,將其改造成與香樟、楠木、南酸棗和鵝掌楸混交的森林。每種類型設(shè)置3塊樣地,樣地面積為667 m2,共15塊樣地。調(diào)查固定樣地基本信息(包括海拔、坡度等),對樣地內(nèi)所有胸徑大于5 cm的喬木和補(bǔ)植的闊葉樹種進(jìn)行每木檢尺,結(jié)果如表1所示。在每個樣地的三個角分別布設(shè)1 m2的草本樣方,于草本樣方內(nèi)收集全部的凋落物,稱量樣方內(nèi)凋落物的鮮質(zhì)量,并帶回實(shí)驗(yàn)室備用。馬尾松純林在文中縮寫為PP,馬尾松+香樟混交林縮寫為PCC,馬尾松+楠木混交林縮寫為PPZ,馬尾松+南酸棗混交林縮寫為PCA,馬尾松+鵝掌楸混交林縮寫為PLC。

1.3 土壤樣品采集與指標(biāo)測定

于2023年5月29日采集土壤樣品,每個樣地挖開一個土壤剖面,依次從0~20、20~40和40~60 cm采集不同土層的土壤,并用環(huán)刀挖取土壤用于測定土壤容重,挖出的土壤去除其中包含的根和石塊等雜物,完全風(fēng)干后,分別研磨過2 mm和0.149 mm篩并裝入密封袋中保存?zhèn)溆茫糜谕寥览砘再|(zhì)的測定,共45個樣品。其中,土壤有機(jī)碳含量采用重鉻酸鉀氧化-分光光度法測定,土壤全氮采用凱氏法測定,土壤全磷采用酸溶劑熱處理法測定,土壤pH值采用電位法測定[25],易氧化有機(jī)碳(ROC)采用高錳酸鉀氧化法測定[26],顆粒有機(jī)碳(POC)采用濕篩法-重鉻酸鉀外加熱法測定[27],可溶性有機(jī)碳(DOC)采用蒸餾水浸提法測定[28],微生物量碳(MBC)采用氯仿熏蒸法測定[29]。凋落物帶回后立即放入80 ℃恒溫烘箱中烘干,稱其干質(zhì)量,通過計(jì)算得到每公頃的凋落物質(zhì)量。

1.4 統(tǒng)計(jì)分析

數(shù)據(jù)統(tǒng)計(jì)與分析在Excel 2016和SPSS 26.0軟件中進(jìn)行,采用單因素方差分析檢驗(yàn)馬尾松不同改造模式下的差異顯著性(P<0.05)。在R 4.1.3中運(yùn)用“GGally”程序包繪制相關(guān)性矩陣圖,運(yùn)用“Vegan”包計(jì)算Shannon指數(shù)和Rarefied SR指數(shù),RDA分析在Canoco 5.0軟件中繪制,其余圖片運(yùn)用Origin 2021軟件繪制。

2 結(jié)果與分析

2.1 不同改造模式群落植物多樣性與凋落物量特征

由表2可知,馬尾松+香樟混交林林下植物多樣性顯著高于馬尾松純林(P<0.05),馬尾松純林和馬尾松+鵝掌楸混交林凋落物量顯著高于其他處理(P<0.05)。

2.2 不同改造模式土壤理化性質(zhì)

如表3所示,不同土層馬尾松純林土壤pH值均為最高,且補(bǔ)植闊葉樹種土壤pH值與馬尾松純林之間差異顯著(P<0.05)。0~20 cm土層中,馬尾松+南酸棗林土壤容重顯著低于馬尾松純林,馬尾松+南酸棗林土壤有機(jī)碳含量最高,馬尾松+南酸棗林和馬尾松+鵝掌楸林土壤全氮顯著高于馬尾松純林(P<0.05);而20~40 cm土壤中,僅馬尾松+南酸棗林和馬尾松+鵝掌楸林土壤有機(jī)碳含量差異顯著(P<0.05),在40~60 cm土壤中,不同改造模式下土壤有機(jī)碳含量均無顯著差異(P>0.05)。

2.3 不同改造模式土壤碳氮固存特征

結(jié)果表明,土壤碳固存受到不同混交模式的影響,氮固存受到的影響較?。▓D2)。在0~60 cm土層中,馬尾松純林碳儲量最高,且顯著高于馬尾松+楠木混交林(P<0.05),其次是馬尾松+南酸棗混交林,其余處理均較低,馬尾松純林與其余處理無顯著差異(P>0.05)。對于0~20 cm土層,除馬尾松+南酸棗混交林外,馬尾松純林與其他預(yù)處理差異達(dá)顯著水平(P<0.05)。對于20~40和40~60 cm土層,各處理間差異較?。≒>0.05);土壤氮固存在各處理間均無顯著差異(P>0.05)。

2.4 不同改造模式土壤碳組分分布特征

結(jié)果顯示(圖3),在0~20、20~40和40~60 cm土層中,馬尾松純林混交林土壤微生物量碳顯著低于其余處理(P<0.05),顆粒有機(jī)碳在各處理間無顯著差異(P>0.05),在0~20和40~60 cm土層中,馬尾松+鵝掌楸混交林顯著高于馬尾松+南酸棗林,在20~40 cm土層,各處理無顯著差異(P>0.05),不同混交林的土壤易氧化有機(jī)碳僅表層的馬尾松+南酸棗混交林和馬尾松+香樟混交林差異顯著(P<0.05),其余處理差異不顯著(P>0.05)。

2.5 不同改造模式土壤碳庫管理指數(shù)特征

如表4所示,混入闊葉樹種后,0~20 cm僅混入楠木的碳庫活度和碳庫活度指數(shù)得到提升,碳庫指數(shù)僅混入南酸棗后提高,增長了256%,混入闊葉樹種后0~40 cm的碳庫管理指數(shù)只有楠木和南酸棗顯著提升(P<0.05),其余指標(biāo)在更深土層無顯著差異(P>0.05)。

2.6 土壤理化性質(zhì)與土壤碳氮儲存的關(guān)系

土壤碳氮儲量和碳組分相關(guān)性分析如圖4所示。相關(guān)性表現(xiàn)為,碳儲量與ROC和POC極顯著正相關(guān)(P<0.001),POC和ROC存在極顯著的兩兩正相關(guān)關(guān)系(P<0.001),DOC與MBC顯著正相關(guān)(P<0.05)。

冗余分析結(jié)果(圖5)顯示,環(huán)境因子共解釋了土壤碳氮儲量變異的93.36%,前兩軸分別解釋了93.19%和0.17%(圖5a)。SOC顯著影響土壤氮儲量(P<0.01),TN顯著影響土壤碳儲量(P<0.01),土壤碳、氮儲量存在正相關(guān)關(guān)系,但并未達(dá)到顯著水平,植物多樣性抑制了土壤碳儲量的增長,土壤全磷含量和調(diào)落物量顯著促進(jìn)了土壤碳氮固存(P<0.05)(圖5b)。

3 討 論

3.1 不同改造模式對土壤碳庫垂直分布的影響

植物生長發(fā)育受到土壤有機(jī)碳的轉(zhuǎn)化與礦質(zhì)元素釋放的影響[30],植物根系活動影響土壤環(huán)境[31],二者相互作用、相互影響,共同維持生態(tài)系統(tǒng)穩(wěn)定。由于有機(jī)碳的來源和組成以及環(huán)境條件的差異,底土中的碳可能比表土中的碳更穩(wěn)定[32],僅僅關(guān)注表層土壤無法揭示整個土壤剖面的土壤碳特征。研究表明,土壤養(yǎng)分含量隨土層的深入逐漸減少[33-34]。本研究中,不同混交模式下,土壤SOC、TN和TP隨土層的增加逐漸減少,或隨土層的增加先增加再減少。造成這一現(xiàn)象的原因可能是由于植物根系主要集中在土壤表層,根系活動改變了土壤結(jié)構(gòu),改善了土壤環(huán)境[35]。同時,土壤容重隨土層的增加逐漸變大,深層土壤由于受更強(qiáng)的擠壓作用不利于植物根系和土壤微生物的呼吸。加上有機(jī)質(zhì)和地下生物量的減少,導(dǎo)致土壤碳、氮儲量和碳組分呈土層加深而遞減的趨勢[36]。結(jié)合本研究結(jié)果來看,補(bǔ)植不同樹種后土壤碳氮儲量隨著土層由淺至深的變化趨勢不完全一致,暗示了不同種類的闊葉樹對土壤碳轉(zhuǎn)化和循環(huán)的影響是不同的,這可能與不同植物的根系垂直分布格局和光合產(chǎn)物的分配差異有關(guān)[37-38]。本研究僅研究了馬尾松純林闊葉改造后短期內(nèi)的土壤碳氮儲量變化,并未研究植物根系的分布特征以及樹種對資源的吸收、利用的能力。未來的研究可以著重于探討這些因素,并通過綜合分析以揭示更深層次的機(jī)理。

3.2 不同改造模式對土壤碳氮固持的影響

MBC與整個土壤生態(tài)系統(tǒng)養(yǎng)分周轉(zhuǎn)密切相關(guān),其大小主要與土壤微生物的生存環(huán)境有關(guān)[39]。本研究中,補(bǔ)植闊葉樹種使土壤表層MBC得到顯著提升,說明補(bǔ)植闊葉樹種后微生物的生存環(huán)境得到優(yōu)化。ROC是主要的活性有機(jī)碳,反映土壤碳庫的活躍度[40]。結(jié)果顯示,ROC和SOC成顯著正相關(guān),表征土壤ROC對土壤碳庫變化的強(qiáng)敏感性[41]。研究結(jié)果表明,DOC作為土壤最具動態(tài)特征的碳組分,與MBC常有較強(qiáng)的相關(guān)性[42],這與本研究結(jié)果一致,二者對環(huán)境和氣候變化的敏感性較強(qiáng),都可以作為評價(jià)土壤微生物分解利用土壤速效養(yǎng)分的重要指標(biāo)。

林分結(jié)構(gòu)調(diào)整明顯改變森林群落的物種組成和群落結(jié)構(gòu),植物多樣性將受到影響[43]。Shannon指數(shù)和Rarefied SR反映的是在相同樣本數(shù)量或大小的情況下,物種出現(xiàn)的豐富程度,通常與生物量存在正相關(guān)關(guān)系[44],且對土壤碳固存具有促進(jìn)作用[18,45]。本研究中,植物多樣性抑制了馬尾松林和混交林的土壤碳固存,這與前人研究結(jié)果不一致[46]。原因可能是前期的森林經(jīng)營措施大大降低了森林群落總體生物量和物種多樣性,短期內(nèi)難以恢復(fù)[47],而馬尾松林林分密度的降低將嚴(yán)重影響土壤碳儲量[48],導(dǎo)致土壤碳儲量甚至低于未開展森林經(jīng)營的林分。這完全符合前期做出的假設(shè),但這并不意味著采取的森林經(jīng)營措施是不合適的。從結(jié)果中可看出,只有混入香樟的林分土壤碳儲量顯著低于馬尾松純林,其余林分土壤碳儲量與馬尾松純林差異不顯著,且年限較久的南酸棗+馬尾松林土壤碳儲量即將超過馬尾松純林。由表1可知,南酸棗雖年限較長,但其增長速度明顯較其他樹種更快,即在有限的生長周期內(nèi),生長越快的闊葉樹種越能提升人工針葉林的土壤碳匯能力,且林分結(jié)構(gòu)調(diào)整后可能需要15 a以上才能恢復(fù)至原來的狀態(tài)。香樟生長周期較其他樹種慢,相較于同期補(bǔ)植的其他闊葉樹種,其體型較小,而南酸棗生長迅速,一方面更多容易分解的凋落物為土壤微生物提供了更多的分解底物[49],另一方面,合理的林分郁閉度避免了太陽長期照射抑制土壤微生物活力[50],這在一定程度上加快了土壤碳固存。郭婧等[51]對比馬尾松+石櫟針闊混交林、南酸棗落葉闊葉林、石櫟+青岡常綠闊葉林3種次生林和杉木人工純林的凋落物量與周轉(zhuǎn)期,發(fā)現(xiàn)次生林的凋落物量顯著高于杉木人工林,且落葉樹種南酸棗的凋落物分解效率相較于常綠闊葉林更高,周轉(zhuǎn)期更短。說明樹種特性所決定的凋落物量及其分解速率影響了森林生態(tài)系統(tǒng)的養(yǎng)分循環(huán)功能。森林生態(tài)系統(tǒng)養(yǎng)分歸還的能力與土壤碳氮固持能力密切關(guān)聯(lián),不同樹種搭配不僅增加了森林生態(tài)系統(tǒng)物種多樣性,提升了林分的穩(wěn)定性與抗逆能力。從凋落物的分解角度來看,某些凋落物混合分解后通常都能加快分解速率,這些過程可促進(jìn)土壤對碳和氮的固定[52]。綜合來看,補(bǔ)植闊葉樹種有利于土壤對碳氮的固持,但樹種的配置模式是其中的關(guān)鍵,通常認(rèn)為選擇初始木質(zhì)素/N值較高的物種分解效率更高[53],選擇補(bǔ)植此類樹種更契合經(jīng)營目的的闊葉樹種可有效提升馬尾松純林土壤碳固存。陳歆宇等[54]研究發(fā)現(xiàn)混交比例和林分密度對馬尾松混交林的生產(chǎn)功能有較大的影響。因此,未來需要在確定混交樹種后,探究馬尾松混交林最佳混交比例和最佳林分密度。

3.3 不同改造模式對土壤碳庫管理指數(shù)的影響

土壤碳庫管理指數(shù)可以表征土地利用或管理方式對土壤碳庫質(zhì)量提升的能力[55]。本研究中,對于0~20 cm土層,僅補(bǔ)植楠木的碳庫活度和碳庫活度指數(shù)得到提升,說明馬尾松純林補(bǔ)植闊葉樹種初期,補(bǔ)植除楠木外的其余樹種均會降低土壤有機(jī)碳的分解速率。深層土壤(20~40 cm)的碳庫活度和碳庫活度指數(shù)較接近,可能是由于該區(qū)域受植物根系影響較小,土壤環(huán)境差異較小[35]。碳庫管理指數(shù)是土壤碳儲量與土壤總碳中不穩(wěn)定碳活度指標(biāo)的最終平衡結(jié)果,直接反映土壤碳庫穩(wěn)定性。本研究僅碳庫活度指數(shù)僅0~20 cm土層在補(bǔ)植南酸棗后提高,說明補(bǔ)植南酸棗后土壤質(zhì)量得到了提升。土壤碳庫管理指數(shù)可作為評估最佳補(bǔ)闊樹種的指標(biāo)之一。

4 結(jié) 論

本研究基于馬尾松人工純林,通過林分結(jié)構(gòu)調(diào)整混入不同闊葉樹種,以期找出馬尾松高效固碳模式。結(jié)果顯示,補(bǔ)植不同闊葉樹種后對馬尾松林土壤碳庫影響不一致,0~20 cm土壤受影響較強(qiáng),20~60 cm受到影響較弱;補(bǔ)植闊葉樹種后土壤pH值顯著降低;對于0~20 cm土壤,南酸棗+馬尾松混交林土壤有機(jī)碳和全氮顯著提升;總體來看,經(jīng)林分結(jié)構(gòu)調(diào)整后的馬尾松林分,補(bǔ)植闊葉樹種在短期內(nèi)無法提升土壤碳儲量,但未來具有較好的提升潛力;評估補(bǔ)植闊葉樹種對土壤碳儲量和碳庫穩(wěn)定性的影響,發(fā)現(xiàn)南酸棗在目前研究的幾個闊葉樹種中表現(xiàn)最佳,馬尾松闊葉化改造后的土壤碳庫可能需要15 a以上的恢復(fù)期,在馬尾松純林中補(bǔ)植初始木質(zhì)素/N值較高的闊葉樹種更有利于土壤碳氮的固持。

參考文獻(xiàn):

[1] NOORMETS A, EPRON D, DOMEC J, et al. Effects of forest management on productivity and carbon sequestration: a review and hypothesis[J]. Forest Ecology and Management,2015,355: 124-140.

[2] LEI W Y, PAN Q, TENG P J, et al. How does soil organic matter stabilize with soil and environmental variables along a black soil belt in northeast China? An explanation using FTIR spectroscopy data[J]. Catena,2023,228:107152.

[3] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications,2015,6(1):6707.

[4] RATTAN L. Sequestering carbon and increasing productivity by conservation agriculture[J]. Journal of Soil and Water Conservation,2015,70(3):55A.

[5] ZHOU X H, XU X, ZHOU G Y, et al. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: field incubation and data assimilation[J]. Global Change Biology,2018,24(2):810-822.

[6] YOU M Y, HE P, DAI S S, et al. Priming effect of stable C pool in soil and its temperature sensitivity[J]. Geoderma,2021, 401:115216.

[7] PENG Y Y, THOMAS S C, TIAN D L. Forest management and soil respiration: Implications for carbon sequestration[J]. Environmental Reviews,2008,16:93-111.

[8] 趙鑫,宇萬太,李建東.不同經(jīng)營管理?xiàng)l件下土壤有機(jī)碳及其組分研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2006,17(11):2203-2209. ZHAO X, YU W T, LI J D. Research advances in soil organic carbon and its fractions under different management patterns[J]. Chinese Journal of Applied Ecology,2006,17(11):2203-2209.

[9] 張維理, KOLBE H,張認(rèn)連.土壤有機(jī)碳作用及轉(zhuǎn)化機(jī)制研究進(jìn)展[J].中國農(nóng)業(yè)科學(xué),2020,53(2):317-331. ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica,2020,53(2):317-331.

[10] LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology,2020,26(1):261-273.

[11] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology,2008,89(2):371-379.

[12] JELINSKI N A, KUCHARIK C J. Land-use effects on soil carbon and nitrogen on a US Midwestern floodplain[J]. Soil Science Society of America Journal,2009,73(1):217-225.

[13] LAN J C, HU N, FU W L. Soil carbon-nitrogen coupled accumulation following the natural vegetation restoration of abandoned farmlands in a karst rocky desertification region[J]. Ecological Engineering,2020,158:106033.

[14] DONG X D, GAO P, ZHOU R, et al. Changing characteristics and influencing factors of the soil microbial community during litter decomposition in a mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest in northern China[J]. Catena, 2021,196:104811.

[15] XIONG Y M, XIA H P, LI Z A, et al. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China[J]. Plant and Soil,2008,304:179-188.

[16] ZHAO J, WANG X L, SHAO Y H, et al. Effects of vegetation removal on soil properties and decomposer organisms[J]. Soil Biology and Biochemistry,2011,43(5):954-960.

[17] BAI Y X, ZHOU Y C, CHEN X L, et al. Tree species composition alters the decomposition of mixed litter and the associated microbial community composition and function in subtropical plantations in China[J]. Forest Ecology and Management,2023, 529:120743.

[18] CHEN X L, TAYLOR A R, REICH P B, et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual[J]. Nature,2023,618:94-101.

[19] 盧立華,郭文福,蔡道雄,等.馬尾松與紅椎純林及混交林生態(tài)系統(tǒng)碳儲量研究[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2019,39(7): 78-84. LU L H, GUO W F, CAI D X, et al. Study on carbon storage of monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix[J]. Journal of Central South University of Forestry Technology,2019,39(7):78-84.

[20] 陳蓉,王韋韋,曹麗榮,等.馬尾松和杉木人工林細(xì)根碳氮磷化學(xué)計(jì)量特征隨土層深度的變化[J].生態(tài)學(xué)報(bào),2023,43(9): 3709-3718. CHEN R, WANG W W, CAO L R, et al. Variation of carbon, nitrogen and phosphorus stoichiometric characteristics of fine roots in masson pine and Chinese fir plantations with soil depth[J]. Acta Ecologica Sinica,2023,43(9):3709-3718.

[21] 陶玉華,馮金朝,馬麟英,等.廣西羅城馬尾松、杉木、桉樹人工林碳儲量及其動態(tài)變化[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(11): 1608-1613. TAO Y H, FENG J C, MA L Y, et al. Carbon storage and distribution of massion pine, Chinese fir and eucalyptus plantations at Liuzhou, Guangxi[J]. Ecology and Environmental Sciences,2011,20(11):1608-1613.

[22] 徐芷君,劉苑秋,方向民,等.亞熱帶2種針葉林土壤碳氮磷儲量及化學(xué)計(jì)量比對混交的響應(yīng)[J].水土保持學(xué)報(bào),2019, 33(1):165-170. XU Z J, LIU W Q, FANG X M, et al. The responses of soil carbon, nitrogen and phosphorus storage and their stoichiometry in two coniferous forests to mixed effect in subtropical area[J]. Journal of Soil and Water Conservation,2019,33(1):165-170.

[23] 劉濤,孫守琴,邱陽.川西亞高山生態(tài)系統(tǒng)三種典型植物凋落物分解動態(tài)特征[J].山地學(xué)報(bào),2017,35(5):663-668. LIU T, SUN S Q, QIU Y. Dynamics and differences in the decomposition of litters from three dominating plants in subalpine ecosystems in western Sichuan, China[J]. Mountain Research, 2017,35(5):663-668.

[24] ZHANG Y, LI X, ZHANG D, et al. Characteristics of fungal community structure during the decomposition of mixed foliage litter from Pinus massoniana and broadleaved tree species in southwestern China[J]. Journal of Plant Ecology,2020,13(5): 574-588.

[25] 鮑士旦.土壤農(nóng)化分析[M].北京:中國農(nóng)業(yè)出版社,2000. BAO S D. Soil and agrochemistry analytical methods[M]. Beijing: Chinese Agriculture Press,2000.

[26] LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil,1993,155(1):399-402.

[27] CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic- matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777-783.

[28] 呂國紅,周廣勝,周莉,等.土壤溶解性有機(jī)碳測定方法與應(yīng)用[J].氣象與環(huán)境學(xué)報(bào),2006,22(2):51-55. LYU G H, ZHOU G S, ZHOU L, et al. Methods of soil dissolved organic carbon measurement and their applications[J]. Journal of Meteorology and Environment,2006,22(2):51-55.

[29] JENKINSON D S, POWLSON D S. The effects of biocidal treatments on metabolism in soil-V: a method for measuring soil biomass[J]. Soil Biology and Biochemistry,1976,8(3):209-213.

[30] ZHANG C, LIU G B, XUE S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau[J]. Soil Biology and Biochemistry,2016,97:40-49.

[31] WANG G L, LIU G B, XU M X. Above-and belowground dynamics of plant community succession following abandonment of farmland on the loess plateau, China[J]. Plant and Soil,2009,316: 227-239.

[32] RUMPEL C, K?GEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil,2011,338:143-158.

[33] 孫雙紅,陳立新,李少博,等.闊葉紅松林不同演替階段土壤酶活性與養(yǎng)分特征及其相關(guān)性[J].北京林業(yè)大學(xué)學(xué)報(bào), 2016,38(2):20-28. SUN S H, CHEN L X, LI S B, et al. Characteristics of soil enzyme activity and nutrient content and their correlations at different succession stages of broadleaf-Korean pine forest[J]. Journal of Beijing Forestry University,2016,38(2):20-28.

[34] PAN J W, GUO Q Q, LI H E, et al. Dynamics of soil nutrients, microbial community structure, enzymatic activity, and their relationships along a chronosequence of Pinus massoniana plantations[J]. Forests,2021,12(3):376.

[35] 宋日,吳春勝,郭繼勛.東北草原植物殘?bào)w腐解動態(tài)研究(簡報(bào))[J].草業(yè)學(xué)報(bào),2002,11(2):105-108. SONG R, WU C S, GUO J X. Decomposition dynamics of plant residues in natural meadow in northeast China[J]. Acta Prataculturae Sinica,2002,11(2):105-108.

[36] HU P, LIU S, YE Y, et al. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region[J]. Applied Soil Ecology,2018,132:169-178.

[37] 趙巧巧,趙筱青,黃佩,等.云南亞熱帶地區(qū)主要林地類型土壤碳含量變化及影響因素研究[J].林業(yè)科學(xué)研究,2024,37(1): 63-72. ZHAO Q Q, ZHAO X Q, HUANG P, et al. Soil carbon changes and its influencing factors in major forest types in the subtropical area of Yunnan province[J]. Forest Research,2024,37(1):63-72.

[38] 唐雪婭,徐明,文春玉,等.黔中地區(qū)馬尾松針闊混交林細(xì)根性狀空間變異特征[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(11): 142-150. TANG X Y, XU M, WEN C Y, et al. Spatial variation of root functional traits of Pinus massoniana mixed forest in central Guizhou[J]. Journal of Central South University of Forestry Technology,2023,43(11):142-150.

[39] DEVI N B, YADAVA P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, northeast India[J]. Applied Soil Ecology,2006,31(3):220-227.

[40] 沈宏,曹志洪,胡正義.土壤活性有機(jī)碳的表征及其生態(tài)效應(yīng)[J].生態(tài)學(xué)雜志,1999,18(3):33-39. SHEN H, CAO Z H, HU Z Y. Characteristics and ecological effects of the active organic carbon in soil[J]. Chinese Journal of Ecology,1999,18(3):33-39.

[41] 王義祥,翁伯琦,邢世和,等.果園土壤有機(jī)碳及其影響因素的研究進(jìn)展[J].福建農(nóng)業(yè)學(xué)報(bào),2011,26(6):1113-1122. WANG Y X, WENG B Q, XING S H, et al. Advance in soil organic carbon stock and the impact factors on orchard ecosystem research[J]. Fujian Journal of Agricultural Sciences,2011,26(6): 1113-1122.

[42] CRESSEY E L, DUNGAIT J, JONES D L, et al. Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition[J]. Soil Biology and Biochemistry,2018,122:60-70.

[43] 馮廣,李俊清,臧潤國,等.皆伐與刀耕火種后常綠-落葉闊葉混交林的動態(tài)恢復(fù)機(jī)制[J].北京林業(yè)大學(xué)學(xué)報(bào),2019,41(10): 1-10. FENG G, LI J Q, ZANG R G, et al. Dynamics and mechanisms of natural restoration of evergreen-deciduous broadleaved mixed forest following clear cutting and slash-and-burn[J]. Journal of Beijing Forestry University,2019,41(10):1-10.

[44] 王麗紅,辛穎,鄒夢玲,等.大興安嶺火燒跡地植被恢復(fù)中植物多樣性與生物量分配格局[J].北京林業(yè)大學(xué)學(xué)報(bào), 2015,37(12):41-47. WANG L H, XIN Y, ZOU M L, et al. Plants diversity and biomass distribution of vegetation restoration in burned area of Great Xing’an mountains[J]. Journal of Beijing Forestry University,2015,37(12):41-47.

[45] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications,2015,6(1):6707.

[46] CONG W F, VAN RUIJVEN J, MOMMER L, et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes[J]. Journal of Ecology,2014,102(5):1163-1170.

[47] 范春楠,劉強(qiáng),鄭金萍,等.采伐強(qiáng)度對闊葉紅松林生態(tài)系統(tǒng)碳密度恢復(fù)的影響[J].北京林業(yè)大學(xué)學(xué)報(bào),2022,44(10):33-42. FAN C N, LIU Q, ZHENG J P, et al. Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem[J]. Journal of Beijing Forestry University,2022, 44(10):33-42.

[48] 李玉鳳,李妹珍,馬姜明,等.林分密度對馬尾松人工林土壤碳儲量及其分配特征的影響[J].廣西林業(yè)科學(xué),2021,50(1): 54-59. LI Y F, LI M Z, MA J P, et al. Effects of stand density on soil carbon storage and distribution characteristics of Pinus massoniana plantations[J]. Guangxi Forestry Science,2021,50(1): 54-59.

[49] BALAMI S, VA?UTOVá M, KO?NAR J, et al. Soil fungal communities in abandoned agricultural land has not yet moved towards the seminatural forest[J]. Forest Ecology and Management,2021,491:119181.

[50] LEI W, PAN Q, TENG P, et al. How does soil organic matter stabilize with soil and environmental variables along a black soil belt in northeast China? An explanation using FTIR spectroscopy data[J]. Catena,2023,228:107152.

[51] 郭婧,喻林華,方晰,等.中亞熱帶4種森林凋落物量、組成、動態(tài)及其周轉(zhuǎn)期[J].生態(tài)學(xué)報(bào),2015,35(14):4668-4677. GUO J, YU L H, FANG X, et al. Litter production and turnover in four types of subtropical forests in China[J]. Acta Ecologica Sinica, 2015,35(14):4668-4677.

[52] ZHAO H, YANG R, YUAN C, et al. Chemical stoichiometry and enzyme activity changes during mixed decomposition of Camellia sinensis pruning residues and companion tree species litter[J]. Agronomy,2023,13(7):1717.

[53] 劉莎茜,楊瑞,侯春蘭,等.貴州山區(qū)生態(tài)茶園不同凋落物木質(zhì)素、纖維素分解特征[J].茶葉科學(xué),2021,41(5):654-668. LIU S Q, YANG R, HOU C L, et al. Decomposition characteristics of lignin and cellulose in different litters of ecological tea gardens in mountainous areas of Guizhou[J]. Journal of Tea Science,2021,41(5):654-668.

[54] 陳歆宇,譚偉,楊深鈞,等.不同類型馬尾松混交林結(jié)構(gòu)與生產(chǎn)功能的耦合關(guān)系[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(4): 53-61. CHEN X Y, TAN W, YANG S J, et al. The coupling relationship between structure and production function of different types of Pinus massoniana mixed forest[J]. Journal of Central South University of Forestry Technology,2023,43(4):53-61.

[55] MEENA V S, MONDAL T, PANDEY B M, et al. Land use changes: strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India[J]. Geoderma, 2018,321:69-78.

[本文編校:吳 彬]

新绛县| 崇左市| 揭东县| 会宁县| 望奎县| 肥乡县| 镇原县| 沿河| 库尔勒市| 疏附县| 巨野县| 隆子县| 池州市| 毕节市| 正定县| 广德县| 丹棱县| 读书| 西林县| 威远县| 泸水县| 西吉县| 达日县| 海晏县| 临清市| 蓝田县| 小金县| 耒阳市| 调兵山市| 志丹县| 婺源县| 成安县| 康马县| 兰考县| 拜城县| 浦城县| 雷州市| 呼和浩特市| 吉隆县| 张家川| 永康市|