国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

典型農(nóng)牧交錯帶不同植被恢復模式土壤微生物特征及其影響因素

2024-12-31 00:00:00黃沛石涵宇李衛(wèi)紀署光侯振宏王海民姚斌
中南林業(yè)科技大學學報 2024年10期
關鍵詞:植被恢復環(huán)境因子人工林

摘 要:【目的】土壤微生物作為生態(tài)系統(tǒng)的分解者在植被演替和養(yǎng)分循環(huán)中扮演重要的角色,是土壤養(yǎng)分轉(zhuǎn)化的最重要的調(diào)節(jié)器之一,也是評估生態(tài)系統(tǒng)恢復的重要指標。為明確農(nóng)牧交錯帶不同植被恢復過程中的土壤微生物特征,評價植被恢復成效,深入認識農(nóng)牧交錯帶植被恢復和演替過程?!痉椒ā坷肐llumina MiSep高通量測序技術,結(jié)合常規(guī)分析方法,以天然草地為對照,分析中國北方典型農(nóng)牧交錯帶張家口屯墾林場4種植被恢復模式(樟子松Pinus sylvestris var. mongolica、落葉松Larix principis-rupprechtii、楊樹Populus tomentosa和榆樹Ulmus pumila)土壤細菌和真菌群落組成及其多樣性,并探究其與土壤環(huán)境因子的相關性?!窘Y(jié)果】高通量測序結(jié)果共獲得19 957個細菌OTUs和5 957個真菌OTUs。α多樣性分析結(jié)果表明,20~40 cm土層中落葉松和樟子松的細菌Shannon和Chao指數(shù)顯著高于天然草地(P<0.05),0~20 cm土層中天然草地和榆樹真菌Shannon和Chao指數(shù)顯著高于楊樹(P<0.05);β多樣性分析結(jié)果表明,在屬水平,不同植被類型微生物群落結(jié)構(gòu)差異顯著(P=0.001)?;貧w分析結(jié)果表明,植被恢復導致土壤細菌和真菌群落發(fā)生改變,其中SOC、TN和粉粒含量與細菌密切相關,黏粒和粉粒含量與真菌密切相關。【結(jié)論】在張家口地區(qū)農(nóng)牧交錯帶植被恢復過程中,樟子松和落葉松恢復模式是細菌群落豐富度和多樣性最高的2種植被恢復模式;榆樹恢復模式是真菌群落豐富度和多樣性最高的植被恢復模式。研究結(jié)果可為農(nóng)牧交錯帶生態(tài)脆弱區(qū)的生態(tài)恢復提供理論依據(jù)和技術支撐。

關鍵詞:農(nóng)牧交錯帶;人工林;植被恢復;土壤微生物多樣性;環(huán)境因子

中圖分類號:S718.8 文獻標志碼:A 文章編號:1673-923X(2024)10-0138-11

基金項目:“十三五”國家重點研發(fā)計劃項目(2020YFF0305905);河北省科學院立項項目“河北省壩上高原退化草地生態(tài)修復技術體系研究”(23107);中國林業(yè)科學研究院生態(tài)保護與修復研究所科技項目(STSTC2023004)。

Characteristics of soil microorganisms and their influencing factors of different vegetation restoration modes in typical ecotone between farming and animal husbandry: taking Zhangjiakou Tunken forest farm as an example

HUANG Pei1a,2, SHI Hanyu1a,2, LI Wei1a, JI Shuguang1a, HOU Zhenhong1b, WANG Haimin3, YAO Bin1a,2(1.a. Institute of Ecological Conservation and Restoration; b. Graduate Department, Chinese Academy of Forestry, Beijing 100091, China; 2. State Forestry Administration Dunhuang Desert Ecosystem Location Research Station, Dunhuang 736200, Gansu, China; 3. Heilongshan Nation Forest Park, Zhangjiakou 075500, Hebei, China)

Abstract:【Objective】Soil microorganisms, as ecosystem decomposers, play an important role in vegetation succession and nutrient cycling, and are one of the most important regulators of soil nutrient transformations, as well as an important indicator for ecosystem restoration assessment. To elucidate the soil microbial characteristics during different vegetation restoration processes in the ecotone between farming and animal husbandry, evaluate the effectiveness of vegetation restoration and deepen the understanding of vegetation restoration and succession processes in these areas.【Method】Combined with conventional analytical methods, Illumina MiSeq highthroughput sequencing techniques were used to analyze the soil bacterial and fungal community. Using natural grassland as a control, we analyzed the soil bacterial and fungal community composition and diversity in four vegetation restoration modes (Pinus sylvestris var. mongolica, Larix principis-rupprechtii, Populus tomentosa, and Ulmus pumila) in a typical ecotone between farming and animal husbandry, Zhangjiakou Tunken Forest Farm in northern China. Additionally, we investigated the correlation between microbial communities and soil environmental factors.【Result】The high-throughput sequencing results yielded a total of 19 957 bacterial OTUs and 5 957 fungal OTUs. α-diversity analysis indicated that in the 20-40 cm soil layer, the bacterial Shannon and Chao indices of Pinus and Larix were significantly higher than those of the natural grassland (P<0.05). In the 0-20 cm soil layer, the fungal Shannon and Chao indices of natural grassland and ulmus were significantly higher than those of populous (P<0.05). β-diversity analysis revealed significant differences in microbial community structure among different vegetation types at the genus level (P=0.001). Regression analysis suggested that vegetation restoration led to changes in soil bacterial and fungal communities, with soil organic carbon (SOC), total nitrogen (TN), and silt content closely associated with bacteria, while clay and silt content were closely associated with fungi.【Conclusion】During the vegetation restoration process in ecotone between farming and animal husbandry in Zhangjiakou area, the Pinus and Larix restoration modes exhibited the highest richness and diversity in bacterial communities, while the Ulmus restoration mode demonstrated the highest richness and diversity in fungal communities. These findings contribute theoretical and technical support for ecological restoration in ecologically fragile areas of ecotone between farming and animal husbandry.

Keywords: ecotone between farming and animal husbandry; plantation; vegetation restoration; soil microbial diversity; environmental factors

植被和土壤生態(tài)系統(tǒng)是有機的整體,二者相互影響、相輔相成。土壤微生物是連接植物與土壤環(huán)境之間的紐帶,能夠通過自身的代謝直接或間接影響土壤環(huán)境,在促進成土過程、維持土壤表層穩(wěn)定、改善土壤養(yǎng)分循環(huán)等方面發(fā)揮著重要作用,其菌落組成和結(jié)構(gòu)受植物和土壤因子的直接影響[1–4]。土壤微生物作為生態(tài)系統(tǒng)的分解者在植被演替和養(yǎng)分循環(huán)中扮演重要的角色,是土壤養(yǎng)分轉(zhuǎn)化的最重要的調(diào)節(jié)器之一,也是生態(tài)系統(tǒng)恢復評估的重要指標[5-6]。當土地利用方式發(fā)生改變時,土壤微生物數(shù)量及活性也相應地發(fā)生變化。因此,獲得植被恢復過程中土壤微生物特征及其影響因素,可為生態(tài)恢復提供重要信息。

張家口地處冀西北,是我國東部農(nóng)耕區(qū)與西部草原牧區(qū)相連接的半干旱生態(tài)過渡帶,其生態(tài)環(huán)境脆弱,荒漠化問題嚴重[7],屬于典型的農(nóng)牧交錯帶,也是京津冀上游的重要生態(tài)涵養(yǎng)區(qū),發(fā)揮著極其重要的生態(tài)服務功能[8]。為了對農(nóng)牧交錯帶沙化土地進行恢復,國家采取了多種措施,例如退耕還林,退耕還草等措施。退耕還林是一項重要的生態(tài)工程,通過重新引入樹木,有效提高了土地的植被覆蓋率,減緩了土壤侵蝕的速度。同時,這一措施不僅改善了土壤結(jié)構(gòu),提高了土地的水分保持能力,還為當?shù)靥峁┝素S富的生態(tài)系統(tǒng)服務。另一方面,退耕還草的實施也為沙化土地的恢復發(fā)揮了重要作用。引入適宜的草本植物,不僅有效防止了沙塵暴的發(fā)生,還改善了土地的質(zhì)地和肥力。這種生態(tài)修復手段不僅能夠提高土地的生產(chǎn)力,還能夠提供良好的放牧資源,促進畜牧業(yè)的可持續(xù)發(fā)展。然而,之前的研究主要關注的是土地治理的技術性[9-10]和生態(tài)效應[11],針對農(nóng)牧交錯帶相似環(huán)境條件下不同人工植被恢復模式土壤微生物特征及其影響因素的研究相對較少。

實踐證明,植被恢復是農(nóng)牧交錯帶沙化土地進行生態(tài)修復的有效途徑。不同植被恢復模式對土壤微生物的影響作用不同[3,12]。例如,閔紅等[3]研究發(fā)現(xiàn)植被恢復后土壤微生物數(shù)量顯著增加,不同植被恢復模式下增加幅度不同。Yang等[12]發(fā)現(xiàn)人工林地和天然草植被對土壤微生物多樣性的影響不成比例,人工林地土壤真菌多樣性增加,土壤細菌多樣性減少。莊靜靜等[13]發(fā)現(xiàn)土壤細菌多樣性和豐富度指數(shù)表現(xiàn)為刺槐純林高于刺槐-栓皮櫟混交林,但真菌相反。土壤微生物在調(diào)節(jié)陸地生態(tài)系統(tǒng)的功能和服務方面發(fā)揮著重要作用[4],各種生物和非生物因素影響土壤微生物群落的組成和結(jié)構(gòu)[3,14-15]。土壤微生物直接參與凋落物分解、元素循環(huán)和污染物降解等生態(tài)過程,與植物生長和健康密切相關,同時也影響土壤的形成發(fā)育和土壤肥力[16–18]。不同植被類型,由于其根系分泌物、生物量和生長速度的不同,對土壤細菌和真菌的影響具有顯著差異,故而可以通過不同植被恢復類型下土壤微生物特征的比較,從而為篩選較優(yōu)的植被恢復類型提供理論基礎[2]。

因此,為明確農(nóng)牧交錯帶植被恢復對土壤微生物特征的影響,本研究利用Illumina MiSep高通量測序技術,以天然草地為對照,選取中國北方典型農(nóng)牧交錯帶張家口屯墾林場的4種植被恢復模式(樟子松Pinus sylvestris var. mongolica、落葉松Larix principis-rupprechtii、楊樹Populus tomentosa和榆樹Ulmus pumila)為研究對象,分析不同植被恢復模式對農(nóng)牧交錯帶土壤細菌及真菌群落組成及多樣性的影響,探究其與土壤環(huán)境因子的相關性,旨在從微生物角度探究農(nóng)牧交錯帶植被恢復和演替過程,評價植被恢復成效,為研究農(nóng)牧交錯帶植被恢復過程及其機制提供依據(jù)。

1 研究區(qū)概況

研究區(qū)位于河北省張家口市康保縣屯墾林場(114.47°E,41.54°N),屬于典型的農(nóng)牧交錯帶。平均海拔高度1 450 m,屬于北溫帶半干旱季風氣候,夏季高溫少雨,冬季寒冷干燥,年平均氣溫2.1 ℃,無霜期90~105 d,年均降水量300 mm,集中在7—9月,雨熱同季。由于受內(nèi)蒙古高壓的控制,致使冬季嚴寒漫長,夏季涼爽短促。造林樹種主要有榆樹、楊樹、樟子松和落葉松等。區(qū)域地帶性土壤為栗鈣土,呈微堿性,土壤肥力中等。

2 材料與方法

2.1 樣品采集和預處理

2023年5月,在屯墾林場場區(qū)范圍內(nèi)選取海拔相近、地勢平坦、恢復年限約50 a且造林前都具有相似土壤特征的落葉松人工林(LS)、樟子松人工林(ZS)、楊樹人工林(PS)和榆樹人工林(YS)為研究對象,以鄰近的無人工干預的天然草地(GL)作為對照。研究區(qū)人工林林下植物較少,地表生物量低于天然草地。在每一樣地中隨機選取3個樣方(1 m×1 m),采用5點取樣法,于樣方點四周和中心位置使用內(nèi)徑為5 cm的土鉆分別采集0~20、20~40和40~60 cm層的土樣,去除樣品中的植物殘根、石礫等雜物,并立即混合成一個土壤樣本。將混勻后的土樣分為2份,分別裝入密封袋和滅菌微生物取樣管。其中裝入密封袋的土樣風干后用于土壤理化性質(zhì)測定;裝入滅菌微生物取樣管的土樣用冰袋保鮮帶回實驗室,-80 ℃下保存,用于土壤微生物高通量測序分析。同期進行落葉松、樟子松、楊樹、榆樹和草地基本情況調(diào)查(表1)。

2.2 土壤理化性質(zhì)測定

土壤pH值釆用pH計測定(水土比為1∶2.5);土壤有機碳釆用重鉻酸鉀容量法測定;土壤全碳采用高溫灼燒法測定;土壤全氮采用半微量凱氏法測定[19];土壤粒徑使用Mastersizer 3000激光粒度儀進行測定。土壤粒徑分級以美國制土壤粒級為標準:黏粒(<2 μm)、粉粒(2~50 μm)、砂粒(50~2 000 μm)[20]。

2.3 DNA收集和高通量測序

根據(jù)FastDNA? Spin Kit for Soil(MP Biomedicals,美國)說明書進行微生物群落總DNA抽提,使用1%的瓊脂糖凝膠電泳檢測DNA的提取質(zhì)量,使用NanoDrop2000測定DNA濃度和純度。

PCR在GeneAmp 9700 PCR系統(tǒng)上進行。引物338F-806R和ITS1F-ITS2R分別用于16s rRNA和ITS基因。通過2%瓊脂糖凝膠電泳檢測擴增產(chǎn)物,并使用AxyPrep DNA凝膠提取試劑盒從凝膠中回收,用 Tris-HCl 洗滌,并通過2%瓊脂糖凝膠電泳驗證。使用 QuantiFluorTM-ST 熒光計對 PCR產(chǎn)物進行定量,并根據(jù)測序需要調(diào)整樣品[21]。

使用Illumina MiSeq平臺,委托上海美吉生物醫(yī)藥科技有限公司進行測序。高通量測序數(shù)據(jù)已存入NCBI序列讀取檔案(BioProject ID PRJNA1015983,study accession number SRP460000)。

2.4 序列分析

使用Uparse 7.0.1090軟件進行土壤樣品的有效數(shù)據(jù)聚類分析,以97%的一致性作為將序列聚類為OTUs(Operational taxonomic units)的依據(jù),然后篩選頻數(shù)最高的序列作為OTUs代表序列。分別在界、門、綱、目、科、屬和種水平對OTUs序列進行物種注釋,分析檢查樣本的微生物群落組成。多樣性指數(shù)Chao、Shannon使用QIIME平臺計算。

2.5 統(tǒng)計分析

使用R語言4.2.1對土壤理化性質(zhì)和微生物多樣性進行分析和繪圖。通過單因素方差分析對土壤理化性質(zhì)和微生物α多樣性進行比較,差異顯著性用LSD法比較。通過基于bray_crutis距離算法的主成分分析(PCA)解析土壤微生物群落的β多樣性,利用ANOSIM相似性分析進行組間差異檢驗(置換次數(shù)=999)。 回歸分析剔除依賴于其他測量變量的冗余變量,選擇影響較大的變量,并在方差膨脹因子值上逐步去除冗余參數(shù)。

3 結(jié)果與分析

3.1 土壤理化性質(zhì)

不同植被恢復過程中土壤理化性質(zhì)存在顯著差異(表2)。土壤以砂粒為主,其次為粉粒,黏粒含量最低。土壤pH值的變化范圍為8.29~8.57,整體呈弱堿性。隨植被類型變化,TC、TN和SOC含量呈現(xiàn)出明顯差異。其中0~20 cm土層SOC和TN含量變化趨勢一致,均表現(xiàn)為YS>PS>ZS>GL>LS。5種植被類型中,GL土層中TC含量最低,PS 0~20 cm和20~40 cm土層中的TC含量最高,YS 40~60 cm土層中的TC含量最高。

3.2 土樣測序結(jié)果

通過對54個樣本進行細菌16s和真菌ITS片段測序,樣本獲得的16s有效序列數(shù)量34 619~63 468,ITS有效序列數(shù)量50 899~166 964。按最小樣本序列數(shù)抽平后,對97%相似水平下的OTU代表序列進行分類學分析,發(fā)現(xiàn)5種植被恢復模式共獲得19 957個細菌OTUs和5 957個真菌OTUs。

3.3 土壤微生物群落α多樣性

不同植被恢復類型的細菌和真菌群落相對豐度(Chao)和多樣性(Shannon)指數(shù)分析結(jié)果如圖1所示,5種植被恢復模式0~20 cm和40~60 cm土層細菌Shannon和Chao指數(shù)無顯著差異(P>0.05);而20~40 cm土層中LS和ZS的細菌Shannon和Chao指數(shù)顯著高于GL(P<0.05)。0~20 cm土層中GL和YS真菌Shannon和Chao指數(shù)顯著高于PS(P<0.05);20~40 cm土層中YS真菌Chao指數(shù)顯著高于 GL、LS和PS(P<0.05);40~60 cm土層中YS真菌Chao指數(shù)顯著高于GL和PS(P<0.05)。20~40 cm和40~60 cm土層中真菌Shannon指數(shù)無顯著差異(P>0.05)??傮w來說,細菌和真菌Shannon和Chao指數(shù)隨土層深度增加而降低。

3.4 土壤微生物群落組成分析

通過分析植被恢復下土壤微生物優(yōu)勢菌群的變化,可以評估生態(tài)系統(tǒng)恢復的程度,了解植被恢復對土壤微生物群落的影響。分析結(jié)果顯示,細菌和真菌群落中的優(yōu)勢物種在5種恢復模式中基本一致(圖2)。相對豐度較高的細菌門是放線菌門Actinobacteria、變形菌門Proteobacteria和酸桿菌門Acidobacteriota。相對豐度較高的真菌門是子囊菌門Ascomycota和擔子菌門Basidiomycota。值得一提的是,GL、LS和YS土壤中子囊菌門豐度較高,豐度占比分別為69%~88%、59%~64%和59%~77%;而PS土壤中擔子菌門豐度較高,豐度占比為59%~89%。ZS表層與下層土壤真菌優(yōu)勢菌門豐度具有差異,0~20 cm土層中子囊菌門豐度較高,占比為56%;而20~40 cm和40~60 cm土層中擔子菌門豐度較高,占比分別為54%和53%。

3.5 土壤微生物群落β多樣性

利用基于bray_crutis距離算法的主成分(PCA)分析5種植被恢復模式土壤細菌和真菌群落組成的差異性(圖3)。結(jié)果顯示,在門水平,前2個軸(PC1和PC2)分別解釋了植被恢復模式中細菌物種總變異的21.77%和15.01%,真菌物種總變異的23.07%和11.49%;而在屬水平,前2個軸(PC1 和 PC2)分別解釋了植被恢復模式中細菌物種總變異的12.88%和11.04%,真菌物種總變異的7.29%和5.78%。利用ANOSIM相似性分析進行組間差異檢驗(置換次數(shù)=999),結(jié)果顯示,在門水平,5種模式的土壤細菌群落組成無顯著差異(P=0.167),但真菌群落組成顯著差異(P=0.001);而在屬水平,土壤細菌群落(P=0.001)和真菌群落組成差異顯著(P=0.001)。

3.6 土壤微生物群落與土壤環(huán)境因子的相關性分析

植被類型改變了土壤環(huán)境特征和微生物群落結(jié)構(gòu)。植被恢復引起的土壤微生物群落變化是一個復雜過程的結(jié)果,該過程同時受到許多生物和非生物因素的調(diào)節(jié),例如氣候、土壤理化性質(zhì)和人類活動等[21]。本研究中,去除冗余變量后選擇4個環(huán)境特征參數(shù),并以屬水平細菌和真菌的PC1坐標為因變量進行回歸分析(圖4),分析結(jié)果顯示微生物群落結(jié)構(gòu)是由多種土壤環(huán)境因子驅(qū)動的。SOC(P=0.003)、TN(P=0.006)和粉粒(P=0.002)顯著影響細菌群落結(jié)構(gòu),而黏粒(P=0.015)和粉粒(P=0.002)顯著影響真菌群落結(jié)構(gòu)。

4 討 論

4.1 植被恢復對土壤性質(zhì)的影響

植被恢復可以改善土壤質(zhì)量并增加微生物活性,恢復方法不同,其對土壤養(yǎng)分的影響仍有很大的不確定性[23-24]。本研究中,經(jīng)過約50 a的植被恢復,土壤質(zhì)地得到了改善,其中人工林植被恢復效果高于天然草地。在之前的研究中,許多學者認為植被類型轉(zhuǎn)變引起的土壤pH值變化是土壤微生物群落特征改變的關鍵因素[25–27]。但本研究中,除0~20 cm土層外,其余土層pH值均無顯著差異(P>0.05)。可能的原因是半干旱地區(qū)降水量較少,土壤水分狀態(tài)較差,土壤淋溶作用微弱,且水分限制導致土壤表層凋落物分解速率較低,導致生物量積累少,表層土壤中可溶性物質(zhì)向下層移動較少[28]。此外,不同植被恢復模式的變化也伴隨著碳和養(yǎng)分輸入的變化。例如,農(nóng)牧交錯帶退化沙質(zhì)草地經(jīng)過15 a植被恢復后,有機質(zhì)、總氮和速效養(yǎng)分顯著改善[25]。對于森林來說,土壤中碳的輸入很大程度取決于枯枝落葉層和根系分泌物的分解[29];而對于草地來說,碳的輸入主要由草本植物的根系提供,根系碳周轉(zhuǎn)速率較快,加上放牧等人為因素影響,導致地上碳輸入減少[30]。在本研究中,TC含量呈現(xiàn)出闊葉樹種>針葉樹種>天然草地這一趨勢,這是由于闊葉樹種的枯枝落葉層較厚,且有機凋落物通常比針葉林中的凋落物分解得更快,進而增加了土壤的碳輸入[31]。粒徑分析發(fā)現(xiàn)研究區(qū)域土壤砂粒含量較高,粉粒、黏粒含量低,由于黏粒和粉粒的粒徑較小、質(zhì)量較輕,啟動風速較小,更容易受到季風的吹蝕和搬運[20]。相對于草地,人工林起著降低風速、減緩風蝕的作用,攔截大氣攜帶的細小顆粒,使得土壤表層細小物質(zhì)逐漸積累增多[32],表現(xiàn)為人工林的土壤黏粒和粉粒含量較高,而土壤粒徑對植被生長起著至關重要的作用,在構(gòu)建微生物群落結(jié)構(gòu)和組成方面是僅次于土壤pH值的第二重要因素[33]。

4.2 植被恢復對土壤微生物群落結(jié)構(gòu)的影響

植被、土壤與微生物相互作用、相互影響。土壤在半干旱氣候下通常處于退化狀態(tài),植被、土壤養(yǎng)分和生態(tài)系統(tǒng)功能受到限制[34-35]。土壤微生物群落是生物地球化學過程的重要驅(qū)動因素,并強烈影響土壤質(zhì)量[36],而這些限制對土壤微生物群落產(chǎn)生負面影響。研究結(jié)果顯示,在20~40 cm土層中,ZS和LS的細菌α多樣性顯著高于GL(P<0.05);在0~20 cm土層中,PS的真菌α多樣性顯著低于GL和YS(P<0.05)。植被恢復對微生物多樣性的影響存在爭議[37-39]。人工林擁有龐大而復雜的根系,為土壤微生物群落提供了舒適的棲息地,從而促進了其對土壤養(yǎng)分的大量吸收,影響微生物的群落及結(jié)構(gòu)特征[12]。但本研究中人工林植被均為單一物種,地表植物種類稀少,生物多樣性較低,這也可能導致微生物多樣性減少[40]。本研究結(jié)果顯示,土壤細菌群落以放線菌門和變形菌門為主要優(yōu)勢菌種,土壤真菌以子囊菌門和擔子菌門為主要優(yōu)勢菌種,這與前人的研究結(jié)果相類似[41-43]。放線菌門是革蘭氏陽性細菌,廣泛分布于土壤、水生環(huán)境中,在有機物周轉(zhuǎn)和碳氮循環(huán)中發(fā)揮著重要作用[44]。變形菌門通常是生長快速、環(huán)境適應性強的富營養(yǎng)型細菌,具有消耗各種底物的能力,遵循K策略生活方式[45-46]。子囊菌門主要為腐生真菌,能夠分解多種植物纖維素和半纖維素[47],利用多種養(yǎng)分供其自身發(fā)展,作為土壤中主要的真菌分解者,在土壤養(yǎng)分循環(huán)中發(fā)揮著重要功能[48]。擔子菌門的一些類群對環(huán)境擾動十分敏感,可以作為土壤擾動強弱的指示真菌[49]。子囊菌門和擔子菌門在系統(tǒng)發(fā)育中有著密切的聯(lián)系,之前有學者認為擔子菌起源于子囊菌[50]。本研究中,不同植被恢復類型子囊菌門和擔子菌門豐度總和相似,但比例存在差異,這可能是植被類型不同引起的土壤養(yǎng)分和質(zhì)地改變導致真菌群落重新構(gòu)建[33,51,52],其具體機制仍待進一步研究。

回歸分析表明,SOC(P=0.003)、TN(P=0.006)和粉粒含量(P=0.002)與土壤細菌群落顯著相關;黏粒含量(P=0.015)、粉粒含量(P=0.002)與土壤真菌群落顯著相關。這可能意味著在農(nóng)牧交錯帶植被恢復過程中,細菌群落結(jié)構(gòu)在一定程度上受土壤養(yǎng)分調(diào)節(jié),而真菌群落結(jié)構(gòu)主要受土壤質(zhì)地調(diào)節(jié)。這與Xia等[33]關于土壤質(zhì)地對真菌的影響比細菌更大的研究結(jié)果相似。

此外,需要說明的是本研究不同植被恢復模式均來自于純林模式,未對區(qū)域混交林恢復模式土壤微生物進行研究,今后應開展不同混交模式下土壤養(yǎng)分與微生物特征的對比研究,探尋農(nóng)牧交錯帶植被修復的合理配置,充分利用自然資源,科學治理荒漠化土地,更好地實現(xiàn)區(qū)域可持續(xù)發(fā)展。

5 結(jié) 論

不同植被恢復模式可能會對細菌和真菌的多樣性和結(jié)構(gòu)產(chǎn)生不同影響。本研究結(jié)果表明,不同植被恢復模式土壤細菌和真菌多樣性不同,并改變了它們的群落組成,這導致微生物群落的主要生態(tài)功能可能發(fā)生變化。微生物群落驅(qū)動著土壤物質(zhì)循環(huán),本研究中土壤全碳含量表現(xiàn)為闊葉林>針葉林>天然草地。此外,土壤細菌和真菌的驅(qū)動因素不盡相同,結(jié)果顯示粉粒含量可能是調(diào)節(jié)細菌和真菌群落特征的關鍵驅(qū)動因素。根據(jù)研究結(jié)果初步判斷,樟子松和落葉松恢復模式是細菌群落豐富度和多樣性最高的2種植被恢復模式,榆樹恢復模式是真菌群落豐富度和多樣性最高的植被恢復模式。當前的研究結(jié)果只是驗證了半干旱地區(qū)不同植被恢復模式下土壤細菌和真菌群落結(jié)構(gòu)的差異,細菌和真菌群落的相關構(gòu)建機制還需進一步深入研究。

參考文獻:

[1] 徐敏云,李培廣,謝帆,等.土地利用和管理方式對農(nóng)牧交錯帶土壤碳密度的影響[J].農(nóng)業(yè)工程學報,2011,27(7):320-325. XU M Y, LI P G, XIE F, et al. Response of soil organic carbon density to land-use types and management practices change in agro-pastoral zone[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(7):320-325.

[2] 楊鳳群,齊雁冰,常慶瑞,等.農(nóng)牧交錯帶植被恢復對土壤物理性質(zhì)的影響[J].水土保持通報,2014,34(2):57-62. YANG F Q, QI Y B, CHANG Q R, et al. Effects of vegetation recovery on soil physical properties in agro-pastoral transitional zone[J]. Bulletin of Soil and Water Conservation,2014,34(2): 57-62.

[3] 閔紅,和文祥,李曉明,等.黃土丘陵區(qū)植被恢復過程中土壤微生物數(shù)量演變特征[J].西北植物學報,2007,27(3):588-593. MIN H, HE W X, LI X M, et al. Evaluative feature of soil microbial population under plant restored process in loess regions[J]. Acta Botanica Boreali-Occidentalia Sinica,2007,27(3):588-593.

[4] COBAN O, DE DEYN G B, VAN DER PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science,2022,375(6584):abe0725.

[5] DENG Q. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of the Total Environment,2016,541:230-237.

[6] 賀紀正,陸雅海,傅伯杰.土壤生物學前沿[M].北京:科學出版社,2015. HE J Z, LU Y H, FU B J. Frontiers in soil biology[M]. Beijing: Science Press,2015.

[7] 李霞,張國壯,陳永昊,等.農(nóng)牧交錯帶遼河流域2010—2019年植被覆蓋變化及驅(qū)動因素分析[J].農(nóng)業(yè)工程學報,2022, 38(22):63-72. LI X, ZHANG G Z, CHEN Y H, et al. Vegetation cover change and driving factors in the agro-pastoral ecotone of Liaohe River basin of China from 2010 to 2019[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(22):63-72.

[8] 李潔,滑磊,任啟文,等.冀西北3種植被恢復類型土壤理化性質(zhì)差異及肥力評價[J].生態(tài)環(huán)境學報,2020,29(8):1540-1546. LI J, HUA L, REN Q W, et al. Physicochemical properties difference and fertility evaluation of soil within three types vegetation restoration in northwest Hebei[J]. Ecology and Environmental Sciences,2020,29(8):1540-1546.

[9] 孟令東.內(nèi)蒙古農(nóng)牧交錯帶土地荒漠化現(xiàn)狀與治理對策探討[J].南方農(nóng)業(yè),2015,9(4):29-30. MENG L D. Discussion on the status quo of land desertification and governance countermeasures in the agricultural and pastoral intertwined zone of Inner Mongolia[J]. South China Agriculture, 2015,9(4):29-30.

[10] 王曉,張克斌,蘇鵬飛,等.北方農(nóng)牧交錯帶不同管理類型下草場治理效果研究[J].水土保持研究,2012,19(6):180-183. WANG X, ZHANG K B, SU P F, et al. Survey on the effects of management alteration on grassland in agro-pastoral ecotone of north China[J]. Research of Soil and Water Conservation, 2012,19(6):180-183.

[11] 汪芳甜.北方農(nóng)牧交錯帶退耕還林生態(tài)效應評價[D].北京:中國農(nóng)業(yè)大學,2018. WANG F T. Evaluation of ecological effects for the Grain for Green Project in the farming-pastoral ecotone of northern China[D]. Beijing: China Agricultural University,2018.

[12] YANG Y, CHENG H, LIU L, et al. Comparison of soil microbial community between planted woodland and natural grass vegetation on the loess plateau[J]. Forest Ecology and Management,2020,460:117817.

[13] 莊靜靜,劉壯壯,黃艷麗,等.高通量測序分析刺槐人工林土壤微生物群落特征[J].中南林業(yè)科技大學學報,2023,43(4): 92-100. ZHUANG J J, LIU Z Z, HUANG Y L, et al. Community characteristics of soil bacteria and fungi in Robinia pseudoacacia plantions based on high-throughput sequencing[J]. Journal of Central South University of Forestry Technology,2023,43(4): 92-100.

[14] 覃勇榮,蘇盛,黃小梅,等.不同植被對石漠化地區(qū)土壤微生物數(shù)量的影響[J].河池學院學報,2016,36(5):1-8.QIN Y R, SU S, HUANG X M, et al. Effects of different vegetation on soil microbial quantity in karst rocky desertification areas[J]. Journal of Hechi University,2016,36(5):1-8.

[15] 周虹,劉雲(yún)祥.青海共和盆地人工固沙植被恢復對土壤微生物數(shù)量的影響[J].干旱區(qū)資源與環(huán)境,2022,36(1):178-185. ZHOU H, LIU Y X. Effect of artificial vegetation restoration on soil microbial quantity in Gonghe basin, Qinghai province[J]. Journal of Arid Land Resources and Environment,2022,36(1): 178-185.

[16] 蒲潔,齊雁冰,王茵茵,等.農(nóng)牧交錯帶不同植被群落對土壤微生物量碳氮磷的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2015,33(4): 279-285. PU J, QI Y B, WANG Y Y, et al. Effects of different plant communities on soil microbial biomass carbon, nitrogen and phosphorus in the agro-pastoral transitional zone of northern Shaanxi province[J]. Agricultural Research in the Arid Areas, 2015,33(4):279-285.

[17] SOKOL N W. Life and death in the soil microbiome: how ecological processes influence biogeochemistry[J]. Nature Reviews Microbiology,2022,20(7):415-430.

[18] HARTMANN M, SIX J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth Environment,2022,4(1):4-18.

[19] 鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國農(nóng)業(yè)出版社, 2000. BAO S D. Agrochemical analysis of soils[M]. 3rd ed. Beijing: China Agricultural Press,2000.

[20] 陳紅霞,包翔,劉果厚,等.荒漠草原藥用植物生境土壤養(yǎng)分與土壤粒徑分析[J].北方農(nóng)業(yè)學報,2020,48(6):62-67. CHEN H X, BAO X, LIU G H, et al. Analysis of soil nutrients and soil particle size characteristics of medicinal plants habitat in desert steppe[J]. Journal of Northern Agriculture,2020,48(6): 62-67.

[21] HU H, CHEN X, HOU F, et al. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology,2017,8:606.

[22] QIANG W, HE L, ZHANG Y, et al. Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China[J]. Catena,2021,202:105251.

[23] WANG K, WANG X, FEI H, et al. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the loess plateau, China[J]. Journal of Arid Land,2022,14(5):561-575.

[24] ZHANG X, WANG L, ZHOU W, et al. Changes in litter traits induced by vegetation restoration accelerate litter decomposition in Robinia pseudoacacia plantations[J]. Land Degradation Development,2022,33(1):179-192.

[25] BIAO F, YANBING Q. Impacts of revegetation management modes on soil properties and vegetation ecological restoration in degraded sandy grassland in farming-pastoral ecotone[J]. International Journal of Agricultural Biological Engineering,2015,8(1):26-34.

[26] CHEN D, MI J, CHU P, et al. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian plateau[J]. Landscape Ecology,2015,30(9):1669-1682.

[27] CHU H, SUN H, TRIPATHI B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan plateau: scaling of soil bacteria community diversity[J]. Environmental Microbiology,2016,18(5):1523-1533.

[28] 王新源,趙學勇,李玉霖,等.環(huán)境因素對干旱半干旱區(qū)凋落物分解的影響研究進展[J].應用生態(tài)學報,2013,24(11):3300-3310. WANG X Y, ZHAO X Y, LI Y L, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review[J]. Chinese Journal of Applied Ecology,2013,24(11): 3300-3310.

[29] LI J, LI M, ZHAO L, et al. Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession[J]. Science of the Total Environment,2022,839:156242.

[30] YANG Y, CHENG H, DOU Y, et al. Plant and soil traits driving soil fungal community due to tree plantation on the loess plateau[J]. Science of the Total Environment,2020,708:134560.

[31] WEI C, WANG Q, REN M, et al. Soil aggregation accounts for the mineral soil organic carbon and nitrogen accrual in broadleaved forests as compared to that of coniferous forests in northeast China: cross‐sites and multiple species comparisons[J]. Land Degradation Development,2021,32(1):296-309.

[32] 郭帥,裴艷茜,胡勝,等.黃河流域植被指數(shù)對氣候變化的響應及其與水沙變化的關系[J].水土保持通報,2020,40(3):1-7. GUO S, PEI Y X, HU S, et al. Response of vegetation index to climate change and their relationship with runoff-sediment change in Yellow River basin[J]. Bulletin of Soil and Water Conservation,2020,40(3):1-7.

[33] XIA Q, RUFTY T, SHI W. Soil microbial diversity and composition: links to soil texture and associated properties[J]. Soil Biology and Biochemistry,2020,149:107953.

[34] WANG C, PAN X, YU W, et al. Aridity and decreasing soil heterogeneity reduce microbial network complexity and stability in the semi-arid grasslands[J]. Ecological Indicators, 2023,151:110342.

[35] CHEN Q L, HU H W, SUN A Q, et al. Aridity decreases soil protistan network complexity and stability[J]. Soil Biology and Biochemistry,2022,166:108575.

[36] YANG Y, CHAI Y, XIE H, et al. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes[J]. Science of the Total Environment, 2023,859:160255.

[37] ZHANG X, WANG L, ZHOU W, et al. Changes in litter traits induced by vegetation restoration accelerate litter decomposition in Robinia pseudoacacia plantations[J]. Land Degradation Development,2022,33(1):179-192.

[38] WANG K, WANG X, FEI H, et al. Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China[J]. Journal of Arid Land,2022,14(5):561-575.

[39] WAGG C, SCHLAEPPI K, BANERJEE S, et al. Fungalbacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications,2019,10(1):4841.

[40] XU H, CHEN C, PANG Z, et al. Short-term vegetation restoration enhances the complexity of soil fungal network and decreased the complexity of bacterial network[J]. Journal of Fungi, 2022,8(11):1122.

[41] 王岳,丁國棟,劉夢婕,等.榆林沙區(qū)典型林地不同植被類型對土壤微生物群落結(jié)構(gòu)的影響[J].土壤通報,2022,53(4): 907-918. WANG Y, DING G D, LIU M J, et al. Influence of different vegetation types on soil microbial characteristics of typical forest land in Yulin sandy area[J]. Chinese Journal of Soil Science, 2022,53(4):907-918.

[42] LU Z X, WANG P, OU H B, et al. Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China[J]. Forest Ecology and Management,2022,508:120002.

[43] SUN W, LIU X, TIAN Z, et al. Analysis on characteristics of vegetation and soil bacterial community under 20 years’restoration of different tree species: a case study of the Qinling mountains[J]. Forests,2021,12(5):562.

[44] FANG B Z, SALAM N, HAN M X, et al. Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from karstic caves[J]. Frontiers in Microbiology, 2017,8:1535.

[45] YU G, ZHAO H, CHEN J, et al. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues[J]. Science of the Total Environment,2020,737:139708.

[46] QU Z L, LIU B, MA Y, et al. The response of the soil bacterial community and function to forest succession caused by forest disease[J]. Functional Ecology,2020,34(12):2548-2559.

[47] SUN S, LI S, AVERA B N, et al. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 2017,83(14):e00966-17.

[48] 張旭升,郭鵬杰,張瀛瀾,等.不同植被恢復模式下礦區(qū)復墾土壤真菌群落組成及多樣性[J].菌物學報,2022,41(11):1831-1844. ZHANG X S, GUO P J, ZHANG Y L, et al. Community composition and diversity of fungi in reclaimed soil in mining areas under different vegetation restoration types[J]. Mycosystema, 2022,41(11):1831-1844.

[49] 陶吉楊,譚軍利,鄭飛龍,等.寧南山區(qū)植被恢復模式對土壤主要酶活性、微生物多樣性及土壤養(yǎng)分的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2022,40(3):207-217. TAO J Y, TAN J L, ZHENG F L, et al. Effects of vegetation recovery modes on major enzyme activities, microbial diversity, and nutrients in hilly soils of southern Ningxia[J]. Agricultural Research in the Arid Areas,2022,40(3):207-217.

[50] NARANJO‐ORTIZ M A, GABALDóN T. Fungal evolution: diversity, taxonomy and phylogeny of the fungi[J]. Biological Reviews,2019,94(6):2101-2137.

[51] ZHAO H, LI X, ZHANG Z, et al. Effects of natural vegetative restoration on soil fungal and bacterial communities in bare patches of the southern Taihang mountains[J]. Ecology and Evolution,2019,9(18):10432-10441.

[52] SUI X, ZENG X, LI M, et al. Influence of different vegetation types on soil physicochemical parameters and fungal communities[J]. Microorganisms,2022,10(4):829.

[本文編校:吳 彬]

猜你喜歡
植被恢復環(huán)境因子人工林
我國人工林生態(tài)輪伐期探討
人工林生產(chǎn)力提升對策探析
廢棄菌糠在石漠化地區(qū)植被恢復中的應用
阿克蘇地區(qū)杏李與歐洲李氣體交換特征對比研究
桉樹人工林胸徑變化特征與環(huán)境因子的關系研究
中國市場(2016年36期)2016-10-19 05:25:57
廣西喀斯特石漠化地區(qū)植被恢復模式和效應
山東林業(yè)科技(2016年5期)2016-07-05 00:43:04
礦山植被恢復和生態(tài)重建問題及對策
濕地松人工林生長規(guī)律
秦皇島海域夜光藻種群密度與環(huán)境因子的關系
金堂县| 西畴县| 沈阳市| 菏泽市| 安丘市| 绥滨县| 永修县| 黔东| 铜鼓县| 廉江市| 沽源县| 怀远县| 沙洋县| 班戈县| 阿鲁科尔沁旗| 奎屯市| 喀喇沁旗| 常熟市| 宁陵县| 益阳市| 鄄城县| 农安县| 花莲县| 泾源县| 珠海市| 义乌市| 顺平县| 水富县| 新田县| 南皮县| 措美县| 法库县| 中江县| 洪洞县| 汝城县| 福贡县| 沧源| 酒泉市| 太仆寺旗| 沛县| 澎湖县|