国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同產(chǎn)量水平橡膠林土壤微生物群落組成及多樣性研究

2024-12-31 00:00:00詹杉吳敏馬海洋王桂花林琛茗茶正早王大鵬
熱帶作物學(xué)報(bào) 2024年12期
關(guān)鍵詞:死皮橡膠林低產(chǎn)

摘""要:本研究選取不同產(chǎn)量水平(高產(chǎn)、中產(chǎn)、低產(chǎn)和死皮)的橡膠林,基于高通量測序技術(shù)分析土壤微生物群落組成、多樣性及其與土壤理化性質(zhì)的關(guān)系,以期為橡膠林土壤改良提供科學(xué)依據(jù)。結(jié)果表明:從4種產(chǎn)量水平橡膠林的土壤樣本中共鑒定出17門、53綱、99目、164科、305屬、385種細(xì)菌種類,獲得2116個(gè)OTUs。共有的細(xì)菌優(yōu)勢門類為酸桿菌門(Acidobacteria)、變形菌門(Proteobacteria)和厚壁菌門(Firmicutes)。共獲得1622個(gè)真菌OTUs,分屬17門、49綱、113目、242科、424屬、644種,其中擔(dān)子菌門(Basidiomycota)、子囊菌門(Ascomycota)和被孢霉門(Mortierellomycota)為優(yōu)勢真菌門類。隨著橡膠樹產(chǎn)量水平的降低,土壤細(xì)菌群落豐富度呈下降趨勢,但多樣性指數(shù)無明顯變化;真菌Ace指數(shù)、Chao1指數(shù)呈增加趨勢,Shannon指數(shù)顯著增加,Simpson指數(shù)顯著降低,表明隨著產(chǎn)量水平的下降,橡膠林土壤真菌群落的豐富度和多樣性均上升。主坐標(biāo)(PCoA)分析表明,細(xì)菌或真菌群落結(jié)構(gòu)在不同產(chǎn)量水平橡膠林間均存在顯著差異。此外,優(yōu)勢菌門的相對豐度也存在不同程度的差異,土壤微生物群落特征與土壤pH和C/N等理化因子密切相關(guān)。RDA分析表明,土壤pH、速效鉀和全氮是影響細(xì)菌優(yōu)勢門類的主要土壤理化因子,真菌優(yōu)勢菌門則主要受土壤pH、速效鉀和碳氮比的影響。

關(guān)鍵詞:橡膠林;磚紅壤;微生物群落;多樣性;土壤理化性質(zhì)中圖分類號:S794.1;S154.36""""""文獻(xiàn)標(biāo)志碼:A

Composition"and"Diversity"of"Soil"Microbial"Community"in"Soil"of"Rubber"Plantations"with"Different"Yield"Levels

ZHAN"Shan1,2,"WU"Min1,2*,"MA"Haiyang3,"WANG"Guihua1,2,"LIN"Chenming1,2,"CHA"Zhengzao1,2,"WANG"Dapeng1,2*

1."Rubber"Research"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Haikou,"Hainan"571101,"China;"2."Danzhou"Soil"Environment"of"Rubber"Plantation,"Hainan"Observation"and"Research"Station,"Danzhou,"Hainan"571737,"China;"3."South"Subtropical"Crops"Research"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Key"Laboratory"of"Tropical"Crops"Nutrition"of"Hainan"Province,"Zhanjiang,"Guangdong"524091,"China

Abstract:"In"this"study,"the"microbial"community"was"analyzed"by"high-throughput"sequencing"technology"in"the"soil"of"rubber"plantation"with"different"yield"levels"(high"yield,"middle"yield,"low"yield"and"none"yield),"and"relationship"between"microbial"community"and"soil"physical"and"chemical"properties"was"also"studied."A"total"of"2116"bacteria"OTUs"were"obtained"from"all"examined"samples,"which"belonged"to"17"phyla,"53"classes,"99"orders,"164"families,"305"genera"and"385"species."The"dominant"phyla"of"bacterial"community"were"Acidobacteria,"Proteobacteria"and"Firmicutes."A"total"of"1622"fungal"OTUs"were"obtained"from"all"soil"samples,"which"belonged"to"17"phyla,"49"classes,"113"orders,"242"families,"424"genera"and"644"species."The"dominant"phyla"of"fungal"community"were"Basidiomycota,"Ascomycota"and"Mortierellomycota."The"abundance"of"soil"bacteria"community"showed"a"downward"trend"was"observed"with"the"decreasingnbsp;of"the"yield"level"of"rubber"trees,"while"the"difference"of"bacterial"diversity"index"was"not"significant."Ace"index"and"Chao1"index"of"soil"fungi"showed"an"upward"trend,"and"Shannon"index"significantly"increased,"while"the"Simpson"index"decreased"significantly,"indicating"that"the"richness"and"diversity"of"fungal"community"increased"with"the"decreasing"of"the"yield"level."Principal"coordinate"analysis"(PCoA)"showed"that"the"community"structure"of"soil"bacteria"or"fungi"was"significantly"different"under"the"treatments."In"addition,"the"relative"abundance"of"dominant"bacterial"phyla"also"varied"to"different"degrees."The"characteristics"of"soil"microbial"community"were"closely"related"to"soil"pH"and"C/N."According"to"redundancy"analysis"(RDA)"results,"soil"pH,"available"potassium"and"total"nitrogen"were"the"main"soil"physical"and"chemical"factors"affecting"the"dominant"bacterial"phyla,"while"the"dominant"fungal"phyla"were"mainly"affected"by"soil"pH,"available"potassium"and"C/N.

Keywords:"rubber"plantation;"lateritic"soil;"microbial"community;"diversity;"soil"physical"and"chemical"properties

DOI:"10.3969/j.issn.1000-2561.2024.12.017

橡膠樹(Hevea"brasiliensis)是熱區(qū)典型的經(jīng)濟(jì)林作物。天然橡膠作為重要的戰(zhàn)略資源,在當(dāng)今世界仍具有不可替代性。從20世紀(jì)50年代起,我國開始大力發(fā)展天然橡膠產(chǎn)業(yè),現(xiàn)有橡膠種植面積約113萬hm2,年產(chǎn)量約80萬t,分別居世界第3和第4位[1]。海南島是我國橡膠樹的主要種植區(qū),其種植面積約占全國種植面積的一半[2]。然而受自然條件的制約,以及天然橡膠消費(fèi)量持續(xù)攀升,當(dāng)前我國的天然橡膠自給率不及15%,因此盡可能提高單產(chǎn),保障國產(chǎn)膠自給能力仍是我國天然橡膠產(chǎn)業(yè)的一項(xiàng)重要任務(wù)。但是經(jīng)過長期連續(xù)的植膠生產(chǎn),海南植膠區(qū)存在土壤肥力持續(xù)下降和單產(chǎn)提升困難等嚴(yán)重問題[3-4]。良好的土壤環(huán)境是橡膠樹正常生長和產(chǎn)膠的基礎(chǔ),土壤微生物群落作為土壤生態(tài)系統(tǒng)的重要組成部分,在調(diào)節(jié)生態(tài)系統(tǒng)功能中起著關(guān)鍵作用[5]。如植物生長、土壤養(yǎng)分循環(huán)、能量流動(dòng)及污染物降解等[6]。因此,研究不同產(chǎn)量水平橡膠林土壤微生物特征差異及其與土壤環(huán)境因子的關(guān)系,對于揭示土壤質(zhì)量與橡膠樹產(chǎn)膠量的關(guān)系,以及橡膠林土壤改良具有重要的指導(dǎo)意義。

隨著分子生物學(xué)等研究方法的發(fā)展,國內(nèi)外學(xué)者對土壤微生物多樣性展開了更加全面的研究。如GUO等[7]通過磷脂脂肪酸(PLFAs)分析方法檢測海南島不同土壤母質(zhì)和種植年限橡膠林根際土壤微生物的群落特征。BAHRAM等[8]通過宏基因組學(xué)和DNA宏條形碼技術(shù)測定全球尺度上的表層土樣,解析了土壤pH在土壤細(xì)菌群落多樣性和組成方面的關(guān)鍵作用。近年來,在土壤理化性質(zhì)與土壤微生物群落結(jié)構(gòu)互效等方面的研究也取得了一系列重要進(jìn)展[9-12]。與此同時(shí),橡膠林土壤微生物研究也開展了一定研究。楊帆[13]的研究表明,橡膠林土壤理化性質(zhì)與微生物分布呈顯著相關(guān),影響微生物分布的主要環(huán)境因子為土壤速效鉀、全鉀和土壤含水量;周玉杰等[14]通過高通量測序研究不同林齡橡膠林土壤真菌的多樣性及群落組成,發(fā)現(xiàn)土壤鉀元素含量是影響土壤真菌群落多樣性的重要因素;趙春梅等[15]研究發(fā)現(xiàn),不同母質(zhì)發(fā)育的橡膠林土壤真菌群落結(jié)構(gòu)存在明顯差異,其關(guān)鍵影響因子為土壤有機(jī)碳、有效氮和全氮等。從上述研究來看,橡膠林土壤微生物研究相對集中在土壤母質(zhì)類型、林齡以及不同管理措施等方面,而不同產(chǎn)量水平下橡膠林土壤微生物群落結(jié)構(gòu)和多樣性是否存在顯著差異?以及在此條件下,哪些土壤理化因子與土壤微生物之間存在顯著相關(guān)性?仍缺乏深入研究。

隨著第3代測序技術(shù)的發(fā)展,高通量測序技術(shù)在測定微生物多樣性和群落組成方面具有明顯優(yōu)勢,為土壤微生物研究提供了更加豐富的技術(shù)手段[16-18]。本研究以不同產(chǎn)量水平(高產(chǎn)、中產(chǎn)、低產(chǎn)和死皮)的橡膠林為研究對象,基于高通量測序技術(shù)比較分析不同產(chǎn)量水平下橡膠林土壤微生物群落結(jié)構(gòu)和多樣性的差異特征,并探討不同土壤理化性質(zhì)與土壤微生物間的相互關(guān)系,以期為橡膠林土壤改良和定向培育提供理論依據(jù)。

1""材料與方法

1.1""研究區(qū)概況

研究區(qū)位于海南省儋州市中國熱帶農(nóng)業(yè)科學(xué)院試驗(yàn)場七隊(duì)和紅洋隊(duì)基地(108°56′~109°46′E,"19°11′~19°52′N),屬于熱帶季風(fēng)氣候區(qū),多年年均氣溫23.5"℃,年均日照時(shí)數(shù)2100"h,年均降雨量1650"mm,旱季雨季交替明顯。試驗(yàn)區(qū)均為二代橡膠林,土壤類型為花崗片麻巖發(fā)育的磚紅壤。

1.2""方法

1.2.1""樣地設(shè)置與基本情況""共設(shè)置4個(gè)處理:高產(chǎn)(HY),株產(chǎn)6"kg及以上;中產(chǎn)(MY),株產(chǎn)4~5"kg;低產(chǎn)(LY),株產(chǎn)低于3"kg;死皮(NY),株產(chǎn)為0"kg。在中國熱帶農(nóng)業(yè)科學(xué)院儋州試驗(yàn)場七隊(duì)選取高產(chǎn)橡膠林和中產(chǎn)橡膠林,紅洋隊(duì)選取低產(chǎn)橡膠林和死皮橡膠林。每種產(chǎn)量水平橡膠林均設(shè)置有3個(gè)地塊,地塊面積為15"m×20"m,共計(jì)12塊樣地。橡膠樹品種為熱研7-33-97,每666.67"m2種植32株左右,株行距為3.5"m×6.0"m,于2004年種植,2011年開割,割齡為12"a。2022年高產(chǎn)、中產(chǎn)、低產(chǎn)橡膠林每株干膠產(chǎn)量分別為6.7、4.9、2.0"kg。試驗(yàn)橡膠樹采取的割制是S/2"d4"1.5%"ET(即1/2樹圍,4"d1刀,1.5%乙烯利刺激)。研究區(qū)內(nèi)橡膠樹的立地條件、栽培技術(shù)、管理措施及割膠制度基本一致。

1.2.2""樣品采集""于2023年9月采集土壤樣品。取樣前去除地面植被和凋落物,然后按照“S”形取樣法在同一樣方內(nèi)采取表層土壤的5個(gè)樣點(diǎn),將其混合成1個(gè)土樣,每份混合土樣約500"g,將混合土樣裝袋封存后立即放入冰盒(4"℃)。帶回實(shí)驗(yàn)室后將土樣分裝為多份,其中一份(約3"g)裝入無菌塑料管中,隨后放入冰箱(?80"℃)保存,用于土壤微生物分析;另一部分經(jīng)風(fēng)干、研磨后,過2"mm篩,用于土壤基礎(chǔ)理化性質(zhì)分析。同時(shí)留出部分原始土樣存于?80"℃冰箱備用。

1.2.3""樣品分析""(1)土壤基本理化性質(zhì)測定。使用pH計(jì)以1∶2.5土水比測定土壤pH;采用元素分析儀測定土壤有機(jī)質(zhì)(SOM)和全氮(TN)含量;有效磷(AP)經(jīng)鹽酸-氟化銨提取,采用連續(xù)流動(dòng)分析儀法測定;速效鉀(AK)經(jīng)中性乙酸銨浸提,采用火焰光度計(jì)測定。

(2)DNA抽提、擴(kuò)增及測序。土壤樣品微生物總DNA提取和測序由美吉生物醫(yī)藥科技(上海)有限公司完成。利用試劑盒(Omega"Bio-Tek,"Norcross,"GA,"USA)從土壤樣本中提取總DNA樣本,然后以其為模版進(jìn)行PCR擴(kuò)增。其中,細(xì)菌群落分析采用27F(5¢-AGRGTTYGATYM TGG C TCAG-3¢)和1492R(5¢-RGYTACCT TGTTA C GAC TT-3¢)引物擴(kuò)增16S"rRNA基因全長,真菌群落分析利用ITS1F(5¢-CTTGGTCA TTTA GA G GAA GT AA-3¢)和ITS4R(5¢-TC CTC CG CT TA T T G ATAT GC-3¢)引物擴(kuò)增ITS全長。PCR反應(yīng)組分主要為模板DNA、上下游引物、Fast"Pfu"DNA聚合酶、反應(yīng)緩沖液及dNTPs混合液。反應(yīng)程序:95"℃預(yù)變性3"min;95"℃變性30"s,60"℃退火30"s,72"℃延伸45"s,循環(huán)27次;72"℃穩(wěn)定延伸10"min,最后于4"℃保存。重復(fù)3次(PCR儀:T100"Thermal"Cycler"PCR,USA)。產(chǎn)物在2%瓊脂糖凝膠中進(jìn)行電泳檢測后對其進(jìn)行純化,并通過Qubit"4.0(Thermo"Fisher"Scientific,"USA)對純化產(chǎn)物進(jìn)行定量。純化的PCR產(chǎn)物按等摩爾比混合,在Pacbio"Sequel"IIe"System平臺進(jìn)行測序。

1.3""數(shù)據(jù)處理

基于97%相似度,通過Uparse"7.1軟件對優(yōu)化序列進(jìn)行OTU聚類。在OTU水平上計(jì)算土壤樣本微生物的Alpha多樣性指數(shù)。對比unite8.0/its_f"ungi數(shù)據(jù)庫,采用RDP"Classifier進(jìn)行OTU物種分類注釋,對不同分類水平下微生物群落分布進(jìn)行可視化處理。采用SPSS"20.0軟件對試驗(yàn)數(shù)據(jù)進(jìn)行方差分析;采用Origin"2022軟件進(jìn)行微生物多樣性指數(shù)與土壤因子的相關(guān)性分析。采用Canoco"5.0軟件進(jìn)行微生物群落組成與土壤理化因子的冗余分析。

2""結(jié)果與分析

2.1""不同產(chǎn)量水平橡膠林土壤理化性質(zhì)比較

由表1可知,不同產(chǎn)量水平橡膠林樣地土壤pH均低于5.00。其中,高、中產(chǎn)橡膠林土壤pH顯著高于低產(chǎn)和死皮橡膠林,死皮橡膠林土壤pHlt;4.5,為強(qiáng)酸性土壤。土壤有機(jī)質(zhì)和全氮含量以高產(chǎn)、中產(chǎn)和死皮樣地較高,低產(chǎn)橡膠林最低,且顯著低于其他橡膠林;土壤有效磷含量以低產(chǎn)和死皮橡膠林最高,中產(chǎn)橡膠林最低,速效鉀含量的變化規(guī)律則與其相反;碳氮比以低產(chǎn)橡膠林最高,且顯著高于其他產(chǎn)量橡膠林。

2.2""不同產(chǎn)量水平橡膠林土壤微生物群落組成和多樣性分析

2.2.1""土壤微生物群落多樣性特征""在Alpha多樣性分析中,Ace與Chao1指數(shù)可用于估計(jì)群落中的物種數(shù),而Shannon"與Simpson指數(shù)用于衡量物種多樣性[19]。由表2可知,土壤細(xì)菌和真菌群落Coverage指數(shù)均超過95%,覆蓋率較好,說明本次測序深度滿足要求。土壤微生物群落多樣性在不同

產(chǎn)量橡膠林間存在明顯差異。高、中、低產(chǎn)橡膠林間細(xì)菌和真菌的豐富度指數(shù)差異不明顯。與高、中、低產(chǎn)橡膠林相比,死皮橡膠林中細(xì)菌群落豐富度顯著下降,而真菌群落的豐富度則顯著提升。不同產(chǎn)量橡膠林下細(xì)菌群落多樣性無顯著差異,而真菌Shannon指數(shù)在高、中、低產(chǎn)橡膠林之間達(dá)到顯著性水平,且多樣性隨產(chǎn)量下降顯著上升。與細(xì)菌群落相比,真菌群落多樣性變化更加顯著。從高產(chǎn)、中產(chǎn)、低產(chǎn)、死皮不同產(chǎn)量水平看,Ace指數(shù)、Chao1指數(shù)及Shannon指數(shù)呈增加趨勢,Simpson指數(shù)呈降低趨勢,表明隨著產(chǎn)量水平的下降,橡膠林真菌群落的豐富度和多樣性均上升。

基于abund-jaccard"算法的主坐標(biāo)分析(PCoA)表明,細(xì)菌和真菌群落結(jié)構(gòu)在不同處理間均存在極顯著差異(細(xì)菌:R=1.000,P=0.001;真菌:R=0.710,P=0.001)。第1主成分(PC1)和第2主成分(PC2)共同解釋了細(xì)菌群落結(jié)構(gòu)差異的78.05%(圖1A)。不同處理的土壤細(xì)菌群落在二維空間中未重疊,分布位置相對分散,說明不同產(chǎn)量水平橡膠林土壤細(xì)菌群落結(jié)構(gòu)差異較為明顯。同一處理下各樣本點(diǎn)彼此非常接近,群落組成分散差異不大,表明樣點(diǎn)在OUT水平上細(xì)菌組成具有相似性。對真菌而言,PC1和PC2共同解釋了真菌群落結(jié)構(gòu)差異的"64.20%(圖1B)。4種產(chǎn)量水平橡膠林所占空間相對比較獨(dú)立,低產(chǎn)和死皮橡膠林對應(yīng)的點(diǎn)在圖中較為集中,且距離較近,二者與高、中產(chǎn)橡膠林均有一定分離。說明低產(chǎn)與死皮橡膠林土壤真菌群落組成的變異性較小,高、中產(chǎn)橡膠林土壤真菌群落與低產(chǎn)橡膠林之間存在顯著差異。

2.2.2""土壤微生物群落組成""4個(gè)產(chǎn)量水平橡膠林的12個(gè)土壤樣本中共獲得554"573條細(xì)菌優(yōu)化序列,平均序列長度為1453"bp。按照97%相似度進(jìn)行聚類分析,共得到17門、53綱、99目、164科、305屬、385種和2116個(gè)OTUs。由圖2A可知,4個(gè)處理的細(xì)菌OTUs數(shù)目分別為高產(chǎn)1487個(gè)、中產(chǎn)1558個(gè)、低產(chǎn)1528個(gè)、死皮1381個(gè)。共有的OTUs為821個(gè),各處理所特有的OTUs數(shù)量不一致,其中高產(chǎn)橡膠林獨(dú)有的細(xì)菌OTUs數(shù)最多,為133個(gè);共獲得512"696條有效真菌序列,平均長度為653"bp。所有真菌基因序列經(jīng)鑒定分為17門、49綱、113目、242科、424屬、644種,共得到1622個(gè)OTUs。由圖2B可知,土壤真菌群落在不同橡產(chǎn)量水平橡膠林下的OUTs數(shù)分別為高產(chǎn)490個(gè)、中產(chǎn)593個(gè)、低產(chǎn)734個(gè)、死皮814個(gè)。共有的OTUs數(shù)為123個(gè),死皮橡膠林特有的OTUs數(shù)最多,為285個(gè),高產(chǎn)橡膠林所特有的OTUs數(shù)最少,為162個(gè)。

由圖3A可知,4種產(chǎn)量水平橡膠林的土壤細(xì)菌群落結(jié)構(gòu)組成相近,各處理土壤細(xì)菌共有的優(yōu)勢門類為酸桿菌門(Acidobacteria)、變形菌門(Proteobacteria)和厚壁菌門(Firmicutes)。其中,酸桿菌門的相對豐度為21.44%~33.98%,在死皮林中的豐度顯著高于其他處理;變形菌門相對豐度為22.75%~27.61%,在高、中、低產(chǎn)林中豐度較高;厚壁菌門相對豐度為18.54%~23.79%,浮霉菌門(Planctomycetes)相對豐度為7.03%~"9.34%,二者的相對豐度在各橡膠林中無顯著差異;與死皮橡膠林相比,高產(chǎn)橡膠林中疣微菌門(Verrucomicrobia,"3.36%~7.28%)的相對豐度顯著降低;高產(chǎn)橡膠林中放線菌門(Actinobacteria,"1.71%~6.17%)的相對豐度則顯著高于其他處理(表3)。在真菌群落中,擔(dān)子菌門(Basidiomycota,"19.33%~82.92%)、子囊菌門(Ascomycota,"8.31%~32.13%)、被孢霉門(Mortierellomycota,"5.58%~46.69%)和羅茲菌門(Rozellomycota,"0.73%~5.38%)為橡膠林土壤的優(yōu)勢真菌門(圖3B,表4)。不同處理間土壤優(yōu)勢真菌門相對豐度具有較大差異。高產(chǎn)橡膠林中擔(dān)子菌門相對豐度高達(dá)82.92%,顯著高于其他橡膠林;子囊菌門和羅茲菌門在高產(chǎn)橡膠林中的相對豐度則顯著低于其他橡膠林;被孢霉門的相對豐度以中產(chǎn)橡膠林最高,依次是死皮橡膠林、低產(chǎn)橡膠林、高產(chǎn)橡膠林。此外,4種產(chǎn)量水平橡膠林還存在一些共同的少數(shù)類菌群(相對豐度不足1.00%),如壺菌門(Chytridiomycota)、捕蟲霉門(Zoopagomycota)和球囊菌門(Glomeromycota)等菌群,且死皮橡膠林中少數(shù)類菌群相對其他橡膠林較為豐富。

從屬水平來看,4種橡膠林下的細(xì)菌群落均含有unclassified_f__Acidobacteriaceae、新芽孢桿菌屬(Neobacillus)、unclassified_f__Gemmataceae、西索恩氏菌屬(Chthoniobacter)、unclassified_o__"Hyphomicrobiales、芽孢桿菌屬(Bacillus)、Vicinamibacter、unclassified_f__Bacillaceae、unclassified_o__Rhodospirillales等(圖4A)。以酸桿菌門中酸桿菌綱的unclassified_f__Acidobacteriaceae

(18.73%)和厚壁菌門中芽孢桿菌綱的新芽孢桿菌(7.13%)所占比例最多,為優(yōu)勢類群。各橡膠林中土壤unclassified_f__"Acidobacteriaceae的豐度差異較大,依次為NY(25.50%)gt;LY(20.98%)gt;MY(14.99%)gt;HY(13.44%)。

土壤真菌在屬水平上豐度≥1.00%的屬有16個(gè),以被孢霉屬(Mortierella,"23.14%)、皮蘑屬(Dermoloma,"12.80%)和unclassified_c__Dothid eo mycetes(5.35%)的相對豐度較高,其次為原隱球菌屬(Saitozyma,"4.19%)、傘菌屬(Agaricus,"3.71%)、禿馬勃屬(Calvatia,"3.08%)、unclassified_"f__Lycop erdaceae(2.67%)、unclassified_p__Ch y t ri diomycota(2.57%)、unclassified_p__Roze llomycota(2.48%)、unclassified_p__Ascomycota(2.04%)等(圖4B)。各橡膠林真菌優(yōu)勢屬和相對豐度存在差異。高產(chǎn)橡膠林中優(yōu)勢屬依次為皮蘑屬(51.21%)、被孢霉屬(11.37%)、unclassified_"p__Chytridiomycota(5.08%)、疣孢霉屬(Verr uc onis,"2.42%)、原隱球菌屬(1.48%)等;中產(chǎn)橡膠林中優(yōu)勢屬依次為被孢霉屬(39.00%)、unclassified_c__Dothideomycetes(19.39%)、unclassified_o__GS11(3.85%)、禿馬勃屬(3.12%)、unclassified_p__Rozellomycota(1.84%)等;低產(chǎn)橡膠林中優(yōu)勢屬依次為被孢霉屬(15.33%)、傘菌屬(12.85%)、unclassified_f__Lycoperdaceae(10.21%)、禿馬勃屬(8.43%)、unclassified_"p__Ascomycota(2.75%)等;死皮橡膠林中優(yōu)勢屬依次為被孢霉屬(26.85%)、原隱球菌屬(11.74%)、unclassified_o__Eurotiales(6.60%)、unclassified_p__Rozellomycota(4.83%)、unclassified_p__Ascomycota(3.50%)等。

2.3""土壤微生物群落與理化因子的相關(guān)性分析

對土壤理化因子與微生物多樣性指數(shù)進(jìn)行相關(guān)性分析。結(jié)果顯示,土壤pH與速效鉀(AK)呈顯著正相關(guān),與碳氮比(C/N)和有效磷(AP)分別呈顯著和極顯著負(fù)相關(guān)。土壤有機(jī)質(zhì)(SOM)與全氮(TN)呈極顯著正相關(guān),C/N與SOM和TN均呈極顯著負(fù)相關(guān)。土壤因子與微生物群落相互作用,SOM、TN與細(xì)菌Shannon指數(shù)呈極顯著正相關(guān),與細(xì)菌Simpson指數(shù)呈負(fù)相關(guān)。真菌

豐富度指數(shù)ACE與AP呈極顯著正相關(guān)關(guān)系,與pH呈極顯著負(fù)相關(guān)。真菌Shannon指數(shù)與C/N呈極顯著正相關(guān),與pH、TN均呈負(fù)相關(guān)關(guān)系(圖5)。不同土壤理化性質(zhì)對微生物群落多樣性特征影響各不相同,pH和TN對不同產(chǎn)量橡膠林土壤微生物群落多樣性影響較大。

通過冗余分析(RDA)分析不同樣本細(xì)菌和真菌門類與不同土壤因子間的相關(guān)性(圖6)。RDA1(41.32%)和RDA2(19.11%)共解釋土壤中細(xì)菌群落變異的60.43%,且主要影響因素為土壤pH、TN和AK。其中,酸桿菌門與土壤C/N、AP呈正相關(guān),與pH呈負(fù)相關(guān)。變形菌門則與pH呈正相關(guān),與SOM呈負(fù)相關(guān)。厚壁菌門、放線菌門與pH、SOM、TN呈正相關(guān)關(guān)系,與土壤C/N呈負(fù)相關(guān)。次優(yōu)勢類群浮霉菌門、疣微菌門與TN、SOM呈負(fù)相關(guān)關(guān)系(圖6A)。對真菌群落而言,RDA1和RDA2累積解釋率達(dá)66.35%,pH是顯著影響真菌群落組成的最主要的因子,其次為AK和C/N。其中,C/N與子囊菌門、捕蟲霉門、羅茲菌門、壺菌門呈正相關(guān),與擔(dān)子菌門呈負(fù)相關(guān),而pH與TN對這些真菌門類的影響則相反(圖6B)。AK對被孢霉門有促進(jìn)作用,而對壺菌門有一定的抑制作用。結(jié)果表明,不同的菌落組成對不同土壤環(huán)境因子的響應(yīng)程度不同,pH是本研究中土壤細(xì)菌和真菌群落結(jié)構(gòu)的主要土壤限制因子。

土壤因子與微生物優(yōu)勢屬間的相關(guān)性分析如表5所示。土壤pH與細(xì)菌群落的Vicinamibacter呈顯著正相關(guān),與unclassified_f__Acido bacteria ce ae、unclassified_o__Rhodospirillales呈顯著負(fù)相關(guān);SOM、TN與新芽孢桿菌屬呈顯著正相關(guān),與unclassified_f__Gemmataceae呈顯著負(fù)相關(guān);C/N與unclassified_f__Acidobacteriaceae、unclass if ied_"f__Gemmataceae呈正相關(guān),與Vicinamibacter、芽孢桿菌屬呈負(fù)相關(guān);AP與unclassified_f__"Acidobacteriaceae、unclassified_o__Rhodosp irillales呈顯著正相關(guān),與Vicinamibacter、unclassified_c__"Betaproteobacteria呈顯著正相關(guān);AK與西索恩氏菌屬呈極顯著正相關(guān)。真菌優(yōu)勢屬與土壤理化性質(zhì)的相關(guān)性較弱。pH與原隱球菌屬、unclassified_p__Rozellomycota呈顯著負(fù)相關(guān);SOM、TN與unclassified_f__Lycoperdaceae呈顯著負(fù)相關(guān),C/N與unclassified_f__Lycoperdaceae呈正相關(guān);AK與unclassified_c__Dothideomycetes呈極顯著正相關(guān)。結(jié)果表明,與微生物屬水平相關(guān)性較高的因子為pH和C/N。

3""討論

3.1""不同產(chǎn)量橡膠林土壤微生物群落組成與多樣性特征

微生物群落的豐富度與多樣性對生態(tài)系統(tǒng)恢復(fù)和可持續(xù)發(fā)展至關(guān)重要。研究表明,土壤中微生物類型由“細(xì)菌型”向“真菌型”轉(zhuǎn)變,會加劇土壤連作障礙,從而影響土壤健康和植物生長?[20]。本研究結(jié)果顯示,正常產(chǎn)膠的橡膠林土壤細(xì)菌豐富度指數(shù)和多樣性指數(shù)均高于死皮橡膠林,而死皮橡膠林土壤中真菌群落的豐度和多樣性更高。一方面,死皮橡膠林土壤呈強(qiáng)酸性,土壤中的高濃度氫離子抑制細(xì)菌生長[21];另一方面,土壤中微生物存在競爭排斥作用[22],土壤中細(xì)菌多樣性的增加間接或直接地影響真菌的生長。因此可能導(dǎo)致研究區(qū)死皮橡膠林中細(xì)菌群落豐度較低而真菌群落豐度和多樣性高的結(jié)果。相對而言,高、中、低產(chǎn)橡膠林間土壤細(xì)菌和真菌群落的豐富度差異不明顯。這可能與高、中、低產(chǎn)橡膠林的種植方式、施肥管理措施、林下植被類型以及土壤類型等相差不大有關(guān)。

土壤微生物群落結(jié)構(gòu)分析表明,不同產(chǎn)量水平橡膠林土壤的優(yōu)勢細(xì)菌門為酸桿菌門、變形菌門和厚壁菌門,三者占比之和超過土壤細(xì)菌的70%,與以往研究結(jié)果[23]相似。各橡膠林土壤細(xì)菌群落中以酸桿菌門豐度最高,酸桿菌門的unclassified_f__Acidobacteriaceae在所有屬中占

比最高,揭示了橡膠林土壤營養(yǎng)條件貧瘠這一特點(diǎn)。隨著土壤pH下降,橡膠林土壤酸桿菌門的豐度呈現(xiàn)出明顯的上升趨勢。酸桿菌作為嗜酸菌,可以在缺氧的酸性條件下生存,具有較強(qiáng)的逆境適應(yīng)性,在降解林地中難分解的植物殘留物中起重要作用[24]。這一結(jié)論在本研究中也得到了驗(yàn)證。此外,隨著產(chǎn)膠量的增加,橡膠林土壤中變形菌門、厚壁菌門以及放線菌門的數(shù)量占比均有所上升。通常變形菌多存在于土壤有機(jī)質(zhì)含量較為豐富的土壤中。厚壁菌和放線菌的增加可能是由于它們能形成芽孢,對干旱和極端環(huán)境的適應(yīng)能力較強(qiáng)。放線菌絕大多數(shù)是腐生菌,可分解蛋白質(zhì)、木質(zhì)素和纖維素等物質(zhì),對土壤有機(jī)質(zhì)的轉(zhuǎn)化以及植物的生長有促進(jìn)作用。這些土壤中的功能微生物數(shù)量與土壤養(yǎng)分轉(zhuǎn)化能力及微生物對環(huán)境的適應(yīng)性是相互關(guān)聯(lián)的[25]。擔(dān)子菌門、子囊菌門和被孢霉門是4種產(chǎn)量水平橡膠林土壤的主要優(yōu)勢真菌門類,該結(jié)果與李明美等[26]在海南植膠區(qū)開展的土壤優(yōu)勢真菌類群研究一致。不同產(chǎn)量水平橡膠林土壤各優(yōu)勢真菌門的相對豐度存在差異。其中,高產(chǎn)橡膠林中擔(dān)子菌門的相對豐度高達(dá)82.92%,顯著高于其他橡膠林,子囊菌門和被孢霉門的相對豐度則顯著低于其他處理,在一定程度上有利于橡膠樹的生長和產(chǎn)膠。

3.2""橡膠林土壤理化因子與微生物群落結(jié)構(gòu)的相關(guān)性

土壤微生物群落組成及其多樣性對土壤理化性質(zhì)的響應(yīng)程度各不相同[27]。相關(guān)性分析表明,細(xì)菌豐富度指數(shù)(Ace、Chao1)與土壤pH呈正相關(guān),與SOM呈負(fù)相關(guān)。細(xì)菌多樣性指數(shù)(Shannon)與SOM、TN呈顯著負(fù)相關(guān)。對于真菌而言,Ace、Chao1和Shannon指數(shù)均與土壤AP呈顯著正相關(guān),與pH呈極顯著負(fù)相關(guān),與LAN等[28]認(rèn)為pH是海南和西雙版納地區(qū)土壤微生物多樣性的重要影響因子的結(jié)果相似。孫倩等[29]研究表明,土壤有效磷與土壤真菌豐度和多樣性呈顯著正相關(guān),可能是由于菌根真菌可以通過分泌磷酸酶和有機(jī)酸[30-31],加快土壤有機(jī)磷的礦化和無機(jī)磷的活化[32-33]。另一方面,LIU等[34]在亞熱帶森林的研究中發(fā)現(xiàn)叢枝菌根真菌能促進(jìn)有效態(tài)有機(jī)磷的積累。土壤C/N作為評估真菌功能基因豐富度的理想因子,與真菌分布密切相關(guān)[8]。本研究中土壤C/N與真菌群落豐度和多樣性均呈正相關(guān),這與LIAO等[35]的研究結(jié)果一致。

相關(guān)研究證實(shí),絕大多數(shù)優(yōu)勢菌門均與土壤理化因子有一定的相關(guān)性[36-37]。冗余分析結(jié)果顯示,優(yōu)勢類群變形菌門、擔(dān)子菌門與土壤pH呈正相關(guān),酸桿菌門和子囊菌門則與pH呈負(fù)相關(guān),與C/N和AP呈正相關(guān)。浮霉菌門、羅茲菌門和壺菌門均與C/N呈正相關(guān),與SOM、TN呈負(fù)相關(guān)。結(jié)果顯示,pH、TN和AK是本研究中土壤細(xì)菌群落組成的關(guān)鍵限制因子,pH、AK和C/N則是影響真菌群落組成的主要因子。由此可見,橡膠林中土壤微生物群落結(jié)構(gòu)與土壤pH、N、K元素密切相關(guān)。這與前人[31,"38]認(rèn)為土壤微生物群落結(jié)構(gòu)主要受土壤pH影響的研究結(jié)果相同。海南位于熱帶地區(qū)受亞熱帶季風(fēng)影響,高溫多雨,使土壤中堿性離子(K+)被淋洗,土壤pH下降導(dǎo)致土壤酸化,從而阻礙土壤生物的生長[39],因此鉀元素可能對土壤微生物群落結(jié)構(gòu)的發(fā)展具有抑制效應(yīng)。已有研究證明,微生物群落結(jié)構(gòu)的環(huán)境因子多為有機(jī)碳、TN和pH[40-42]。趙春梅等[15]證實(shí)了SOM、AN、TN和C/N是橡膠林土壤真菌群落結(jié)構(gòu)的最主要影響因素。有機(jī)碳為微生物生長提供能量和碳源[43],而氮有效性增加往往對微生物生長產(chǎn)生負(fù)面影響[44]。本研究中土壤有機(jī)質(zhì)含量與真菌群落組成的相關(guān)性較弱且不顯著,其原因可能是研究區(qū)域土壤全氮與有機(jī)質(zhì)呈極顯著正相關(guān),全氮對微生物群落結(jié)構(gòu)的限制掩蓋了有機(jī)質(zhì)的作用。同時(shí),不同細(xì)菌和真菌優(yōu)勢屬類與土壤pH、C/N等理化因子也呈現(xiàn)一定的相關(guān)性。如芽孢桿菌與土壤SOM、TN呈顯著正相關(guān),其相對豐度隨著產(chǎn)量水平的下降呈明顯下降趨勢。芽孢桿菌作為土壤中的典型有益菌類,對土壤養(yǎng)分積累和植物生長均有正向作用。有研究表明用芽孢桿菌對花生幼苗進(jìn)行灌根處理,不僅能促進(jìn)莖的伸長及鮮重增加,還能增加根際土壤速效養(yǎng)分含量[45]。

通過對不同產(chǎn)量水平橡膠林下土壤微生物群落組成分析發(fā)現(xiàn),無論門或?qū)偎?,土壤真菌群落組成較細(xì)菌差異更加明顯。本研究土壤細(xì)菌和真菌的分類信息在門、綱、目的水平上比較明確,在科和屬的水平上尚未明確分類的類群占比較大,排名前15的屬中約50%為未分類屬,這可能與測序區(qū)間的選擇和比對數(shù)據(jù)庫有關(guān)。此外,本研究中土壤微生物群落特征與其他土壤理化性質(zhì)之間的互作關(guān)系仍有待探究。

參考文獻(xiàn)

  • 榮鳳云."推進(jìn)我國天然橡膠產(chǎn)業(yè)穩(wěn)定發(fā)展問題研究[J]."農(nóng)業(yè)科研經(jīng)濟(jì)管理,"2023(1):"17-20.RONG"F"Y."Analysis"on"the"development"prospect"of"natural"rubber"industry[J]."Management"for"Economy"in"Agricultural"Scientific"Research,"2023(1):"17-20."(in"Chinese)
  • 唐賢慧,"郭澎濤,"羅微,"茶正早,"楊紅竹,"貝美容,"劉銳金,"何長輝."基于主成分分析的海南橡膠園土壤化學(xué)肥力的評價(jià)[J]."熱帶生物學(xué)報(bào),"2022,"13(1):"36-41.TANG"X"H,"GUO"P"T,"LUO"W,"CHAnbsp;Z"Z,"YANG"H"Z,"BEI"M"R,"LIU"R"J,"HE"C"H."Evaluation"of"soil"chemical"fertility"of"Hainan"rubber"plantation"based"on"principal"component"analysis[J]."Journal"of"Tropical"Biology,"2022,"13(1):"36-41."(in"Chinese)
  • 王大鵬,"王秀全,"成鏡,"何鵬,"韋家少."海南植膠區(qū)養(yǎng)分管理現(xiàn)狀與改進(jìn)策略[J]."熱帶農(nóng)業(yè)科學(xué),"2013,"33(9):"22-27.WANG"D"P,"WANG"X"Q,"CHENG"J,"HE"P,"WEI"J"S."Current"status"of"nutrient"management"in"Hainan"rubber"planting"areas"and"improvement"strategies[J]."Chinese"Journal"of"Tropical"Agriculture,"2013,"33(9):"22-27."(in"Chinese)
  • 劉銳金,"黃華孫."“十四五”時(shí)期推動(dòng)天然橡膠產(chǎn)業(yè)健康發(fā)展的思考[J]."中國熱帶農(nóng)業(yè),"2021(4):"5-12.LIU"R"J,"HUANG"H"S."Thoughts"on"promoting"the"sound"development"of"natural"rubber"industry"during"the"14th"Five-Year"Plan"period[J]."Industry"Development,"2021(4):"5-12."(in"Chinese)
  • DELGADO-BAQUERIZO"M,"MAESTRE"F"T,"REICH"P"B,"JEFFRIES"T"C,"GAITAN"J"J,"ENCINAR"D,"BERDUGO"M,"CAMPBELL"C"D,"SINGH"B"K."Microbial"diversity"drives"multifunctionality"in"terrestrial"ecosystems[J]."Nature"Communications,"2016,"7:"10541.
  • BENDER"S"F,"WAGG"C,"VAN"DER"HEIJDEN"M"G"A."An"underground"revolution:"biodiversity"and"soil"ecological"engineering"for"agricultural"sustainability[J]."Trends"in"Ecology"and"Evolution,"2016,"31(6):"440-452.
  • GUO"H"C,"WANG"W"B,"LUO"X"H,"WU"X"P."Variations"in"rhizosphere"microbial"communities"of"rubber"plantations"in"Hainan"island,"China[J]."Journal"of"Rubber"Research,"2013,"16(4):"243-256.

[8]"BAHRAM"M,"HILDEBRAND"F,"FORSLUND"S"K,"ANDERSON"J"L,"SOUDZILOVSKAIA"N"A,"BODEGOM"P"M,"BENGTSSON-PALME"J,"ANALAN"S,"COELHO"L"P,"HAREND"H,"HUERTA-CEPAS"J,"MEDEMA"M"H,"MALTZ"M"R,"MUNDRA"S,"OLSSON"P"A,"PENT"M,"P?LME"S,"SUNAGAWA"S,"RYBERG"M,"TEDERSOO"L,"BORK"P."Structure"and"function"of"the"global"topsoil"microbiome[J]."Nature,"2018,"560:"233-237.

[9]"LAUBER"C"L,"HAMADY"M,"KNIGHT"R,"FIERER"N."Pyrosequencing-based"assessment"of"soil"pH"as"a"predictor"of"soil"bacterial"community"structure"at"the"continental"scale[J]."Applied"and"Environment"Microbiology,"2009,"75(15):"5111-5120.

[10]"ROUSK"J,"B??TH"E,"BROOKES"P"C,"LAUBER"C"L,"LOZUPONE"C,"CAPORASO"J"G,"KNIGHT"R,"FIERER"N."Soil"bacterial"and"fungal"communities"across"a"pH"gradient"in"an"arable"soil[J]."The"ISME"Journal,"2010,"4:"1340-1351.

[11]"唐欣,"劉世榮,"許涵,"張于光."海南尖峰嶺熱帶山地雨林"60"hm2動(dòng)態(tài)監(jiān)測樣地土壤微生物物種估算[J]."林業(yè)科學(xué),"2019,"55(12):"84-92.TANG"X,"LIU"S"R,"XU"H,"ZHANG"Y"G."Estimation"of"soil"microbial"species"in"a"60"hm2"dynamic"monitoring"plot"of"tropical"mountain"rain"forest"in"Jianfengling,"Hainan,"China[J]."Scientia"Silvae"Sinicae,"2019,"55(12):"84-92."(in"Chinese)

[12]"PHILIPPOT"L,"CHENU"C,"KAPPLER"A,"RILLIG"M"C,"FIERER"N."The"interplay"between"microbial"communities"and"soil"properties[J]."Nature"Reviews"Microbiology,"2024,"22:"226-239.

[13]"楊帆."熱帶雨林轉(zhuǎn)變?yōu)橄鹉z林對土壤微生物的影響研究[D]."昆明:"云南師范大學(xué),"2016.YANG"F."Research"on"microorganism"changes"under"the"transformation"from"tropical"rain"forests"to"rubber"plantations[D]."Kunming:"Yunnan"Normal"University,"2016."(in"Chinese)

[14]"周玉杰,"李建華,"張廣宇,"王寧,"譚文麗,"王永鵬,"王春燕,"王華鋒."基于高通量測序的橡膠林土壤真菌多樣性及群落組成分析[J]."南方農(nóng)業(yè)學(xué)報(bào),"2018,"49(9):"1729-1735.ZHOU"Y"J,"LI"J"H,"ZHANG"G"Y,"WANG"N,"TAN"W"L,"WANG"Y"P,"WANG"C"Y,"WANG"H"F."Analysis"of"soil"fungal"diversity"and"community"composition"of"rubber"plantations"based"on"high-throughput"sequencing[J]."Journal"of"Southern"Agriculture,"2018,"49(9):"1729-1735."(in"Chinese)

[15]"趙春梅,"王文斌,"張永發(fā),"薛欣欣,"羅雪華,"羅梁元,"吳小平."不同母質(zhì)橡膠林土壤真菌群落結(jié)構(gòu)特征及其與土壤環(huán)境因子的相關(guān)性[J]."南方農(nóng)業(yè)學(xué)報(bào),"2021,"52(7):"1869-1876.ZHAO"C"M,"WANG"W"B,"ZHANG"Y"F,"XUE"X"X,"LUO"X"H,"LUO"L"Y,nbsp;WU"X"P."Characterization"of"soil"microbial"community"structure"among"different"parent"materials"in"rubber"plantation[J]."Journal"of"Southern"Agriculture,"2021,"52(7):"1869-1876."(in"Chinese)

[16]"XUN"W"B,"HUANG"T,"ZHAO"J,"RAN"W,"WANG"B"R,"SHEN"Q"R,"ZHANG"R"F."Environmental"conditions"rather"than"microbial"inoculum"composition"determine"the"bacterial"composition,"microbial"biomass"and"enzymatic"activity"of"reconstructed"soil"microbial"communities[J]."Soil"Biology"and"Biochemistry,"2015,"90:"10-18.

[17]"YANG"Y"J,"WU"P"F."Soil"bacterial"community"varies"but"fungal"community"stabilizes"along"five"vertical"climate"zones[J]."Catena,"2020,"195:"104841.

[18]"LIU"M,"LV"X"G,"ZHANG"W"G,"JIANG"M,"TIAN"L,"QIN"L,"ZOU"Y"C."Biological"interactions"control"bacterial"but"not"fungal"β"diversity"during"vegetation"degradation"in"saline-alkaline"soil[J]."Science"of"the"Total"Environment,"2024,"919:"170826.

[19]"PENG"M,"JIA"H,"WANG"Q."The"effect"of"land"use"on"bacterial"communities"in"saline-alkali"soil[J]."Current"Microbiology,"2017,"74:"325-333.

[20]"YIM"B,"SMALLA"K,"WINKELMANN"T."Evaluation"of"apple"replant"problems"based"on"different"soil"disinfection"treatments-links"to"soil"microbial"community"structure?[J]."Plant"Soil,"2013,"366"(1/2):"617-631.

[21]"ROUSK"J,"BROOKES"P"C,"B??TH"E."Contrasting"soil"pH"effects"on"fungal"and"bacterial"growth"suggest"functional"redundancy"in"carbon"mineralization[J]."Applied"and"Environmental"Microbiology,"2009,"75(6):"1589-1596.

[22]"ELDRIDGE"D"J,"DELGADO-BAQUERIZO"M,"TRAVERS"S"K,"VAL"J,"OLIVER"I,"HAMONTS"K,"SINGH"B"K."Competition"drives"the"response"of"soil"microbial"diversity"to"increased"grazing"by"vertebrate"herbivores[J]."Ecology,"2017,"98(7):"1922-1931.

[23]"LELOUP"J,"BAUDE"M,"NUNAN"N,"MERIGUET"J,"DAJOZ"I,"ROUX"X"L,"RAYNAUD"X."Unravelling"the"effects"of"plant"species"diversity"and"aboveground"litter"input"on"soil"bacterial"communities[J]."Geoderma,"2018,"317:"1-7.

[24]"楊安娜,"陸云峰,"張俊紅,"吳家森,"徐金良,"童再康."杉木人工林土壤養(yǎng)分及酸桿菌群落結(jié)構(gòu)變化[J]."林業(yè)科學(xué),"2019,"55(1):119-127.YANG"A"N,"LU"Y"F,"ZHANG"J"H,"WU"J"S,"XU"J"L,"TONG"Z"K."Changes"in"soil"nutrients"and"Acidobacteria"community"structure"in"Cunninghamia"lanceolata"plantations[J]."Scientia"Silvae"Sinicae,"2019,"55(1):"119-127."(in"Chinese)

[25]"VACHERON"J,"DESBROSSES"G,"BOUFFAUD"M"L,"TO U RAINE"B,"MO?NNE-LOCCOZ"Y,"MULLER"D,"LEG EN D R E"L,"WISNIEWSKI-DYé"F,"PRIGENT-"COMBARET"C."Plant"growth-promoting"rhizobacteria"and"root"system"functioning[J]."Frontiers"in"Plant"Science,"2013,"4:"356.

[26]"李明美,"全飛,"孫樹晴,"蘭國玉,"楊川,"吳志祥."近自然管理方式對橡膠林根際土壤真菌群落結(jié)構(gòu)和多樣性的影響[J]."南方農(nóng)業(yè)學(xué)報(bào),"2022,"53(4):"1121-1130.LI"M"M,"QUAN"F,"SUN"S"Q,"LAN"G"Y,"YANG"C,"WU"Z"X."Effects"of"close-to-natural"management"on"the"community"structure"and"diversity"of"fungi"in"the"rhizosphere"soil"of"rubber"plantation[J]."Journal"of"Southern"Agriculture,"2022,"53(4):"1121-1130."(in"Chinese)

[27]"QIAO"Y"F,"MIAO"S"J,"ZHONG"X,"ZHAO"H"F,"PAN"S"Q."The"greatest"potential"benefit"of"biochar"return"on"bacterial"community"structure"among"three"maize-straw"products"after"eight"year"field"experimentnbsp;in"Mollisols[J]."Applied"Soil"Ecology,"2020,"147:"103432.

[28]"LAN"G"Y,"WU"Z"X,"LI"Y"W,"CHEN"B"Q."The"drivers"of"soil"bacterial"communities"in"rubber"plantation"at"local"and"geographic"scales[J]."Archives"of"Agronomy"and"Soilnbsp;Science,"2020,"66(3):"358-369.

[29]"孫倩,"吳宏亮,"陳阜,"康建宏."寧夏中部干旱帶不同作物根際土壤真菌群落多樣性及群落結(jié)構(gòu)[J]."微生物學(xué)通報(bào),"2019,"46(11):"2963-2972.SUN"Q,"WU"H"L,"CHEN"F,"KANG"J"H."Fungal"community"diversity"and"structure"in"rhizosphere"soil"of"different"crops"in"the"arid"zone"of"central"Ningxia[J]."Microbiology"China,"2019,"46(11):"2963-2972."(in"Chinese)

[30]"TOLJANDER"J"F,"LINDAHL"B"D,"PAUL"L"R,"ELFS TR AND"M,"FINLAY"R"D."Influence"of"arbuscular"mycorrhizal"mycelial"exudates"on"soil"bacterial"growth"and"community"structure[J]."FEMS"Microbiology"Ecology,"2007,"61(2):"295-304.

[31]"ZHANG"H"Z,"SHI"L"L,"WEN"D"Z,"YU"K"L."Soil"potential"labile"but"not"occluded"phosphorus"forms"increase"with"forest"succession[J]."Biology"and"Fertility"of"Soils,"2016,"52:"41-51.

[32]"FUJII"K,"AOKI"M,"KITAYAMA"K."Reprint"of"“Biodegradation"of"low"molecular"weight"organic"acids"in"rhizosphere"soils"from"a"tropical"montane"rain"forest”[J]."Soil"Biology"and"Biochemistry,"2013,"56:"3-9.

[33]"FAN"Y"X,"ZHONG"X"J,"LIN"F,"LIU"C"C,"YANG"L"M,"WANG"M"H,"CHEN"G"S,"CHEN"Y"M,"YANG"Y"S."Responses"of"soil"phosphorus"fractions"after"nitrogen"addition"in"a"subtropical"forest"ecosystem:"insights"from"decreased"Fe"andnbsp;Al"oxides"and"increased"plant"roots[J]."Geoderma,"2019,"337:"246-255.

[34]"LIU"Y,"ZHANG"G"H,"LUO"X"Z,"HOU"E"Q,"ZHENG"M"H,"ZHANG"L"L,"HE"X"J,"SHEN"W"J,"WEN"D"Z."Mycorrhizal"fungi"and"phosphatase"involvement"in"rhizosphere"phosphorus"transformations"improves"plant"nutrition"during"subtropical"forest"succession[J]."Soil"Biology"and"Biochemistry,"2021,"153:"108099.

[35]"LIAO"H,"ZHANG"Y"C,"ZUO"Q"Y,"DU"B"B,"CHEN"W"L,"WEI"D,"HUANG"Q"Y."Contrasting"responses"of"bacterial"and"fungal"communities"to"aggregate-size"fractions"and"long-term"fertilizations"in"soils"of"northeastern"China[J]."Science"of"the"Total"Environment,"2018,"635:"784-792.

[36]"LAUBER"C"L,"STRICKLAND"M"S,"BRADFORD"M"A,"FIERER"N."The"influence"of"soil"properties"on"the"structure"of"bacterial"and"fungal"communities"across"land-use"types[J]."Soil"Biology"and"Biochemistry,"2008,"40(9):"2407-2415.

[37]"萬盼,"胡艷波,"張弓喬,"王宏翔,"李錄林,"王鵬,"惠剛盈."甘肅小隴山油松與柴胡栽培土壤細(xì)菌群落特征[J]."生態(tài)學(xué)報(bào),"2018,"38(17):"6016-6024.WAN"P,"HU"Y"B,"ZHANG"G"Q,"WANG"H"X,"LI"L"L,"WANG"P,"HUI"G"Y."Soil"bacterial"communities"under"Pinus"tabulaeformis"Carr."and"Bupleurum"chinense"plantations"at"Xiaolo ngshan"mountain"of"Gansu"province[J]."Acta"Ecologi ca"Sinica,"2018,"38(17):"6016-6024."(in"Chinese)

[38]"李永春,"梁雪,"李永夫,"王祈,"陳俊輝,"徐秋芳."毛竹入侵闊葉林對土壤真菌群落的影響[J]."應(yīng)用生態(tài)學(xué)報(bào),"2016,"27(2):"585-592.LI"Y"C,"LIANG"X,"LI"Y"F,"WANG"Q,"CHEN"J"H,"XU"Q"F."Effects"of"Phyllostachys"edulis"invasion"of"native"broadleaf"forest"on"soil"fungal"community[J]."Chinese"Journal"of"Applied"Ecology,"2016,"27(2):"585-592."(in"Chinese)

[39]"胡波,"張會蘭,"王彬,"王云琦,"郭平,"劉春霞,"唐曉芬."重慶縉云山地區(qū)森林土壤酸化特征[J]."長江流域資源與環(huán)境,"2015,"24(2):"300-309.HU"B,"ZHANG"H"L,"WANG"B,"WANG"Y"Q,"GUO"P,"LIU"C"X,"TANG"X"F."Analysis"on"the"forest"soil"acidification"and"mechanisms"in"Chongqing"Jinyun"mountain[J]."Resources"and"Environment"in"the"Yangtze"Basin,"2015,"24(2):"300-309."(in"Chinese)

[40]"羅達(dá),"劉順,"史作民,"馮秋紅,"劉千里,"張利,"黃泉,"何建社."川西亞高山不同林齡云杉人工林土壤微生物群落結(jié)構(gòu)[J]."應(yīng)用生態(tài)學(xué)報(bào),"2017,"28(2):"519-527.LU"D,"LIU"S,"SHI"Z"M,"FENG"Q"H,"LIU"Q"L,"ZHANG"L,"HUANG"Q,"HE"J"S."Soil"microbial"community"structure"in"Picea"asperata"plantations"with"different"ages"in"subalpine"of"western"Sichuan,"Southwest"China[J]."Chinese"Journal"of"Applied"Ecology,"2017,"28(2):"519-527."(in"Chinese)

[41]"字洪標(biāo),"向澤宇,"王根緒,"阿的魯驥,"王長庭.nbsp;青海不同林分土壤微生物群落結(jié)構(gòu)(PLFA)[J]."林業(yè)科學(xué),"2017,"53(3):"21-32.ZI"H"B,"XIANG"Z"Y,"WANG"G"X,"ADE"L"J,"WANG"C"T."Profile"of"soil"microbial"community"under"different"stand"types"in"Qinghai"province[J]."Scientia"Silvae"Sinicae,"2017,"53(3):"21-32."(in"Chinese)

[42]"王鎣燕,"王子芳,"黃容,"呂盛,"高明."縉云山不同森林植被下土壤微生物群落結(jié)構(gòu)特征研究[J]."土壤學(xué)報(bào),"2019,"56(5):"1210-1220.WANG"Y"Y,"WANG"Z"F,"HUANG"R,"LYU"S,"GAO"M."Characterization"of"soil"microbial"community"structure"as"affected"by"vegetation"in"Jinyun"mountain[J]."Acta"Pedologica"Sinica,"2019,"56(5):"1210-1220."(in"Chinese)

[43]"GRIFFITHS"B"S,"RITZ"K,"EBBLEWHITE"N,"DOBSON"G."Soil"microbial"community"structure:"effects"of"substrate"loading"rates[J]."Soil"Biology"and"Biochemistry,"1998,"31(1):"145-153.

[44]"CRAINE"J"M,"MORROW"C,"FIERER"N."Microbial"nitrogen"limitation"increases"decomposition[J]."Ecology,"2007,"88(8):"2105-2113.

[45]"黃文茂,"韓麗珍,"王歡."兩株芽孢桿菌對花生幼苗生長及其根際土壤微生物群落結(jié)構(gòu)的影響[J]."微生物學(xué)通報(bào),"2020,"47(11):"3551-3563.HUANG"W"M,"HAN"L"Z,"WANG"H."Effects"of"two"Bacillus"spp."strains"on"the"growth"of"peanut"seedling"and"microbial"community"structure"in"rhizosphere"soil[J]."Microbiology"China,"2020,"47(11):"3551-3563."(in"Chinese)

猜你喜歡
死皮橡膠林低產(chǎn)
海南橡膠林生態(tài)系統(tǒng)凈碳交換物候特征
橡膠林
中國熱科院突破橡膠樹死皮康復(fù)技術(shù)難關(guān)
中國熱科院突破橡膠樹死皮康復(fù)技術(shù)難關(guān)
中國熱科院突破橡膠樹死皮康復(fù)技術(shù)難關(guān)
低產(chǎn)棗園如何改造
成齡低產(chǎn)梨園改造豐產(chǎn)栽培技術(shù)
花香襲來/死皮不賴臉
低產(chǎn)“金絲4號”小棗密植園的改造
西雙版納橡膠林土壤有機(jī)碳分布特征研究
凤山县| 山丹县| 齐齐哈尔市| 边坝县| 博白县| 刚察县| 瑞昌市| 揭东县| 永修县| 石景山区| 礼泉县| 渭南市| 凤翔县| 万宁市| 花垣县| 托克托县| 新绛县| 西林县| 新津县| 辽中县| 沈阳市| 江山市| 玉树县| 马边| 清新县| 贵德县| 武清区| 峨眉山市| 安阳县| 南溪县| 嘉定区| 郸城县| 化德县| 德安县| 贡山| 印江| 瓮安县| 镇平县| 云和县| 新营市| 什邡市|