摘""要:磷作為植物主要的營(yíng)養(yǎng)元素之一,關(guān)乎農(nóng)作物的產(chǎn)量及品質(zhì)。在耕地質(zhì)量下降及土壤磷缺乏或有效性低等多重影響下,提高土壤磷有效性成為國(guó)內(nèi)外關(guān)注的焦點(diǎn)。采用2種及2種以上的作物進(jìn)行輪作,對(duì)改良土壤、提高農(nóng)業(yè)生產(chǎn)效率及恢復(fù)農(nóng)田生態(tài)系統(tǒng)功能等方面具有積極的影響。因此,本研究梳理總結(jié)不同作物輪作情況下對(duì)土壤理化性質(zhì)、土壤磷形態(tài)轉(zhuǎn)化、土壤微食物網(wǎng)等方面的研究進(jìn)展。其中,一方面從土壤理化性質(zhì)與土壤磷形態(tài)轉(zhuǎn)化之間相關(guān)關(guān)系入手,分析輪作對(duì)土壤磷有效性的影響;另一方面,從土壤微食物網(wǎng)的結(jié)構(gòu)變化、基因調(diào)控等作用下的土壤磷形態(tài)轉(zhuǎn)化與磷的生物地球化學(xué)循環(huán)角度,在分子水平上深入探討不同作物輪作對(duì)土壤磷有效性的影響。通過(guò)文獻(xiàn)綜述發(fā)現(xiàn)不同作物輪作可改變土壤理化性質(zhì)和土壤微食物網(wǎng)結(jié)構(gòu),從而影響土壤磷的形態(tài)轉(zhuǎn)化,以提高土壤磷的有效性,促進(jìn)作物產(chǎn)量及品質(zhì)的提升,說(shuō)明不同作物輪作是改善土壤磷有效性的重要農(nóng)業(yè)管理措施,今后需加強(qiáng)這方面的研究及不同作物輪作組合模式的探索,為保障國(guó)家糧食安全、農(nóng)作物品質(zhì)等方面提供重要的支撐,因此相關(guān)研究具有重要的社會(huì)、經(jīng)濟(jì)和生態(tài)環(huán)境意義。
關(guān)鍵詞:輪作;土壤理化性質(zhì);土壤磷形態(tài);土壤微食物網(wǎng);磷有效性中圖分類號(hào):S158""""""文獻(xiàn)標(biāo)志碼:A
Review"on"the"Effects"of"Crop"Rotation"on"Soil"Phosphorus"Availability
HOU"Meifang1,"KOU"Rui1,2,3,"YUE"Zhengfu2,3,"ZOU"Yukun2,3,"WANG"Jinchuang2,3,"LIU"Beibei2,3,"ZHANG"Qiaoyan2,3,"LI"Qinfen2,3*
1."School"of"Ecological"Technology"and"Engineering,"Shanghai"Institute"of"Technology,"Shanghai"201418,"China;"2."Environmental"and"Plant"Protection"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Key"Laboratory"of"Low-carbon"Green"Agriculture"in"Tropical"region"of"China,"Ministry"of"Agriculture"and"Rural"Affairs"/"Hainan"Key"Laboratory"of"Tropical"Eco-circular"Agriculture,"Haikou,"Hainan"571101,"China;"3."Danzhou"Tropical"Agro-ecosystem"National"Observation"and"Research"Station,"Danzhou,"Hainan"571737,"China
Abstract:"Phosphorus"is"one"of"the"essential"nutrients"for"plant"growth,"and"plays"a"crucial"role"in"determining"crop"yield"and"quality."Due"to"the"combined"pressure"of"decreased"arable"land"quality"and"soil"phosphorus"deficiency"or"low"bioavailability,"the"improvement"of"soil"phosphorus"availability"has"become"a"global"concern."The"rotation"of"two"or"more"crops"has"positive"effects"on"soil"improvement,"crop"production"efficiency"and"the"restoration"of"agricultural"ecosystem"function."This"study"reviews"the"research"progress"on"the"effects"of"crop"rotation"on"soil"physiochemical"properties,"soil"phosphorus"transformation,"and"soil"micro-food"web."Firstly,"the"relationship"between"soil"properties"and"phosphorus"transformation"is"analyzed"to"assess"the"impact"of"crop"rotation"on"phosphorus"availability."Secondly,"from"the"perspective"of"soil"micro-food"web"and"gene"regulation,"the"transformation"and"biogeochemistry"cycle"of"soil"phosphorus"was"analyzed"at"the"molecular"level."It"is"summarized"that"crop"rotation"can"affect"soil"phosphorus"transformation"through"altering"soil"physiochemical"properties"and"micro-food"network"structure,"which"can"improve"soil"phosphorus"availability,"and"ultimately"promote"crop"yield"and"quality."We"indicate"that"crop"rotation"is"an"important"agricultural"management"measure"for"improving"soil"phosphorus"availability."It"is"suggested"to"strengthen"the"related"research"and"explore"the"combination"model"of"crop"rotation"in"the"future."It"would"provide"powerful"support"for"food"security"and"crop"quality,"and"is"of"great"significance"in"social"economy"and"ecological"environment.
Keywords:"crop"rotation;"soil"physical"and"chemical"properties;"soil"phosphorus"forms;"soil"micro-food"web;"phosphorus"availability
DOI:"10.3969/j.issn.1000-2561.2024.12.006
眾所周知,提高土壤磷有效性一直是國(guó)內(nèi)外關(guān)注的熱點(diǎn)和難點(diǎn)。磷作為植物必需的營(yíng)養(yǎng)元素之一,極易和土壤中鋁、鐵、鈣等陽(yáng)離子生成難溶性物質(zhì),從而降低農(nóng)作物對(duì)磷的可利用性[1-3],威脅糧食安全和土壤生態(tài)安全[4-6]。在世界人口壓力耦合耕作土壤質(zhì)量下降等多重問(wèn)題影響下,迫切需要研發(fā)提升土壤磷有效性的高效途徑。
人們從長(zhǎng)期的農(nóng)業(yè)實(shí)踐中發(fā)現(xiàn),通過(guò)不同時(shí)期在同一地塊分別輪流種植2種及2種以上適生農(nóng)作物即不同作物輪作[7],在提高土地利用效率的同時(shí)可明顯改善土壤環(huán)境質(zhì)量[8]。近年來(lái)的研究發(fā)現(xiàn),不同作物輪作有利于通過(guò)調(diào)節(jié)土壤理化性質(zhì)、土壤微食物網(wǎng)等方面提高土壤磷有效性[9-12]。
土壤磷有效性與土壤磷的形態(tài)轉(zhuǎn)化密切相關(guān)。據(jù)報(bào)道,土壤中的H2O-P(水溶性磷)、NaOH-Pi(氫氧化鈉提取態(tài)無(wú)機(jī)磷)、NaHCO3-Pi(碳酸氫鈉提取態(tài)無(wú)機(jī)磷)、HCl-P(鹽酸提取態(tài)磷)等不同磷形態(tài)與土壤磷有效性具有明顯相關(guān)性[13-14]。因此,本研究著眼于不同作物輪作模式,圍繞其通過(guò)改變土壤理化性質(zhì)和土壤微食物網(wǎng)等方面影響土壤磷形態(tài)轉(zhuǎn)化和土壤磷有效性進(jìn)行綜述。
2.1""土壤理化性質(zhì)
2.1.1""輪作對(duì)土壤理化性質(zhì)的影響""不同作物輪作可調(diào)節(jié)土壤pH、土壤結(jié)構(gòu)、土壤有機(jī)質(zhì)等基本理化性質(zhì),改善土壤環(huán)境質(zhì)量和養(yǎng)分供應(yīng)能力,提高農(nóng)作物產(chǎn)量及品質(zhì)[15-19]。吉林農(nóng)業(yè)大學(xué)等單位的學(xué)者研究發(fā)現(xiàn),相對(duì)于單獨(dú)種植人參,人參與其他作物輪作后,土壤pH升高有效緩解了人參連作引發(fā)的土壤酸化問(wèn)題,同時(shí)土壤速效磷等養(yǎng)分供應(yīng)能力明顯得到改善[20]。
王克磊等[21]采用水稻-番茄輪作的農(nóng)藝措施來(lái)治理番茄連作障礙及土壤酸化等問(wèn)題,發(fā)現(xiàn)該輪作模式下的土壤pH高于單獨(dú)連作番茄的土壤pH,使土壤酸化問(wèn)題得到緩解并提高了作物產(chǎn)量。
輪作可改良土壤結(jié)構(gòu),具有增加土壤孔隙度和土壤有機(jī)質(zhì)含量,降低土壤容重、改善土壤團(tuán)聚體穩(wěn)定性等多方面的作用[22-27]。西北農(nóng)林科技大學(xué)等單位的研究人員通過(guò)10年輪作試驗(yàn)研究發(fā)現(xiàn),與連續(xù)單作相比較,輪作顯著降低土壤容重達(dá)3.8%~8.4%,土壤孔隙度和土壤大團(tuán)聚體含量均得到提高[24]。另有學(xué)者采用Meta分析研究了輪作對(duì)土壤團(tuán)聚體穩(wěn)定性等土壤性狀方面的影響,發(fā)現(xiàn)與連續(xù)單作相比,輪作土壤中的大團(tuán)聚體含量占比、團(tuán)聚體穩(wěn)定性、團(tuán)聚體中有機(jī)碳含量等分別提高了7%~14%、7%~9%、7%~8%[26]。
2.1.2""土壤理化性質(zhì)對(duì)磷有效性的影響""(1)土壤pH。土壤pH可調(diào)節(jié)磷的溶解、固化等地球化學(xué)反應(yīng)過(guò)程,改變土壤磷的形態(tài),進(jìn)而對(duì)土壤磷有效性產(chǎn)生重要的影響[21,"28-29](圖1)。有研究表明,土壤pH低于4.0時(shí),肌醇六磷酸和磷酸鹽等的積累可增加有機(jī)磷含量約20%[30]。土壤pH在6.0~7.0之間時(shí),土壤磷遷移性和有效性最強(qiáng)[31]。土壤溶液中H2PO4–、HPO42–等不同活性磷組分占比受土壤pH調(diào)控[32];土壤pH還可通過(guò)影響土壤中鋁、鐵等金屬氧化物及其水合氧化物的形態(tài)、價(jià)態(tài)、結(jié)晶度及聚合度等性質(zhì)影響磷的吸附、沉淀、絡(luò)合等過(guò)程來(lái)改變磷有效性[33-36]。不同土壤pH條件下粘土礦物的表面電荷和吸附性能的改變也會(huì)對(duì)土壤磷有效性產(chǎn)生重要影響[37-39]。
(2)土壤結(jié)構(gòu)。土壤結(jié)構(gòu)可通過(guò)影響土壤肥力因素(水、肥、氣、熱)的協(xié)調(diào)作用進(jìn)而影響磷的遷移轉(zhuǎn)化[40]。輪作可降低土壤容重、增加土壤孔隙度,從而增加磷的可利用性[41-46](圖1)。據(jù)報(bào)道,土壤容重影響土壤中磷向植物根系的遷移性,質(zhì)地黏重的土壤容重高,磷向植物根系遷移的擴(kuò)散系數(shù)低[47]。土壤孔隙度與土壤磷形態(tài)密切相關(guān),土壤孔隙度大、比表面積高有利于提高土壤磷有效性[48]。
土壤團(tuán)聚體也對(duì)土壤磷有效性具有重要影響[49-52]。對(duì)栽培甘蔗的土壤研究發(fā)現(xiàn),大部分活性態(tài)有機(jī)磷分布在低于0.053"mm的團(tuán)聚體中,鋁結(jié)合態(tài)磷(Al-P)、鈣結(jié)合態(tài)磷(Ca-P)、鐵結(jié)合態(tài)磷(Fe-P)等無(wú)機(jī)磷分布在大于0.250"mm的團(tuán)聚體中[51,"53]。土壤團(tuán)聚體的粒徑大小與土壤磷有效性具有一定的關(guān)系[54]。輪作可通過(guò)調(diào)控土壤團(tuán)聚體中磷形態(tài)轉(zhuǎn)化來(lái)影響磷的有效性[55]。已有研究表明,稻菜輪作可改善土壤團(tuán)聚體結(jié)構(gòu),從而顯著提高耕層土壤各粒級(jí)團(tuán)聚體中磷的有效性[56]。土壤團(tuán)聚體粒徑大小還可影響磷的遷移性,進(jìn)而影響土壤磷有效性[57]。通過(guò)長(zhǎng)期的玉米-小麥輪作定位試驗(yàn)研究,發(fā)現(xiàn)Al-P和Ca-P在不同粒徑的團(tuán)聚體中均得到增加并向大團(tuán)聚體轉(zhuǎn)移,提高了土壤磷有效性[50]。
(3)土壤有機(jī)質(zhì)。土壤有機(jī)質(zhì)可提供植物必需的營(yíng)養(yǎng)元素[58],其含量的增加可提高土壤磷的有效性。土壤有機(jī)質(zhì)可占據(jù)土壤礦物中部分磷的吸附位點(diǎn),從而抑制土壤礦物對(duì)磷的吸附固定[59-61]。有機(jī)質(zhì)的存在會(huì)導(dǎo)致土壤表面產(chǎn)生大量限速吸附位點(diǎn),磷的瞬時(shí)吸附下降,從而加速磷的遷移[62]。與不加入腐殖酸處理相比,土壤中加入腐殖酸等有機(jī)質(zhì)可以顯著降低針鐵礦對(duì)磷的吸附[63]。土壤礦物表面電荷等性能的差異對(duì)不同形態(tài)磷的吸附固定及磷有效性具有影響[64-69]。冬小麥-夏玉米輪作試驗(yàn)研究表明,Ca2+可與有機(jī)質(zhì)形成二元復(fù)合物,減少磷的吸附性、提高磷的有效性[70-72]。土壤有機(jī)質(zhì)可礦化釋放有機(jī)磷[73-75]。有機(jī)質(zhì)含量可能會(huì)對(duì)不同形態(tài)磷的占比產(chǎn)生影響,提高有機(jī)質(zhì)含量有利于提高磷有效性[61]。不同作物輪作的合理安排可提高土壤有機(jī)質(zhì)的含量[76-78]。
圖1""輪作影響土壤磷有效性的途經(jīng)
Fig."1""Pathways"influencing"soil"phosphorus"availability"through"crop"rotation
2.2""土壤磷形態(tài)轉(zhuǎn)化
土壤中的磷主要包括有機(jī)磷和無(wú)機(jī)磷。土壤無(wú)機(jī)磷以正磷酸鹽為主,其次為無(wú)機(jī)聚磷酸鹽、焦磷酸鹽和偏磷酸鹽。按溶解性可將無(wú)機(jī)磷劃分為礦物態(tài)、水溶態(tài)和吸附態(tài)等不同無(wú)機(jī)磷形態(tài)[79-81]。按分子結(jié)構(gòu)可將土壤有機(jī)磷劃分為膦酸鹽、磷酸鹽、磷酸酯、微生物量磷和多聚磷酸酯等[82-84]。土壤中無(wú)機(jī)磷和有機(jī)磷之間可以相互轉(zhuǎn)化[85](圖1)。
輪作可促進(jìn)土壤磷的形態(tài)轉(zhuǎn)化[86]。據(jù)報(bào)道,在小麥-玉米長(zhǎng)期輪作模式下,土壤中Al-P、Fe-P等無(wú)機(jī)磷含量顯著提高[87]。小麥-水稻長(zhǎng)期輪作試驗(yàn)研究發(fā)現(xiàn),鐵氧化物及水合氧化物在干濕交替條件下的形態(tài)、價(jià)態(tài)轉(zhuǎn)化影響土壤磷的有效性[88]。無(wú)論水-旱輪作還是旱-旱輪作均發(fā)現(xiàn)NaOH-Pi等有效磷含量顯著增加[89-91]。玉米-小麥輪作耦合秸稈還田處理試驗(yàn)研究發(fā)現(xiàn),表層土壤和亞表層土壤中的有效磷含量顯著增加[92]。
2.3""土壤微食物網(wǎng)
2.3.1""輪作對(duì)土壤微食物網(wǎng)的影響""土壤微食物網(wǎng)由微生物、原生動(dòng)物及線蟲(chóng)組成[93],各生物群之間通過(guò)資源控制和捕食效應(yīng)形成營(yíng)養(yǎng)級(jí)聯(lián)網(wǎng)絡(luò)[94]。關(guān)于輪作模式下土壤微食物網(wǎng)的研究(表1),發(fā)現(xiàn)相對(duì)于香蕉單作,香蕉-菠蘿、香蕉-水稻免耕輪作可提供具有不同降解程度且數(shù)量更多的植物殘留物,同時(shí)可增加土壤微食物網(wǎng)中食細(xì)菌線蟲(chóng)和食真菌線蟲(chóng)等生物類群的數(shù)量,提高微生物的磷脂脂肪酸濃度、土壤線蟲(chóng)多樣性及其功能代謝足跡,土壤微食物網(wǎng)結(jié)構(gòu)更加穩(wěn)定[95]。輪作可影響土壤微生物的豐度和組成,改變土壤微生物的群落結(jié)構(gòu),調(diào)節(jié)土壤微生態(tài)環(huán)境[96-97]。據(jù)報(bào)道,鷹嘴豆-小麥輪作可增強(qiáng)小麥根部AMF(arbuscular"mycorrhizal"fungi,叢枝菌根真菌)的定殖,并改變其豐度[98]。在土壤微食物網(wǎng)中,線蟲(chóng)作為重要調(diào)節(jié)劑對(duì)有機(jī)殘留物分解及養(yǎng)分釋放具有明顯的影響[99-100]。一方面,線蟲(chóng)從通過(guò)自身分泌及排泄等活動(dòng)可增加土壤有效養(yǎng)分的含量[101];另一方面,線蟲(chóng)通過(guò)捕食等活動(dòng)促進(jìn)微生物代謝,提高土壤酶活性和土壤呼吸強(qiáng)度[102-103]。原生動(dòng)物是土壤微生物及線蟲(chóng)的主要消費(fèi)者[104-105]。增加原生動(dòng)物物種的豐度可減少微生物之間的相互競(jìng)爭(zhēng),增強(qiáng)亞優(yōu)勢(shì)物種生長(zhǎng)優(yōu)勢(shì),從而改變微生物群落結(jié)構(gòu)[106]。據(jù)報(bào)道,相對(duì)于玉米連作,玉米-大豆、玉米-燕麥-苜蓿等長(zhǎng)期輪作模式可增加作物根際土壤中放線菌門(mén)、變形菌門(mén)和酸桿菌門(mén)的豐度[107]。另有研究表明,相對(duì)于玉米單作和大豆單作,大豆-玉米免耕輪作模式可增加AMF的豐度、外源菌絲體長(zhǎng)度等土壤微生物性狀指標(biāo)[108]。豌豆-玉米輪作則可增加銅弧菌(Cupriavidus)和慢生型根瘤菌(Bradyrhizobium)等PSMs(phosphate-solubilizing"microorganisms,溶磷微生物)的豐度[109]。
2.3.2""土壤微食物網(wǎng)對(duì)磷有效性的影響""土壤微
食物網(wǎng)是農(nóng)田生態(tài)系統(tǒng)的重要組成部分,可調(diào)節(jié)土壤磷等養(yǎng)分元素的生物地球化學(xué)循環(huán)[110-111]。輪作可促進(jìn)土壤微食物網(wǎng)結(jié)構(gòu)與功能的調(diào)節(jié),從而加速磷的礦化過(guò)程[112]?;裟鹊萚113]的研究表明,相對(duì)于苜蓿連作,苜蓿-玉米、苜蓿-馬鈴薯等不同輪作模式下土壤有效磷含量、土壤線蟲(chóng)豐度均顯著增加。另有研究表明,相對(duì)于小麥單作,4年連續(xù)輪作苜蓿/三葉草-小麥可提高土壤微生物多樣性、捕食性和雜食性線蟲(chóng)的數(shù)量、土壤磷的礦化速率及有效磷含量[114]。土壤原生動(dòng)物可通過(guò)刺激磷的礦化來(lái)影響土壤磷的生物地球化學(xué)循環(huán),同時(shí)刺激作物對(duì)養(yǎng)分的吸收利用[115-116]。黃瓜-菜豆輪作模式下,土壤微生物與原生動(dòng)物的豐度、有效磷含量均得到顯著提高,說(shuō)明輪作可通過(guò)促進(jìn)土壤微食物網(wǎng)的養(yǎng)分循環(huán)來(lái)提高土壤磷的有效性[117-118]。輪作可改變土壤磷循環(huán)功能基因的豐度[119-122]。已有研究表明,ppk基因可編碼聚磷酸鹽激酶催化磷單體聚合成聚磷酸鹽分子[123];ppx基因則可編碼聚磷酸酶,降解無(wú)機(jī)聚磷酸鹽為磷酸鹽[124]。小麥-玉米輪作土壤中有效磷含量與ppx等功能基因豐度具有一定關(guān)系[125]。玉米-甘藍(lán)長(zhǎng)期輪作定位試驗(yàn)研究發(fā)現(xiàn),作物吸磷量與ppx基因豐度呈正相關(guān)關(guān)系[126]??傮w而言,土壤微食物網(wǎng)在土壤磷的生物地球化學(xué)循環(huán)過(guò)程中發(fā)揮著重要作用,有助于提高土壤磷有效性[127-129]。
土壤微食物網(wǎng)中與磷的形態(tài)轉(zhuǎn)化相關(guān)的微生物主要有AMF和PSMs,二者均可提高土壤磷有效性,促進(jìn)植物生長(zhǎng)。AMF可與植物形成互利共生體促進(jìn)磷的吸收利用[130-132]。PSMs可通過(guò)介導(dǎo)生物磷轉(zhuǎn)化增加土壤有效磷含量[133-134]。據(jù)報(bào)道,PSMs可將粘土礦物吸附的磷轉(zhuǎn)化為植物可利用的有效磷[135]。AMF和PSMs之間也可互作提高土壤磷的有效性。有研究表明,相對(duì)于單獨(dú)接種AMF,在咖啡種植中曲霉(Aspergillus"niger"Tiegh,"HS165)、短苞青霉(Penicillium"brevicompactum"Dierckx,"HS42)與AMF共接種,土壤有效磷含量得到顯著增加,明顯促進(jìn)了咖啡植株的生長(zhǎng)[136]。
土壤有機(jī)磷礦化與無(wú)機(jī)磷溶解對(duì)土壤磷的有效性具有重要作用(圖1)。參與催化有機(jī)磷礦化的磷酸酶包括:酸性磷酸酶、堿性磷酸酶及磷酸二酯酶,在這些磷酸酶的催化作用下,有機(jī)磷可礦化為植物容易吸收利用的磷[137-138]。土壤微生物可通過(guò)磷循環(huán)功能基因調(diào)控磷酸酶的合成[139-141]。AMF和PSMs一方面可促進(jìn)有機(jī)磷的礦化,另一方面可將難溶性礦物態(tài)無(wú)機(jī)磷溶解,促進(jìn)植物對(duì)磷的吸收利用[142-145]。AMF不僅可以通過(guò)定殖在植物根系的菌絲體協(xié)助植物獲取土壤磷等養(yǎng)分[146],還可通過(guò)分泌磷酸酶礦化有機(jī)磷、溶解無(wú)機(jī)磷以提高土壤磷有效性[137,"147-150]。PSMs在土壤無(wú)機(jī)磷溶解過(guò)程中占有重要地位,同時(shí)可促進(jìn)有機(jī)磷等不同磷形態(tài)的轉(zhuǎn)化[151-157]。AMF與PSMs互利共生可增強(qiáng)土壤磷形態(tài)轉(zhuǎn)化。有研究發(fā)現(xiàn)AMF菌絲際富集著大量PSMs[158-161]。PSMs可幫助AMF溶解土壤中難溶性磷,提高植物通過(guò)AMF吸收磷的效率[146,"158];PSMs則可分泌磷酸酶等分子溶解難溶性無(wú)機(jī)磷,促進(jìn)AMF對(duì)土壤中磷酸鹽的吸收和轉(zhuǎn)運(yùn),通過(guò)AMF和PSMs的互作強(qiáng)化了磷形態(tài)轉(zhuǎn)化,提高土壤磷的有效性[146]。
本研究重點(diǎn)圍繞不同作物輪作對(duì)土壤理化性質(zhì)、土壤磷形態(tài)轉(zhuǎn)化及土壤微食物網(wǎng)等方面的影響,梳理總結(jié)了其對(duì)提高土壤磷有效性方面的研究進(jìn)展。主要發(fā)現(xiàn):(1)相對(duì)于單作物連作,不同作物輪作可提高土壤pH、降低土壤容重、增加土壤孔隙度、提高土壤團(tuán)聚體穩(wěn)定性;其中,土壤pH升高明顯緩解了土壤酸化過(guò)程,促進(jìn)了土壤有效磷含量的增加;低容重、高孔隙度等土壤性能有利于磷的遷移轉(zhuǎn)化與吸收利用。(2)不同作物輪作比單一作物連作具有較好的土壤微食物網(wǎng)調(diào)節(jié)作用。有利于微生物、原生動(dòng)物及線蟲(chóng)等生物類群彼此之間的協(xié)同互作,促進(jìn)有機(jī)磷礦化和無(wú)機(jī)磷溶解,影響土壤磷的生物地球化學(xué)循環(huán)過(guò)程,提高土壤磷的有效性。
然而,目前的輪作組合模式具有明顯的地域特征,并非增加磷有效性的最佳組合模式。展望未來(lái),今后還需加強(qiáng)對(duì)不同作物輪作組合模式的探索,以及組合模式下根際微生物群落結(jié)構(gòu)和土壤微食物網(wǎng)結(jié)構(gòu)等方面對(duì)磷形態(tài)轉(zhuǎn)化過(guò)程和相關(guān)機(jī)制的探究。隨著技術(shù)發(fā)展,高通量測(cè)序、磷-核磁共振技術(shù)(P-NMR)、基于同步輻射的X射線吸收近邊結(jié)構(gòu)譜技術(shù)(P-XANES)等多技術(shù)融合將成為趨勢(shì),可為土壤微食物網(wǎng)中磷的代謝路徑與磷形態(tài)轉(zhuǎn)化微觀機(jī)制研究提供強(qiáng)有力的技術(shù)支撐。
參考文獻(xiàn)
[6]"張微微,"周懷平,"黃紹敏,"楊軍,"劉樹(shù)堂,"馬俊永,"張淑香."長(zhǎng)期不同施肥模式下堿性土有效磷對(duì)磷盈虧的響應(yīng)[J]."植物營(yíng)養(yǎng)與肥料學(xué)報(bào),"2021,"27(2):"263-274.ZHANG"W"W,"ZHOU"H"P,"HUANG"S"M,"YANG"J,"LIU"S"T,"MA"J"Y,"ZHANG"S"X."Responses"of"available"phosphorus"to"phosphorus"profit"and"loss"in"alkaline"soil"under"different"fertilization"modes"over"a"long"period"of"time[J]."Journal"of"Plant"Nutrition"and"Fertilizer,"2021,"27(2):"263-274."(in"Chinese)
[7]"BALIGAR"V"C,"FAGERIA"N"K,"HE"Z."Nutrient"use"efficiency"in"plants[J]."Communications"in"Soil"Science"and"Plant"Analysis,"2001,"32:"921-950.
[8]"LUPWAYI"N"Z,"KENNED"A"C."Grain"legumes"in"northern"grain"plains:"impacts"on"selected"biological"soil"processes[J]."Agronomy"Journal,"2007,"99:"1700-1709.
[9]"BOWLES"T"M,"ATALLAH"S"S,"CAMPBELL"E"E,"GAUDIN"A"C,"WIEDER"W"R,"WIEDER"W"R,"GRANDY"A"S."Addressing"agricultural"nitrogen"lossesnbsp;in"a"changing"climate[J]."Nature"Sustainability,"2018,"1:"399-408.
[10]"MCDANIEL"M"D,"TIEMANN"L"K,"GRANDY"A"S."Does"agricultural"crop"diversity"enhance"soil"microbial"biomass"and"organic"matter"dynamics?"A"meta‐analysis[J]."Ecological"Applications,"2014,"24:"560-570.
[11]"孫博,"李帥帥,"周毅,"張瑩,"陳健,"劉田,"郭俊杰,"凌寧,"郭世偉."不同輪作模式下優(yōu)化施肥對(duì)水稻產(chǎn)量及磷素積累與分配的影響[J]."南京農(nóng)業(yè)大學(xué)學(xué)報(bào),"2020,"43(4):"658-666.SUN"B,"LI"S"S,"ZHOU"Y,"ZHANG"Y,"CHEN"J,"LIU"T,"GUO"J"J,"LING"N,"GUO"S"W."Effects"of"optimal"fertilization"under"different"rotation"modes"on"rice"yield,"phosphorus"accumulation"and"distribution[J]."Journal"of"Nanjing"Agricultural"University,"2020,"43(4):"658-666."(in"Chinese)
[12]"WANG"J"C,"ZOU"Y"K,"GIOIA"D"D,"SINGH"B"K,"LI"Q"F."Conversion"to"agroforestry"and"monoculture"plantation"is"detrimental"to"the"soil"carbon"and"nitrogen"cycles"and"microbial"communities"of"a"rainforest[J]."Soil"Biology"and"Biochemistry,"2020,"147:"107849.
[13]"CROSS"A,"SCHLESINGER"W"H."A"literature"review"and"evaluation"of"the."Hedley"fractionation:"applications"to"the"biogeochemical"cycle"of"soil"phosphorus"in"natural"ecosystems[J]."Geoderma,"1995,"64"(3/4):"197-214.
[14]"PANG"J,"KIM"H"S,"BOITT"G,"RYAN"M"H,"WEN"Z,"LAMBERS"H,"SHARMA"M"K,"MICKAN"B"S,"GADOT"G,"SIDDIQUE"K"H."Root"diameter"decreases"and"rhizosheath"carboxylates"and"acid"phosphatases"increase"in"chickpea"during"plant"development[J]."Plantnbsp;and"Soil,"2022,"476(2):"219-238.
[15]"GRZEBISZ"W,"?UKOWIAK"R,"SASSENRATH"G"F."Virtual"nitrogen"as"a"tool"for"assessment"of"nitrogen"management"at"the"field"scale:"a"crop"rotation"approach[J]."Field"Crops"Research,"2018,"218:"182-194.
[16]"曾昭海."豆科作物與禾本科作物輪作研究進(jìn)展及前景[J]."中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),"2018,"26(1):"57-61.ZENG"Z"H."Research"progress"and"prospect"of"rotation"of"leguminous"crops"and"pomineous"crops[J]."Chinese"Journal"of"Eco-Agriculture,"2018,"26(1):"57-61."(in"Chinese)
[17]"GARLAND"G,"EDLINGER"A,"BANERJEE"S"K,"DEGRUNE"F,"GARCíA-PALACIOS"P,"PESCADOR"D"S,"HERZOG"C,"ROMDHANE"S,"SAGHAI"A,"SPOR"A,"WAGG"C,"HALLIN"S,"MAESTRE"F"T,"PHILIPPOT"L,"RILLIG"M"C,"VAN"DER"HEIJDEN"M"G."Crop"cover"is"more"important"than"rotational"diversity"for"soil"multifunctionality"and"cereal"yields"in"European"cropping"systems[J]."Nature"Food,"2021,"2:"28-37.
[18]"BOWLES"T"M,"BOWELES"T"M,"MOOSHAMMER"M,"SCHMER"M"R,"STROCK"J"S,"GRANDY"A"S,"SOCOLAR"Y,"CALDERóN"F"J,"CAVIGELLI"M"A,"CULMAN"S"W,"D E EN"W,"DRURY"C"F,"GARCIA"A"G,"GAUDIN"A"C,"HAR KC OM"W"S,"LEHMAN"R"M,"OSBORNE"S"L,"RO BE RTSON"G"P,"SALERNO"J,"GRANDY"S."Long-term"evide nce"shows"that"crop-rotation"diversification"increases"agricultural"resilience"to"adverse"growing"conditions"in"North"America[J]."One"Earth,"2020,"2(3):"284-293.
[19]"YANG"L,"ZHOU"X,"LIAO"Y,"LU"Y,"NIE"J,"CAO"W."Co‐incorporation"of"rice"straw"and"green"manure"benefits"rice"yield"and"nutrient"uptake[J]."Crop"Science,"2019,"59(2):"749-759.
[20]"ZHANG"J"X,"ZHOU"D"P,"YUAN"X"Q,"XU"Y"H,"CHEN"C"B,"ZHAO"L."Soil"microbiome"and"metabolome"analysis"reveals"beneficial"effects"of"ginseng-celandine"rotation"on"the"rhiz os phere"soil"of"ginseng-used"fields[J]."Rhizosphere,"2022,"23:"100559.
[21]"王克磊,"周友和,"黃宗安,"朱隆靜,"徐堅(jiān)."水旱輪作對(duì)土壤性狀及作物產(chǎn)量的影響[J]."蔬菜,"2017(5):"21-23.WANG"K"L,"ZHOU"Y"H,"HUANG"Z"A,"ZHU"L"J,"XU"J."Effects"of"water-upland"rotation"on"soil"properties"and"crop"yields[J]."Vegetables,"2017(5):"21-23."(in"Chinese)
[22]"苑學(xué)亮,"任懷冬,"陳景霞,"柳曉琳,"翟合生,"張大龍."日光溫室草菇-黃瓜輪作對(duì)連作土壤的改良效應(yīng)[J]."安徽農(nóng)業(yè)科學(xué),"2023,"51(10):"171-173,"196.YUAN"X"L,"REN"H"D,"CHEN"J"X,"LIU"X"L,"ZHAI"H"S,"ZHANG"D"L."Effect"of"straw"mushroom-cucumber"rotation"on"continuous"cropping"soil"in"solar"greenhouse[J]."Journal"of"Anhui"Agricultural"Sciences,"2023,"51(10):"171-173,"196."(in"Chinese)
[23]"GONG"W,"LING"J,"ZHAO"D"Q,"XU"Y"P,"LIU"Z"X,"WEN"Y,"ZHOU"S"L."Deep-injected"straw"incorporation"improves"subsoil"fertility"and"crop"productivity"in"a"wheat-maize"rotation"system"in"the"North"China"Plain[J]."Field"Crops"Research,"2022,"286:"108612.
[24]"ZHANG"Y"J,"TAN"C"J,"WANG"R,"LI"J,"WANG"X"L."Conservation"tillage"rotation"enhanced"soil"structure"and"soil"nutrients"in"long-term"dryland"agriculture[J]."European"Journal"of"Agronomy,"2021,"131:"126379.
[25]"CUI"Z"J,"YAN"B,"GAO"Y"H,"WU"B,"WANG"Y"F,"XIE"Y"P,"XU"P,"WANG"H"D,"WEN"M,"WANG"Y"Z,"MA"X"K."Crop"yield"and"water"use"efficiency"in"response"to"long-term"diversified"crop"rotations[J]."Frontiers"in"Plant"Science,"2022,"13:"1024898.
[26]"ZHENG"F"J,"LIU"X"T,"DING"W"T,"SONG"X"J,"LI"S"P,"WU"X"P."Positive"effects"of"crop"rotation"on"soil"aggregation"and"associated"organic"carbon"are"mainly"controlled"by"climate"and"initial"soil"carbon"content:"a"meta-analysis[J]."Agriculture,"Ecosystems"amp;"Environment,"2023,"355:"108600.
[27]"YANG"R,"MO"Y,"LIU"C,"WANG"Y,"MA"J,"ZHANG"Y,"LI"H,"ZHANG"X."The"effects"of"cattle"manure"and"garlic"rotation"on"soil"under"continuous"cropping"of"watermelon"(Citrullus"lanatus"L.)[J]."PLoS"One,"2016,"11(6):"e0156515.
[28]"HOU"E"Q,"WEN"D"Z,"KUANG"Y"W,"CONG"J,"CHEN"C"R,"HE"X"J,"HEENAN"M,"LU"H,"ZHANG"Y"G."Soil"pH"predominantly"controls"the"forms"of"organic"phosphorus"in"topsoils"under"natural"broadleaved"forests"along"a"2500"km"latitudinal"gradient[J]."Geoderma,"2018,"315:"65-74.
[29]"ZHAO"W"T,"GU"C"H,"ZHU"M"Q,"YAN"Y"P,"LIU"Z,"FENG"X"H,"WANG"X"M."Chemical"speciation"of"phosphorus"in"farmland"soils"and"soil"aggregates"around"mining"areas[J]."Geoderma,"2023,"433:"116465.
[30]"TURNER"B"L,"BLACKWELL"M"S."Isolating"the"influence"of"pH"on"the"amounts"and"forms"of"soil"organic"phosphorus[J]."European"Journal"of"Soil"Science,"2013,"64(2):"249-259.
[31]"STEVENSON"F"J."Cycles"of"soil"carbon,"nitrogen,"phosphorus,"sulfur,"micronutrients[M]."New"York:"Wiley-Interscience,"1986.
[32]"MENGELnbsp;K,"KIRKBY"A,"KOSEGARTEN"H,"APPEL"T."Principles"of"plant"nutrition[M]."Dordrecht:"Kluwer"Academic"Publishers,"2001.
[33]"PARDO"M"T,"GUADALIX"M"E,"GARCíA-GONZáLEZ"M"T."Effect"of"pH"and"background"electrolyte"on"P"sorption"by"variable"charge"soils[J]."Geoderma,"1992,"54:"275-284.
[34]"XU"R,"JIANG"J,"CHENG"C."Effect"of"ionic"strength"on"specific"adsorption"of"ions"by"variable"charge"soils:"experimental"testification"on"the"adsorption"model"of"Bowden"et"al[M]."Heidelberg:"Springer-Verlag,"2010.
[35]"GUERA"K"C,"DA-FONSECA"A"F."Phosphorus"fractions"and"their"relationships"with"soil"chemical"attributes"in"an"integrated"crop-livestock"system"under"annual"phosphates"fertilization[J]."Frontiers"in"Sustainable"Food"Systems,"2022,"6:"893525.
[36]"BARROW"N"J,"ELLIS"A"S."Testing"a"mechanistic"model."V."The"points"of"zero"salt"effect"for"phosphate"retention,"for"zinc"retention"and"for"acid/alkali"titration"of"a"soil[J]."European"Journal"of"Soil"Science,"1986,"37:"303-310.
[37]"BARROW"N"J,"DEBNATH"A."Effect"of"phosphate"status"on"the"sorption"and"desorption"properties"of"some"soils"of"northern"India[J]."Plant"and"Soil,"2014,"378:"383-395.
[38]"STRAUSS"R,"BRüMMER"G"W,"BARROW"N"J."Effects"of"crystallinity"of"goethite:"II."Rates"of"sorption"and"desorption"of"phosphate[J]."European"Journal"of"Soil"Science,"1997,"48(1):"101-114.
[39]"PENNnbsp;C"J,"CAMBERATO"J"J."A"critical"review"on"soil"chemical"processes"that"control"how"soil"pH"affects"phosphorus"availability"to"plants[J]."Agriculture,"2019,"9(6):"120.
[40]"賀麗燕,"杜昊輝,"王旭東."渭北高原典型黑壚土區(qū)土壤物理性狀及其對(duì)小麥產(chǎn)量的影響[J]."應(yīng)用生態(tài)學(xué)報(bào),"2018,"29(6):"1911-1918.HE"L"Y,"DU"H"H,"WANG"X"D."Soil"physical"properties"and"their"effects"on"wheat"yield"in"Typical"Black"Loath"areas"of"Weibei"plateau[J]."Chinese"Journal"of"Applied"Ecology,"2018,"29(6):"1911-1918."(in"Chinese)
[41]"CHAN"K"Y,"HEENAN"D"P."The"influence"of"crop"rotation"on"soil"structure"and"soil"physical"properties"under"conventional"tillage[J]."Soil"amp;"Till"Research,"1996,"37(2):"113-125.
[42]"熊云明,"黃國(guó)勤,"王淑彬,"劉隆旺."稻田輪作對(duì)土壤理化性狀和作物產(chǎn)量的影響[J]."中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),"2004(4):"42-45.XIONG"Y"M,"HUANG"G"Q,"WANG"S"B,"LIU"L"W."Effects"of"paddy"field"rotation"on"soil"physicochemical"properties"and"crop"yield[J]."Journal"of"Agricultural"Science"and"Technology,"2004(4):"42-45."(in"Chinese)
[43]"NOURI"A,"LEE"J,"YIN"X,"SAXTON"A"M,"TYLER"D"D,"SYKES"V"R,"ARELLI"P"R."Crop"species"in"notillage"summer"crop"rotations"affect"soil"quality"and"yield"in"an"Alfisol[J]."Geoderma,"2019,"345(1):"51-62.
[44]"范倩玉,"李晉,"劉振華,"楊珍平,"高志強(qiáng)."不同輪作模式對(duì)潮土土壤物理性狀的影響[J].山西農(nóng)業(yè)科學(xué),2020,"48(8):"1267-1270.FAN"Q"Y,"LI"J,"LIU"Z"H,"YANG"Z"P,"GAO"Z"Q."Effects"of"different"crop"rotation"patterns"on"soil"physical"properties"of"fluvial"soil[J]."Shanxi"Agricultural"Sciences,"2020,"48(8):"1267-1270."(in"Chinese)
[45]"ZHU"N,"YAN"Y"C,"BAI"K"Y,"ZHANG"J"M,"WANG"C,"WANG"X,"XU"D"W,"LIU"J"H,"XIN"X"P,"CHEN"J"Q."Conversion"of"croplands"to"shrublands"does"not"improve"soil"organic"carbon"and"nitrogen"but"reduces"soil"phosphorus"in"a"temperate"grassland"of"northern"China[J]."Geoderma,"2023,"432:"116407.
[46]"JIAN"Z,"LEI"L,"NI"Y,"XU"J,"XIAO"W,"ZENG"L."Soil"clay"is"a"key"factor"affecting"soil"phosphorus"availability"in"the"distribution"area"of"Masson"pine"plantations"across"subtropical"China[J]."Ecological"Indicators,"2022,"144:"109482.
[47]"時(shí)新玲,"李志軍,"王銳."土壤磷擴(kuò)散的影響因素研究[J]."水土保持通報(bào),"2003(5):"15-18.SHI"X"L,"LI"Z"J,"WANG"R."Study"on"influencing"factors"of"soil"phosphorus"diffusion[J]."Soil"and"Water"Conservation"Bulletin,"2003(5):"15-18."(in"Chinese)
[48]"QIAN"J,"SHEN"M,"WANG"P,"WANG"C,"LI"K,"LIU"J,"TIAN"X,"LU"B."Fractions"and"spatial"distributions"of"agricultural"riparian"soil"phosphorus"in"a"small"river"basin"of"Taihu"area,"China[J]."Chemical"Speciation"amp;"Bioavailability,"2017,"29:"33-41.
[49]"GARLAND"G,"BüNEMANN"E"K,"OBERSON"A,"FRO S SARD"E,"SNAPP"S"S,"CHIKOWO"R,"SIX"J."Phosphorus"cycling"within"soil"aggregate"fractions"of"a"highly"weathered"tropical"soil:"a"conceptual"model[J]."Soil"Biology"amp;"Biochemistry,"2018,"116:"91-98.
[50]"翟龍波,"章熙鋒,"陳靖,"況福虹,"唐家良."施肥對(duì)坡地土壤團(tuán)聚體與磷素賦存形態(tài)的影響[J]."西南大學(xué)學(xué)報(bào)(自然科學(xué)版),"2019,"41(7):"105-115.ZHAI"L"B,"ZHANG"X"F,"CHEN"J,"KUANG"F"H,"TANG"J"L."Effects"of"fertilization"on"soil"aggregates"and"phosphorus"occurrence"morphology"in"sloping"land[J]."Journal"of"Southwest"University"(Natural"Science"Edition),"2019,"41(7):"105-115."(in"Chinese)
[51]"LI"B,"GE"T,"XIAO"H,"ZHU"Z,"LI"Y,"SHIBISTOVA"O"B,"LIU"S,"WU"J,"INUBUSHI"K,"GUGGENBERGER"G."Phosphorus"content"as"a"function"of"soil"aggregate"size"and"paddy"cultivation"in"highly"weathered"soils[J]."Environmental"Science"and"Pollution"Research,"2016,"23:"7494-7503.
[52]"ZHU"M"K,"HUANG"B"C,"AI"S"H,"LIU"Z"Y,"AI"X"Y,"SHENG"M"H,"AI"Y"W."The"distribution"and"availability"of"phosphorus"fractions"in"restored"cut"slopes"soil"aggregates:"a"case"study"of"subalpine"road,"southwest"China[J]."Frontiers"of"Environmental"Science"amp;"Engineering,"2023,"17(4):"42.
[53]"WRIGHT"A"L."Phosphorus"sequestration"in"soil"aggregates"after"long-term"tillage"and"cropping[J]."Soil"amp;"Tillage"Research,"2009,"103:"406-411.
[54]"FENG"M,"XIANG"J,"JI"X,"JIANG"J."Larger"soil"water-stable"aggregate"may"exert"a"negative"effect"on"nutrient"availability:"results"from"red"soil"(Ultisol),"in"South"China[J]."Forests,"2023,"14(5):"975.
[55]"谷思玉,"張一鶴,"陸欣春,"韓曉增,"鄒文秀,"郝翔翔."不同土地利用方式對(duì)農(nóng)田黑土剖面磷形態(tài)分布的影響[J]."干旱地區(qū)農(nóng)業(yè)研究,"2019,"37(3):"149-156.GU"S"Y,"ZHANG"Y"H,"LU"X"C,"HAN"X"Z,"ZOU"W"X,"HAO"X"X."Effects"of"different"land"use"patterns"on"the"distribution"of"phosphorus"morphology"in"farmland"black"soil"profile[J]."Agricultural"Research"in"Arid"Areas,"2019,"37(3):"149-156."(in"Chinese)
[56]"孫博."不同輪作模式對(duì)作物產(chǎn)量以及磷肥利用率的影響研究[D]."南京:"南京農(nóng)業(yè)大學(xué),"2019.SUN"B."Effects"of"different"crop"rotation"patterns"on"crop"yield"and"phosphorus"fertilizer"use"efficiency[D]."Nanjing:"Nanjing"Agricultural"University,"2019."(in"Chinese)
[57]"李璠,"王炯琪,"劉子剛,"趙海超,"和江鵬,"黃智鴻,"盧海博."土地利用方式對(duì)土壤團(tuán)聚體磷組分及磷庫(kù)管理指數(shù)的影響[J]."中國(guó)水土保持科學(xué)(中英文),"2023,"21(1):"83-91.LI"F,"WANG"J"Q,"LIU"Z"G,"ZHAO"H"C,"HE"J"P,"HUANG"Z"H,"LU"H"B."Effects"of"land"use"patterns"on"phosphorus"fraction"and"phosphorus"pool"management"index"of"soil"aggregates[J]."Science"of"Soil"and"Water"Conservation"in"China"(in"English"and"Chinese),"2023,"21(1):"83-91."(in"Chinese)
[58]"剡斌."胡麻輪作模式對(duì)農(nóng)田土壤養(yǎng)分、生物特性及作物產(chǎn)量的影響[D]."蘭州:"甘肅農(nóng)業(yè)大學(xué),"2018.YAN"B."Effects"of"flax"rotation"pattern"on"soil"nutrients,"biological"characteristics"and"crop"yield"in"farmland[D]."Lanzhou:"Gansu"Agricultural"University,"2018."(in"Chinese)
[59]"孟慶華,"李根英."山東主要土類有機(jī)質(zhì)及其與供磷特性的關(guān)系[J]."土壤通報(bào),"2007(1):"25-28.MENG"Q"H,"LI"G"Y."Main"soil"organic"matter"and"its"relationship"with"phosphorus"supply"characteristics"in"Shandong"province[J]."Soil"Communications,"2007(1):"25-28."(in"Chinese)
[60]"胡克偉,"關(guān)連珠,"顏麗,"賈冬艷."施硅對(duì)水稻土磷素吸附與解吸特性的影響研究[J]."植物營(yíng)養(yǎng)與肥料學(xué)報(bào),"2002(2):"214-218.HU"K"W,"GUAN"L"Z,"YAN"L,"JIA"D"Y."Effect"of"silicon"application"on"phosphorus"adsorption"and"desorption"characteristics"of"paddy"soil[J]."Journal"of"Plant"Nutrition"and"Fertilizer,"2002(2):"214-218."(in"Chinese)
[61]"陶士鋒,"徐曉峰,"寇太記."土壤有機(jī)質(zhì)對(duì)有效磷及水提取磷含量的影響[J]."中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),"2012,"20(8):"1054-1058.TAO"S"F,"XU"X"F,"KOU"T"J."Effects"of"soil"organic"matter"on"available"phosphorus"and"phosphorus"extracted"from"water[J]."Chinese"Journal"of"Eco-Agriculture,"2012,"20(8):"1054-1058."(in"Chinese)
[62]"MA"J,"MA"Y,"WEI"R,"CHEN"Y,"WENG"L,"OUYANG"X,"LI"Y."Phosphorus"transport"in"different"soil"types"and"the"contribution"of"control"factors"to"phosphorus"retardation[J]."Chemosphere,"2021,"276:"130012".
[63]"FU"Z,"WU"F,"SONG"K,"LIN"Y,"BAI"Y,"ZHU"Y,"GIESY"J"P."Competitive"interaction"between"soil-derived"humic"acid"and"phosphate"on"goethite[J]."Applied"Geochemistry,"2013,"36:"125-131.
[64]"HUNT"J"F,"OHNO"T,"HE"Z,"HONEYCUTT"W,"DAIL"D"B."Inhibition"of"phosphorus"sorption"to"goethite,"gibbsite,"and"kaolin"by"fresh"andnbsp;decomposed"organic"matter[J]."Biology"and"Fertility"of"Soils,"2007,"44:"277-288.
[65]"DENG"Y"X,"LI"Y"T,"LI"X"J,"SUN"Y,"MA"J,"LEI"M,"WENG"L"P."Influence"of"calcium"and"phosphate"on"pH"dependency"of"arsenite"and"arsenate"adsorption"to"goethite[J]."Chemosphere,"2018,"199:"617-624.
[66]"YANG"F,"ZHANG"S,"SONG"J,"DU"Q,"LI"G,"TARAKINA"N"V,"ANTONIETTI"M."Synthetic"humic"acids"solubilize"otherw ise"insoluble"phosphates"to"improve"soil"fertility[J]."Ang ew andte"Chemie"International"Edition,"2019,"58:"18813-"18816.
[67]"YANG"X,"CHEN"X,"YANG"X."Effect"of"organic"matter"on"phosphorus"adsorption"and"desorption"in"a"black"soil"from"Northeast"China[J]."Soil"and"Tillage"Research,"2019,"187:"85-91.
[68]"SINGH"M,"SARKAR"B,"BISWAS"B,"CHURCHMAN"J"G,"BOLAN"N"S."Adsorption-desorption"behavior"of"dissolved"organic"carbon"by"soil"clay"fractions"of"varying"mineralogy[J]."Geoderma,"2016,"280:"47-56.
[69]"JINDO"K,"AUDETTE"Y,"OLIVARES"F"L,"CANELLAS"L"P,"SMITH"D"S,"PAUL"VORONEY"R."Biotic"and"abiotic"effects"of"soil"organic"matter"on"the"phytoavailable"phosphorus"in"soils:"a"review[J]."Chemical"and"Biological"Technologies"in"Agriculture,"2023,"10(1):"29.
[70]"MA"Y,"MA"J,"PENG"H,"WENG"L,"CHEN"Y,"LI"Y."Effects"of"iron,"calcium,"and"organic"matter"on"phosphorus"behavior"in"fluvo-aquic"soil:"farmland"investigation"and"aging"experiments[J]."Journal"of"Soils"and"Sediments,"2019,"19(12):"3994-4004.
[71]"LEI"Y,"SONG"B,"SAAKES"M,"VAN"DER"WEIJDEN"R"D,"BUISMAN"C"J."Interaction"of"calcium,"phosphorus"and"natural"organic"matter"in"electrochemical"recovery"of"phosphate[J]."Water"Research,"2018,"142:"10-17.
[72]nbsp;GRZEBISZ"W,"NIEWIADOMSKA"A,"POTARZYCKI"J,"ANDRZEJEWSKA"A."Phosphorus"hotspots"in"crop"plants"production"on"the"farm-mitigating"critical"factors[J]."Agro no my,"2024,"14(1):"200.
[73]"楊春霞,"王圣瑞,"金相燦,"吳豐昌."輕組有機(jī)質(zhì)對(duì)太湖沉積物氮、磷礦化的影響[J]."環(huán)境科學(xué)研究,"2009,"22(9):"1001-1007.YANG"C"X,"WANG"S"R,"JIN"X"C,"WU"F"C."Effects"of"light"organic"matter"on"nitrogen"and"phosphorus"mineralization"in"sediments"of"Taihu"Lake[J]."Environmental"Science"Research,"2009,"22(9):"1001-1007."(in"Chinese)
[74]"NZE-MEMIAGHE"J"D,"CAMBOURIS"A"N,"ZIADI"N,"KARAM"A."Tillage"management"impacts"on"soil"phosphorus"variability"under"maize-soybean"rotation"in"Eastern"Canada[J]."Soil"Systems,"2022,"6(2):"45.
[75]"ARENBERG"M"R,"ARAI"Y."Effects"of"native"leaf"litter"amendments"on"phosphorus"mineralization"in"temperate"floodplain"soils[J]."Chemosphere,"2020,"266:"129210.
[76]"BIEDERBECK"V"O,"CAMPBELL"C"A,"ZENTNER"R"P."Effect"of"crop"rotation"and"fertilization"on"some"biological"properties"of"a"loam"in"southwestern"Saskatchewan[J]."Canadian"Journal"of"Soil"Science,"1984,"64(4):"355-367.
[77]"KING"A"E,"BLESH"J."Crop"rotations"for"increased"soil"carbon:"perenniality"as"a"guiding"principle[J]."Ecological"Applications,"2018,"28(8):"587-592.
[78]"謝林花,"呂家瓏,"張一平,"劉選位,"劉利花."長(zhǎng)期施肥對(duì)石灰性土壤磷素肥力的影響Ⅰ."有機(jī)質(zhì)、全磷和速效磷[J]."應(yīng)用生態(tài)學(xué)報(bào),"2004(5):"787-789.XIE"L"H,"LYU"J"L,"ZHANG"Y"P,"LIU"X"W,"LIU"L"H."Effects"of"long-term"fertilization"on"phosphorus"fertility"in"calcareous"soils"I."organic"matter,"total"phosphorus"and"available"phosphorus[J]."Chinese"Journal"of"Applied"Ecology,"2004(5):"787-789."(in"Chinese)
[79]"丁懷香,"宇萬(wàn)太."土壤無(wú)機(jī)磷分級(jí)及生物有效性研究進(jìn)展[J]."土壤通報(bào),"2008,"39(3):"681-686.DING"H"X,"YU"W"T."Research"progress"on"soil"inorganic"phosphorus"classification"and"bioavailability[J]."Soil"Communications,"2008,"39(3):"681-686."(in"Chinese)
[80]"DONG"R"S,"HU"W,"BU"L"Y,"CHENG"H"T,"LIU"G"D."Legume"cover"crops"alter"soil"phosphorus"availability"and"microbial"community"composition"in"mango"orchards"in"karst"areas[J]."Agriculture,"Ecosystems"amp;"Environment,"2024,"364:"108906.
[81]"張茜,"趙秋,"向春陽(yáng),"史昕倩,"杜錦."冬綠肥-春玉米輪作對(duì)土壤有機(jī)磷形態(tài)及其有效性的影響[J]."華北農(nóng)學(xué)報(bào),"2022,"37(1):"121-128.ZHANG"Q,"ZHAO"Q,"XIANG"C"Y,"SHI"X"Q,"DU"J."Effects"of"winter"green"manure-spring"maize"rotation"on"soil"organic"phosphorus"morphology"and"its"effectiveness[J]."Journal"of"North"China"Agricultural"Sciences,"2022,"37(1):"121-128."(in"Chinese)
[82]"尹遜霄,"華珞,"張振賢,"滑麗萍,"高娟."土壤中磷素的有效性及其循環(huán)轉(zhuǎn)化機(jī)制研究[J]."首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版),"2005,"26(3):"95-101.YIN"X"X,"HUA"L,"ZHANG"Z"X,"HUA"L"P,"GAO"J."Study"on"the"availability"and"cyclic"transformation"mechanism"of"phosphorus"in"soil[J]."Journal"of"Capital"Normal"University"(Natural"Science"Edition),"2005,"26(3):"95-101."(in"Chinese)
[83]"趙少華,"宇萬(wàn)太,"張璐,"沈善敏,"馬強(qiáng)."土壤有機(jī)磷研究進(jìn)展[J]."應(yīng)用生態(tài)學(xué)報(bào),"2004,"15(11):"2189-2194.ZHAO"S"H,"YU"W"T,"ZHANG"L,"SHEN"S"M,"MA"Q."Research"progress"on"soil"organic"phosphorus[J]."Chinese"Journal"of"Applied"Ecology,"2004,"15(11):"2189-2194."(in"Chinese)
[84]"WANG"C"Q,"DIPPOLD"M"A,"GUGGENBERGER"G,"KUZYKOV"Y,"GUENTHER"S,"DORODNIKOV"M."The"wetter"the"better?"Preferences"in"plant-microbial"competition"for"phosphorus"sources"in"rice"cultivation"under"contrasting"irrigation[J]."Soil"Biology"and"Biochemistry,"2024,"191:"109339.
[85]"CONDRON"L"M,"NEWMAN"S."Revisiting"the"fundamentals"of"phosphorus"fractionation"of"sediments"and"soils[J].nbsp;Journal"of"Soilsand"Sediments,"2011,"11(5):"830-840.
[86]"GARLAND"G,"BüNEMANN"E"K,"OBERSON"A,"FROSSARD"E,"SIX"J."Plant-mediated"rhizospheric"interactions"incorn-pigeon"pea"intercropping"enhance"soil"aggregation"and"organic"phosphorus"storagel[J]."Plant"and"Soil,"2017,"415:"37-55.
[87]"戚瑞生,"黨廷輝,"楊紹瓊,"馬瑞萍,"周麗萍."長(zhǎng)期輪作與施肥對(duì)農(nóng)田土壤磷素形態(tài)和吸持特性的影響[J]."土壤學(xué)報(bào),"2012,"49(6):"1136-1146.QI"R"S,"DANG"T"H,"YANG"S"Q,"MA"R"P,"ZHOU"L"P."Effects"of"long-term"crop"rotation"and"fertilization"on"soil"phosphorus"morphology"and"uptake"characteristics"of"farmland[J]."Journal"of"Soil"Science,"2012,"49(6):"1136-1146."(in"Chinese)
[88]"XU"X,"MAO"X,"VAN"ZWIETEN"L,"NIAZI"N"K,"LU"K,"BOLAN"N"S,"WANG"H."Wetting-drying"cycles"during"a"rice-wheat"crop"rotation"rapidly"(im)"mobilize"recalcitrant"soil"phosphorus[J]."Journal"of"Soils"and"Sediments,"2020,"20:"3921-3930.
[89]"JING"D,"YAN"Y,"REN"T,"LU"J,"WANG"X,"CHEN"J,"TAN"W,"LIU"F,"JAISI"D"P,"FENG"X."Effects"of"nitrogen"application"rate"on"phosphorus"transformation"in"an"Alfisol:"results"from"phosphate-oxygen"isotope"ratios[J]."Applied"Geochemistry,"2021,"134:"105094.
[90]"SHI"Y,"ZIADI"N,"MESSIGA"A"J,"LALANDE"R,"HU"Z."Ch a n g es"in"soil"phosphorus"fractions"for"a"long-term"corn-so yb ean"rotation"with"tillage"and"phosphorus"fertilization[J]."Soil"Science"Society"of"America"Journal,"2013,"77:"1402-1412.
[91]"WANG"K,"REN"T,"YAN"J,"ZHU"D,"LIAO"S,"ZHANG"Y,"LU"Z,"CONG"R,"LI"X,"LU"J."Straw"returning"mediates"soil"microbial"biomass"carbon"and"phosphorus"turnover"to"enhance"soil"phosphorus"availability"in"a"rice-oilseed"rape"rotation"with"different"soil"phosphorus"levels[J]."Agriculture,"Ecosystems"amp;"Environment,"2022,"335:"107991.
[92]"KUMAWAT"C,"SHARMA"V"K,"BARMAN"M,"MEENA"M"C,"DWIVEDI"B"S,"KUMAR"S,"CHAKRABORTY"D,"ANIL"A"S,"PATRA"A."Phosphorus"forms"under"crop"residue"retention"and"phosphorus"fertilization"in"maize-wheat"rotation[J]."Communications"in"Soil"Science"and"Plant"Analysis,"2021,"53:"257-267.
[93]"LI"J,"ZHAO"J,"LIAO"X,"YI"Q,"ZHANG"W,"LIN"H,"LIU"K,"PENG"P,"WANG"K"L."Long-term"returning"agricultural"residues"increases"soil"microbe-nematode"network"complexity"and"ecosystem"multifunctionality[J]."Geoderma,"2023,"430:"116340.
[94]"MENEZES-BLACKBURN"D,"PAREDES"C,"ZHANG"H,"GILES"C"D,"DARCH"T,"STUTTER"M"I,"GEORGE"T"S,"SHAND"C"A,"LUMSDON"D"G,"COOPER"P,"WENDLER"R,"BROWN"L"K,"BLACKWELL"M"S,"WEARING"C,"HAYGARTH"P"M."Organic"acids"regulation"of"chemical-mi cro bial"phosphorus"transformations"in"soils[J]."Environmental"Science"amp;"Technology,"2016,"50(21):"11521-11531.
[95]"ZHONG"S,"ZENG"H,"JIN"Z.nbsp;Response"of"soil"nematode"community"composition"and"diversity"to"different"crop"rotations"and"tillage"in"the"tropics[J]."Applied"Soil"Ecology,"2016,"107:"134-143.
[96]"LIU"X,"REN"X,"TANG"S,"ZHANG"Z,"HUANG"Y,"SUN"Y,"GAO"Z,"MA"Z."Effects"of"broccoli"rotation"on"soil"microbial"community"structure"and"physicochemical"properties"in"continuous"melon"cropping[J]."Agronomy,"2023,"13(8):"2066.
[97]"STROM"N"B,"HU"W,"HAARITH"D,"CHEN"S,"BUSHLEY"K"E."Interactions"between"soil"properties,"fungal"communities,"the"soybean"cyst"nematode,"and"crop"yield"under"continuous"corn"and"soybean"monoculture[J]."Applied"Soil"Ecology,"2020,"147:"103388.
[98]"YU"H,"WANG"F,"SHAO"M,"HUANG"L,"XIE"Y,"XU"Y,"KONG"L."Effects"of"rotations"with"legume"on"soil"functional"microbial"communities"involved"in"phosphorus"transformation[J]."Frontiers"in"Microbiology,"2021,"12:"661100.
[99]"WAN"B"B,"LIU"T,"GONG"X,"ZHANG"Y,"LI"C"J,"CHEN"X"Y,"HU"F,"GRIFFITHS"B"S,"LIU"M"Q."Energy"flux"across"multitrophic"levels"drives"ecosystem"multifunctionality:"evidence"from"nematode"food"webs[J]."Soil"Biology"and"Biochemistry,"2022,"169:"108656.
[100]"董琦,"王一媚,"管平婷,"宋傳濤,"吳東輝,"王平."土壤微食物網(wǎng)生物和土壤微生物對(duì)小星穗薹草生長(zhǎng)和土壤養(yǎng)分的影響差異[J]."生態(tài)學(xué)報(bào),"2023,"43(23):"9784-9793.DONG"Q,"WANG"Y"M,"GUAN"P"T,"SONG"C"T,"WU"D"H,"WANG"P."Effects"of"soil"microorganisms"on"the"growth"of"Carex"angustior"and"soil"nutrients[J]."Acta"Ecologica"Sinica,"2023,"43(23):"9784-9793."(in"Chinese)
[101]"ZHANG"S,"CHANG"L,"MCLAUGHLIN"N,"CUI"S,"WU"H,"WU"D,"LIANG"W,"LIANG"A."Complex"soil"food"web"enhances"the"association"between"N"mineralization"and"soybean"yield–a"model"study"from"long-term"application"of"a"conservation"tillage"system"in"a"black"soil"of"Northeast"China[J]."Soil,"2021,"7(1):"71-82.
[102]"JIANG"Y,"LIU"M,"ZHANG"J"B,"CHEN"Y,"CHEN"X"Y,"CHEN"L"J,"LI"H"X,"ZHANG"X"X,"SUN"B."Nematode"grazing"promotes"bacterial"community"dynamics"in"soil"at"the"aggregate"level[J]."The"ISME"Journal,"2017,"11:"2705-2717.
[103]"毛小芳,"李輝信,"龍梅,"胡鋒."不同食細(xì)菌線蟲(chóng)取食密度下線蟲(chóng)對(duì)細(xì)菌數(shù)量、活性及土壤氮素礦化的影響[J]."應(yīng)用生態(tài)學(xué)報(bào),"2005(6):"1112-1116.MAO"X"F,"LI"H"X,"LONG"M,"HU"F."Effects"of"bacteria-feeding"nematode"at"its"different"density"on"bacterial"effects"of"bacteria-feeding"nematode"at"its"different"density"on"bacterial[J]."Chinese"Journal"of"Applied"Ecology,"2005(6):"1112-1116."(in"Chinese)
[104]"SULEIMAN"A"K,"HARKES"P,"VAN"DEN"ELSEN"S"J,"HOLTERMAN"M"H,"KORTHALS"G,"HELDER"J,"KU R AMAE"E"E."Organic"amendment"strengthens"interkingdom"associations"in"the"soil"and"rhizosphere"of"barley"(Hordeum"vulgare)[J]."The"Science"of"the"Total"Environment,"2019,"695:"133885.
[105]"BODUR"S"O,"SAMUEL"S"O,"SUZUKI"K,"HARADA"N,"ASILOGLU"R."Nitrogen-based"fertilizers"differentially"affect"protist"community"composition"in"paddy"field"soils[J]."Soil"Ecology"Letters,"2024,"6:"1-10.
[106]"武維寧."土壤原生動(dòng)物和細(xì)菌群落結(jié)構(gòu)對(duì)旱地馬鈴薯農(nóng)田施肥模式的響應(yīng)[D]."蘭州:"甘肅農(nóng)業(yè)大學(xué),"2022.WU"W"N."Responses"of"soil"protozoan"and"bacterial"community"structure"to"fertilization"patterns"in"dryland"potato"farmland[D]."Lanzhou:"Gansu"Agricultural"University,"2022."(in"Chinese)
[107]"SOMAN"C,"LI"D,"WANDER"M"M,"KENT"A"D."Long-term"fertilizer"and"crop-rotation"treatments"differentially"affect"soil"bacterial"community"structure[J]."Plant"and"Soil,"2017,"413:"145-159.
[108]"MOITINHO"M"R,"FERNANDES"C,"TRUBER"P"V,"MAR CE LO"A"V,"CORá"J"E,"BICALHO"E"D."Arbuscular"mycorrhizal"fungi"and"soil"aggregation"in"a"no-tillage"system"with"crop"rotation[J]."Journal"of"Plant"Nutrition"and"Soil"Science,"2020,"183:"482-491.
[109]"GOU"X"M,"CAI"Y,"WANG"C"Q,"LI"B,"ZHANG"R"P,"ZHANG"Y,"TANG"X"Y,"CHEN"Q,"SHEN"J,"DENG"J"M,"ZHOU"X"Y."Effects"of"different"long-term"cropping"systems"on"phoD-harboring"bacterial"community"in"red"soils[J]."Journal"of"Soils"and"Sediments,"2020,"21(1):"376-387.
[110]"PARIES"M,"GUTJAHR"C."The"good,"the"bad,"and"the"phosphate:"regulation"of"beneficial"and"detrimental"plant-microbe"interactions"by"the"plant"phosphate"status[J]."New"Phytologist,"2023,"239(1):"29-46.
[111]"BASU"S,"KUMAR"G,"CHHABRA"S,"PRASAD"R."Role"of"soil"microbes"in"biogeochemical"cyclefor"enhancing"soil"fertility[J]."New"and"Future"Developments"in"Microbial"Biotechnology"and"Bioengineering,"2021:"149-157.
[112]"ZHANG"Z,"ZHANG"X,"JHAO"J,"ZHANG"X,"LIANG"W."Tillage"and"rotation"effects"on"community"composition"and"metabolic"footprints"of"soil"nematodes"in"a"black"soil[J]."European"Journal"of"Soil"Biology,"2015,"66:"40-48.
[113]"霍娜,"黃菁華,"耿德洲,"王楠,"楊盼盼,"趙世偉."黃土高原半干旱區(qū)不同苜蓿-作物種植方式下土壤線蟲(chóng)群落組成及代謝足跡[J]."應(yīng)用生態(tài)學(xué)報(bào),"2021,"32(5):"1825-1834.HUO"N,"HUANG"J"H,"GENG"D"Z,"WANG"N,"YANG"P"P,"ZHAO"S"W."Community"composition"and"metabolic"footprint"of"soil"nematodes"under"different"alfalfa-crop"planting"methods"in"the"semi-arid"region"of"the"Loess"Plateau[J]."Chinese"Journal"of"Applied"Ecology,"2021,"32(5):"1825-1834."(in"Chinese)
[114]"HABIG"J,"LABUSCHAGNE"J,"MARAIS"M,"SWART"A,"CLAASSENS"S."The"effect"of"a"medic-wheat"rotational"system"and"contrasting"degrees"of"soil"disturbance"on"nematode"functional"groups"and"soil"microbial"communities[J]."Agriculture,"Ecosystems"amp;"Environment,"2018,"268:"103-114.
[115]"GAO"Z,"KARLSSON"I,"GEISEN"S,"KOWALCHUK"G"A,"JOUSSET"A."Protists:"puppet"masters"of"the"rhizosphere"microbiome[J]."Trends"in"Plant"Science,"2019,"24(2):"165-176.
[116]"STEELE"J"A,"COUNTWAY"P"D,"XIA"L"C,"VIGIL"P"D,"BEMAN"J"M,"KIM"D"Y,"CHOW"C"T,"SACHDEVA"R,"JONES"A"C,"SCHWALBACH"M"S,"ROSE"J"M,"HEWSON"I,"PATEL"A,"SUN"F,"CARON"D"A,"FUHRMAN"J"A."Marine"bacterial,"archaeal"and"protistan"association"networks"reveal"ecological"linkages[J]."The"ISME"Journal,"2011,"5:"1414-"1425.
[117]"ZHANG"S,"CAO"Z,"CHENG"Y,"ZHANG"G."Change"of"soil"protozoa"community"structure"under"different"farming"practices[J]."Journal"of"Animal"and"Veterinary"Advances,"2012,"11:"3140-3147.
[118]"JUN"M,"RASIT"A."Protists:"the"hidden"ecosystem"players"in"a"wetland"rice"field"soil[J]."Biology"and"Fertility"of"Soils,"2023,"60:"255.
[119]"RICHARDSON"A"E,"LYNCH"J"P,"RYAN"P"R,"DELHAIZE"E,"SMITH"F"A,"SMITH"S"E,"HARVEY"P,"RYAN"M"H,"VENEKLAAS"E"J,"LAMBERS"H,"OBERSON"A,"CULVENOR"R"A,"SIMPSON"R"J."Plant"and"microbial"strategies"to"improve"the"phosphorus"efficiency"of"agriculture[J]."Plant"and"Soil,"2011,"349:"121-156.
[120]"BERGKEMPER"F,"SCH?LER"A,"ENGEL"M,"LANG"F,"KRüGER"J,"SCHLOTER"M,"SCHULZ"S."Phosphorus"depletion"in"forest"soils"shapes"bacterial"communities"towards"phosphorus"recycling"systems[J]."Environmental"Microbiology,"2016,"18(6):"1988-2000.
[121]"GOLDSTEIN"A"H."Recent"progress"in"understanding"the"molecular"genetics"and"biochemistry"of"calcium"phosphate"solubilization"by"gram"negative"bacteria[J]."Biological"Agriculture"amp;"Horticulture,"1995,"12:"185-193.
[122]"WANG"H,"CHEN"J"P,"RUAN"Y"H,"SUN"W,"WANG"S"L,"WANG"H"T,"ZHANG"Y"L,"GUO"J"M,"WANG"Y"C,"GUO"H"Y,"SHAO"R"X,"YANG"Q"H."Metagenomes"reveal"the"effect"of"crop"rotation"systems"on"phosphorus"cycling"functional"genes"and"soil"phosphorus"avail-ability[J]."Agriculture,"Ecosystems"amp;"Environment,"2024,"364:"108886.
[123]"ENEBE"M"C,"BABALOLA"O."The"influence"of"soil"fertilization"on"the"distribution"and"diversity"of"phosphorus"cycling"genes"and"microbes"community"of"maize"rhizosphere"using"shotgun"metagenomics[J]."Genes,"2021,"12(7):"1022.
[124]"SONG"H,"DHARMASENA"M"N,"WANG"C,"SHAW"G"X,"CHERRY"S,"TROPEA"J"E,"JIN"D,"JI"X."Structure"and"activity"of"PPX/GppA"homologs"from"Escherichia"coli"and"Helic o bacter"pylori[J]."The"FEBS"Journal,"2020,"287:"1865-"1885.
[125]"WU"X,"RENSING"C,"HAN"D,"XIAO"K,"DAI"Y,"TANG"Z,"LIESACK"W,"PENG"J,"CUI"Z,"ZHANG"F."Genome-res olv ed"metagenomics"reveals"distinct"phosphorus"acquisition"strategies"between"soil"microbiomes[J]."mSystems,"2022,"7(1):"1107-1121.
[126]"HU"W,"ZHANG"Y,"XIANGMIN"R,"FEI"J,"PENG"J,"LUO"G."Coupling"amendment"of"biochar"and"organic"fertilizers"increases"maize"yield"and"phosphorus"uptake"by"regulating"soil"phosphatase"activity"and"phosphorus-acquiring"microbiota[J]."Agriculture,"Ecosystems"amp;"Environment,"2023,"335:"108582.
[127]"WANG"Y"F,"XU"J"Y,"LIU"Z"L,"CUI"H"L,"CHEN"P,"CAI"T"G,"LI"G,"DING"L"J,"QIAO"M,"ZHU"Y"G,"ZHU"D."Biological"interactions"mediate"soil"functions"by"altering"rare"microbial"communities[J]."Environmental"Science"amp;"Technology,"2024,"58(13):"5866-5877.
[128]"ZHANG"P,"ZHANG"W,"HU"S."Fungivorous"nematode"Aphelenchus"avenae"and"collembola"Hypogastrura"perplexa"alleviate"damping-off"disease"caused"by"Pythium"ultimum"in"tomato[J]."Plant"and"Soil,"2022,"482:"175-189.
[129]"陳云峰,"曹志平."土壤食物網(wǎng):"結(jié)構(gòu)、能流及穩(wěn)定性[J]."生態(tài)學(xué)報(bào),"2008(10):"5055-5064.CHEN"Y"F,"CAO"Z"P."Soil"food"web:"structure,"energy"flow"and"stability[J]."Acta"Ecologica"Sinica,"2008(10):"5055-5064."(in"Chinese)
[130]"SHEN"Y,"DUAN"T."The"Interaction"between"arbuscular"mycorrhizal"fungi"(AMF)"and"grass"endophyte"(Epichlo?)"on"host"plants:"a"review[J]."Journal"of"Fungi,"2024,"10(3):"174.
[131]"馬祥慶,"梁霞."植物高效利用磷機(jī)制的研究進(jìn)展[J]."應(yīng)用生態(tài)學(xué)報(bào),"2004,"15(4):"712-716.MA"X"Q,"LIANG"X."Research"progress"on"the"mechanism"of"efficient"phosphorus"utilization"in"plants[J]."Chinese"Journal"of"Applied"Ecology,"2004,"15(4):"712-716."(in"Chinese)
[132]"HACK"C"M,"PORTA"M,"SCHAUFELE"R,"GRIMOLDI"A"A."Arbuscular"mycorrhiza"mediatedeffects"on"growth,"mineral"nutrition"and"biological"nitrogen"fixation"of"Melilotus"alba"Med."In"a"subtropical"grassland"soil[J]."Applied"Soil"Ecology,"2019,"134:"38-44.
[133]"GAO"X"L,"LI"X"G,"ZHAO"L,"KUZYAKOV"Y."Regulation"of"soil"phosphorus"cycling"in"grasslands"by"shrubs[J]."Soil"Biology"and"Biochemistry,"2019,"133:"1-11.
[134]"LIU"Y,"HOSSEINI-BAI"S,"WANG"J,"HU"D,"WU"R,"ZHANG"W,"ZHANG"M."Strain"Klebsiella"ZP-2"inoculation"activating"soil"nutrient"supply"and"altering"soil"phosphorus"cycling[J]."Journal"of"Soils"and"Sediments,"2022,"22(8):"2146-2157.
[135]"HE"Z,"ZHU"J."Microbial"utilization"and"transformation"of"phosphate"adsorbed"by"variable"charge"minerals[J]."Soil"Biology"amp;"Biochemistry,"1998,"30:"917-923.
[136]"PEREA"ROJAS"Y"D,"ARIAS"R"M,"MEDEL"ORTIZ"R,"TREJO"AGUILAR"D,"HEREDIA"G,"RODRíGUEZ"YON"Y."Effects"of"native"arbuscular"mycorrhizal"and"phosphate-solu bilizing"fungi"on"coffee"plants[J]."Agroforestry"Systems,"2019,"93:"961-972.
[137]"EZAWA"T,"SAITO"K."How"do"arbuscular"mycorrhizal"fungi"handle"phosphate?"New"insight"into"fine-tuning"of"phosphate"metabolism[J]."The"New"Phytologist,"2018,"220(4):"1116-"1121.
[138]"TURNER"B"L,"HAYGARTH"P"M."Phosphatase"activity"in"temperate"pasture"soils:"potential"regulation"of"labile"organic"phosphorus"turnover"by"phosphodiesterase"activity[J]."The"Science"of"the"Total"Environment,"2005,"344(3):"27-36.
[139]"LI"J,"XIE"T,"ZHU"H,"ZHOU"J,"LI"C,"XIONG"W,"XU"L,"WU"Y,"HE"Z,"LI"X."Alkaline"phosphatase"activity"mediates"soil"organic"phosphorus"mineralization"in"a"subalpine"forest"ecosystem[J]."Geoderma,"2021,"404:"115376.
[140]"SCHNEIDER"K"D,"THIESSEN"MARTENS"J"R,"ZVO MU YA"F,"REID"D"K,"FRASER"T"D,"LYNCH"D"H,"O'HAL LO R AN"I"P,"WILSON"H"F."Options"for"improved"phosphorus"cycling"and"use"in"agriculture"at"the"field"and"regional"scales[J]."Journal"of"Environmental"Quality,"2019,"48(5):"1247-1264.
[141]"WANG"C"Q,"XUE"L,"JIAO"R"Z."Stoichiometric"imbalances"and"the"dynamics"of"phosphatase"activity"and"the"abundance"of"phoC"and"phoD"genes"with"the"development"of"Cunninghamia"lanceolata"(Lamb.)"Hook"plantations[J]."Applied"Soil"Ecology,"2022,"173:"104373.
[142]"秦利均,"楊永柱,"楊星勇."土壤溶磷微生物溶磷、解磷機(jī)制研究進(jìn)展[J]."生命科學(xué)研究,"2019,"23(1):"59-64,"86.QIN"L"J,"YANG"Y"Z,"YANG"X"Y."Research"progress"on"pho sphorus-solubilizing"and"phosphorus-solubilizing"mech anisms"of"soil"phosphorus-dissolving"microorganisms[J]."Life"Science"Research,"2019,"23(1):"59-64,"86."(in"Chinese)